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INTRODUCTION 

The intra-plate Kachchh paleo-rift basin, located at the western continental margin of 

the Indian plate, is characterized by multiple seismic sources. This is evidenced by the spread 

of historic and current seismic activity along the E-W trending intra-basin fault systems. 

Available fault plane solutions of high to low magnitude earthquakes suggest reverse dip slip 

with strike-slip component under compression. Since the last high magnitude 2001 Bhuj 

earthquake (Mw 7.7) and the prolonged aftershock sequence, the eastern part of the Kachchh 

basin is identified as the Kachchh Seismic Zone that encloses the Kachchh Mainland Fault 

(KMF), South Wagad Fault (SWF), Gedi Fault (GF) and the Island Belt Fault (IBF). The 

present study is concerned with the Katrol Hill Fault (KHF), which does not show significant 

historical seismicity apart from very few low magnitude shocks. In such a scenario it is likely 

that the KHF may be underestimated as a credible potential seismic source in the region, which 

usually happens with faults that have longer periods of quiescence.   

The Katrol Hill Fault (KHF) is characterized by a very limited number of instrumental 

seismology data, including focal solutions along it with apparent low magnitude earthquakes 

and low-level seismicity, which could be another reason for its underestimation as a potential 

seismic source. However, neotectonic studies along the KHF have shown that it has produced 

three Late Quaternary surface faulting events in the past ~30 ka B.P., which means that the 

estimation of surface rupture hazard and its seismogenic potential is imperative. Thus, in the 

present study, the lateral extent of Late Quaternary surface faulting along the KHF and their 

magnitude (Mw) are estimated using various empirical relationships. Further, geomorphic 

effects of surface faulting events as observed in the Gunawari and Gangeshwar river basin in 

the form of drainage reorganization are described. Implication of surface rupture hazard by 

evaluating seismogenic potential of KHF using geological methods provides critical data for 

civil engineering design as well as seismic hazard estimation and mitigation.  

METHODOLOGY 

A largely rocky landscape coupled with a lack of good complete sections, except the 

Khari river section, meant that the tracing of Late Quaternary surface faulting along KHF could 

not be done using routine field mapping alone. In view of this, the approach and methodology 

applied in the present study were largely governed by the area-specific conditions. An 

interdisciplinary strategy that used field mapping, shallow geophysical studies using GPR, 

microscopic studies using optical microscopy and Scanning Electron microscopy (SEM) was 

followed. Detailed field investigations were carried out to map the Quaternary deposits in the 



area and samples were collected from the Quaternary deposits found in the KHF zone for 

analyses under the optical microscopy and Scanning Electron Microscopy (SEM) to examine 

the presence of microtextures related to coseismic faulting processes and to precisely locate the 

surface rupture trace of the KHF. The field investigation was also accompanied by shallow 

subsurface geophysical surveys with Ground Penetrating Radar (GPR) and data was acquired 

in the form of two-dimensional (2D) profiles along transects overlain by Late Quaternary 

deposits concealing the surface trace of KHF. The parameters such as surface rupture length, 

displacement and slip rate derived from the above-mentioned analyses were used to estimate 

the magnitude of paleo-earthquake along the KHF using various empirical relationships. The 

presence of buried paleo-valley and the wind gap which resulted due to surface faulting along 

KHF in the Gunawari and Gangeshwar river basins was also established using the GPR studies 

assisted by geomorphic cross-sections, longitudinal river profiles, morphometric parameters 

and Chi (χ) analysis.  

LATE QUATERNARY SEDIMENTS IN THE KATROL HILL FAULT ZONE 

At many places along its length, the KHF is buried under thin and patchy cover of Late 

Quaternary sediments. Sporadic occurrences of Quaternary sediments in the Katrol Hill Range 

(KHR) comprise of boulder colluvium at the base, overlain successively by aeolian miliolite, 

valley-fill/ fluvial miliolite (reworked), sandy alluvium and scarp derived colluvium.  The 

bouldery colluvium deposits found overlying the Mesozoic rocks at the basement are degraded 

debris derived from the scarps and are poorly sorted comprising angular to sub-rounded 

boulders, cobbles, pebbles and fine sand, derived from the formations consisting of shales, 

sandstones and siltstones. The overlying aeolian and valley-fill or fluvially reworked miliolites 

are the most commonly encountered varieties of miliolites.  

The term miliolite is applied to Late Quaternary lithified carbonate-rich sediments of 

aeolian origin that were blown off from the coastlines to far inland areas where they were 

accumulated in depressions and against obstacles. Scattered occurrences of miliolites in 

Kachchh are reported from a wide variety of geomorphic settings that include hill slopes, 

valleys and depressions, wind gaps and ravines. The aeolian miliolites were deposited as 

obstacle dunes in front of the scarps burying the KHF partially and also in valleys within the 

hilly terrain of KHR. Some parts of these deposits have been reworked by stream action 

forming valley fill miliolites, which are readily distinguished in the field by horizontal 

stratification and presence of pebbles and boulders of Mesozoic rocks. 



Available U/Th chronological data show that the aeolian miliolite deposition in KHF 

zone spanned the Late Pleistocene up to ~42 ka B.P. The stratigraphically younger fluvial 

deposits, dated by OSL technique in the Khari river section date back to ~32 ka B.P. Based on 

literature, three Late Quaternary surface faulting events are identified from the most well 

exposed Khari river section. OSL dating of the Khari river section show that the Late 

Quaternary surface faulting events occurred around 31.8 ka B.P., 28.5 ka B.P. and 3 ka B.P. 

These ages are in agreement with the U/Th dates on aeolian miliolites which suggest deposition 

up to ~42 ka B.P. 

FIELD EVIDENCE OF LATE QUATERNARY SURFACE FAULTING 

The field evidence of surface faulting is observed in the form of offsetting of Late 

Quaternary sediments overlying the KHF trace. The best exposed section is located ~ 5 km 

SSW of Bhuj, the cliff section comprises stratified Late Quaternary sediments unconformably 

overlying the KHF fault trace exposed in Mesozoic rocks at the base. The sediments consist of 

colluvium (Unit 1) at the base followed by gravelly sand (Unit 2 and 4) with an intervening 

lensoid layer of finely laminated sand (Unit 3), stratified miliolitic sand (Unit 5) and scarp 

derived colluvium (Unit 6) at the top. All units show erosional bases. The entire section shows 

offsetting due to reverse faulting along two faults that converge and join up at the base with 

the KHF fault trace within the Mesozoic rocks. OSL dating of this section shows that the three 

events occurred at 31.8 ±2.8 ka (Event 1-oldest), 28.5 ±3.7 ka (Event 2) and 3.0 ±0.3 ka B.P. 

(Event 3-youngest). 

Three surface faulting events were identified based on offsetting of stratigraphic units. 

During each of the three faulting events, the KHF displaced the then existing topographic 

surface as it propagated upwards in the thin sediment cover after each surface faulting event. 

The post-faulting erosion was more severe on the southern uplifted block compared to the 

footwall which has preserved larger thickness of sediments. Event 1 post-dates the deposition 

of Unit 1 during which KHF bifurcated into two faults (F1 and F2) due to rheological change 

as it propagated upwards from hard and compact Mesozoic rocks to unconsolidated colluvial 

sediments above which produced a displacement of ~3.5m. Erosion of the scarp formed during 

Event 1 precluded deposition of Units 2, 3 and 4. Unit 2 and 4 comprise gravelly sand with a 

lensoid body of finely laminated sand. Event 2 occurred after the deposition of Unit 4 which 

resulted in upward propagation of both F1 and F2. The wedge-formed between these two fault 

planes shows evidence of severe deformation like deformed stratification and sympathetic 

micro-faults with offset laminations along the fault planes. 



Event 2 with a displacement of 2.2m was followed by erosion of the offset topography 

and deposition of stratified miliolitic sand (Unit 5) and scarp derived colluvium (Unit 6). Unit 

5 is not observed in the southern uplifted block as, either it was not deposited in the uplifted 

block or it was eroded off before the deposition of scarp derived colluvium (Unit 6). Offsetting 

of Unit 6 along F1 and F2 indicates that Event 3 displaying ~2.2m of offset occurred after its 

deposition. A minimum cumulative displacement of ~8 m is estimated based on the offset 

stratigraphy. Based on available optically stimulated luminescence (OSL) dating of this 

section, the three events identified are younger than 31.8 ±2.8 ka (Event 1), 28.5 ±3.7 ka (Event 

2) and 3.0 ±0.3 ka BP (Event 3). 

The Quaternary deposits in the Khari river section showed displacement of 3.5m, 2.2m 

and 2.3m for the oldest, intermediate and youngest event of surface faulting. The slip rates of 

0.66 mm/yr and 0.09 mm/yr were associated with the three events of surface faulting which 

was calculated using the slip history diagram.  

Another exposure of deformed Late Quaternary sediments is located to the south of 

Bharasar village, where a NE flowing lower-order tributary of Khari river shows incised Late 

Quaternary deposits on its eastern bank. This site is located ~3 km west to the above described 

Khari river cliff section. The older fault plane of the KHF within the Mesozoic rocks 

(lithotectonic contact between Bhuj and pre-Bhuj formations) is exposed across the stream bed, 

which is unconformably overlain by 4-5 m thick Late Quaternary sediments. The horizontally 

stratified layers of gravelly sand unit are truncated along a gently southward dipping fault plane 

in a reverse manner. Downward extension of this plane correlates with the KHF fault plane in 

the Mesozoic rocks exposed in the river bed. 

To the south of Bhujodi, exposure of aeolian origin miliolite deposits are found in a 

shallow depression in front of the scarps effectively burying the KHF fault plane. The fault line 

of the KHF is concealed below the miliolite deposits.  The aeolian characteristics of the deposit 

are evidenced by the large scale dunal cross-bedding of well-sorted fine grain miliolitic sand. 

Above the buried fault line of KHF, an E-W trending, couple of meter wide zone showing high 

degree of deformation in which the dip of the foresets of thinly-laminated aeolian origin cross-

bedded miliolite strata are showing near vertical dips. This zone of deformation is laterally 

traceable throughout the outcrop along the buried fault trace of KHF and evident of post 

miliolite phase of neotectonic reactivation. Away from the KHF, the foresets attain gentle 

northward dips within a few tens of meters.  

 



GROUND PENETRATING RADAR STUDIES  

GPR has been shown to successfully investigate the geological properties of the shallow 

subsurface by detecting changes in the physical character of the subsurface commonly 

associated with geological features in the form of radar reflections caused by contrasts in the 

dielectric properties of adjacent materials. For the characterization of the Quaternary sediments 

found in the KHF zone, GPR surveys were carried out in the regions showing the presence of 

miliolite outcrops for radar characterization of sediments and sediments overlapping the fault 

line to interpret the signatures of faulting in Late Quaternary sediments. Consequently, the GPR 

survey revealed the presence of wind gap and a buried paleo-valley in the Gunawari river basin. 

Additionally, GPR surveys were carried out at Bharasar, Tapkeshwari, Bhujodi and Ler areas 

along N-S transects over the KHF zone with Quaternary sediment cover and evidence of 

deformation to identify the precise location of KHF in the subsurface and its upward extension 

into the Quaternary sediments. The sites for GPR data acquisition were selected based on 

neotectonic and geomorphic mapping of the KHF through and beyond the zones of observed 

fault exposures and DEM analysis. The processed GPR data of the four above mentioned 

locations along the KHF zone shows high amplitude, continuous reflectors which characterize 

the Quaternary sediments. These reflectors occur up to a depth of ~3-5m, which marks the 

Quaternary-Mesozoic interface marked by differences in reflection strength, geometry and 

amplitude contrast in the radargram. The Mesozoic rocks in the radargrams are characterized 

by moderate-low amplitude, dis-continuous reflectors. The fault plane of KHF is observed as 

plane truncating and offsetting reflectors found in the Mesozoic rocks and continuing through 

the Quaternary-Mesozoic interface into the overlying Quaternary sediments. Abrupt changes 

in amplitude strength, signal scattering and reflection pattern observed across the fault plane 

corresponds to lithological variations. The different features related to aeolian and reworked 

miliolite deposits are interpreted on the basis of differences in reflector geometries and patterns. 

The radargram of all four sites clearly indicate the presence of tectonically induced deformation 

features and location of the KHF in the subsurface. 

MICROSCOPIC EVIDENCE OF LATE QUATERNARY SURFACE FAULTING 

The results from GPR data helped in selecting precise locations for the collection of 

samples for petrographic and SEM studies. Samples from Late Quaternary miliolite deposits 

were collected from near or exactly on the KHF zone to identify microscopic evidence of 

faulting. For comparison purposes, the miliolite deposits lying away from the KHF zone were 

also analysed. The GPR results are supplemented by microscopic analyses such as petrography 



and SEM of Late Quaternary deposits exposed along the KHF in order to establish the 

continuity of surficial deformation by observing the microscopic signatures of tectonic 

deformation. Thus, the microscopic studies were carried out to further confirm and precisely 

estimate the length of Late Quaternary surface faulting along the KHF. 

The petrography of the samples collected from along the KHF zone showed micro-

fracturing and recrystallization of the quartz grains and peloid bioclasts with presence of 

calcitic microfibers on their periphery. They also showed slight orientation of the constituent 

mineral grains and undulose extinction of quartz grains.  

The SEM microtextures such as intensive breakage, adhering particles, striations, 

exfoliation marks, rolled and euhedral quartz grains were displayed by the quartz grains 

separated from the samples located along the KHF zone; while those located away from the 

KHF zone did not show presence of any of the above listed features related to tectonic 

deformation. They showed only fluvial microtextures with solution action and silica 

precipitation features. Based on the evidences of Quaternary deformation using these studies, 

it is inferred that of the total ~70 km length of the KHF, at least 21 km of it in the central part 

ruptured during the three surface faulting events during the Late Quaternary. The rest of the 

part of KHF did not rupture as indicated by the absence of Quaternary sediment deformation.  

ESTIMATION OF SEISMOGENIC POTENTIAL OF KHF 

 Various empirical equations derived from scaling relationships directly relate the fault 

parameters such as fault surface and sub-surface rupture length, fault rupture area, 

displacement, seismic moment and slip-rate to the earthquake magnitude. The present study 

has been able to estimate these parameters with respect to the three Late Quaternary surface 

faulting events as observed in the Khari river section. The slip rates, displacements and 

chronology are derived from the Khari river section using the slip history diagram while, for 

delineating the length of KHF affected by surface faulting field mapping, GPR survey and 

microscopic analysis (petrography and quartz surface textures using SEM) of sediments 

overlying the KHF were carried out. The estimated length, displacement and slip-rate of Late 

Quaternary surface faulting were used in the regression equations to calculate magnitude of 

surface faulting events.  

Based on length of surface rupture 

For a given rupture length, the empirical relationships between earthquake magnitude 

and fault rupture length, allow an average magnitude to be selected. Assuming that a fraction 



of total fault length will rupture during an earthquake, a relationship between the rupture length 

and magnitude for a reverse fault is derived as-  

Ms = 2.021 + 1.142 log L . . . . . . (1) 

where, L is the rupture length in meters 

Substituting the value of L in the above equation with 21000 mm in equation (1), the final value 

of Ms was 6.9.  

The surface wave magnitude (Ms) was converted into moment magnitude (Mw) as the 

latter is a widely accepted parameter for earthquake magnitude. The empirical conversion 

relation for Ms > 5.5 is given as- 

Mw = 0.8126 (+0.034602) Ms + 1.1723 (+0.208173)  . . (2) 

Using the above conversion equation and substituting the Ms values of earthquake magnitude 

obtained, the value of moment magnitude (Mw) was obtained as 6.7 +0.44. 

Another empirical equation used to estimate magnitude using surface rupture length is-  

M = a + b * log (SRL)  . . . . . . (3) 

where, a and b are constants with values 5.08 and 1.16 respectively and SRL is the surface 

rupture length in kilometre. 

This equation has yielded moment magnitude (Mw) of 6.6 using the fault surface rupture length 

value of 21 kms. 

Based on displacement 

The values of 2.3, 2.2 and 3.5 were obtained for displacement and 0.66 and 0.09 were 

slip-rate values of the three events of surface faulting obtained from the Khari river section. 

Using the above information, the magnitude of surface faulting was calculated using a relation 

given as- 

Ms = 6.793 + 1.306 log D . . . . . . (4) 

Using the above equation and substituting the displacement values- 3.5 m (Event 1), 2.2 m 

(Event 2) and 2.3 m (Event 3) yielded the Ms values 7.4, 7.2 and 7.2 respectively.   

The surface wave magnitude (Ms) is converted into moment magnitude (Mw) using the 

equation (2) and the moment magnitude Mw 7.1 +0.45, 7.0 +0.44 and 7.0 +0.44 for three surface 

faulting events along the KHF were obtained.  

Another empirical relationship involving displacement and moment magnitude is- 

Mw = a + b * log (MD) . . . . . . (5) 

Incorporating the value of maximum displacement in the above equation yields Mw 7.08, 6.9 

and 6.9 for events 1 (oldest), 2 and 3 (youngest) respectively. 



Based on length of surface rupture and slip rate 

An equation for regression of moment magnitude (Mw) as a function of fault rupture 

length (L) and fault slip rate (S) was formulated as- 

Mw = A + B log L + C log S  . . . . . (6) 

Substituting the values of surface rupture length (L) as 21 km and slip rate (S) for individual 

events of Quaternary faulting in equation (6) yielded the value of 6.8 +0.25 for Event 2 which 

took place in early Holocene showing the slip rate of 0.66 mm/year and for the youngest (Event 

3) which took place in late Holocene with a slip rate of 0.09 mm/year, provides Mw values of 

6.6 +0.21. 

The Mw values obtained from different equations as mentioned above, are remarkably 

consistent. The Mw values of the surface faulting events are minimum as the displacement 

measured is also minimum considering the highly eroded nature of the Quaternary sediments 

in the KHF zone. This is also implied from the fact that all major horizons displaced during 

surface faulting events show erosive contacts. 

SURFACE FAULTING INDUCED DRAINAGE REORGANIZATION 

Drainage patterns have a tendency to get preserved once established, so they 

incorporate noteworthy information about the past and present tectonic regime.  In the present 

study, drainage realignment on a sub basin-scale as a consequence of tectonic tilting caused by 

multiple events of surface faulting along the range bounding the KHF during the last ~30 ka 

B.P. described in the small drainage basins of the Gunawari and Gangeshwar rivers that show 

highly anomalous channel characteristics. It is shown that the nature of tectonic activity can 

influence the simultaneous occurrence of well-known mechanisms of drainage realignment and 

formation of related landforms even in drainage basins of spatially-limited scale. 

Gunawari and Gangeshwar river basins 

The majority of the area of Gunawari basin lies in the Katrol Hill Range (KHR), located 

~8 km upstream of its confluence with the Dharawa river. The Gunawari river basin has two 

asymmetrical domes named Ler (towards east) and Gangeshwar (towards west), as the northern 

limbs have steep dips (~60°-80°) while the southern limbs have moderate dips (~25°-35°) that 

progressively become gentle up to ~5° towards south. The Ler dome largely exposes the Jumara 

Formation while the Gangeshwar dome comprises of the younger Jhuran Formation. The 

eastward flowing Gunawari river swerves around the Ler dome to flow northward along the 

saddle at its eastern margin. Between the Ler and Gangeshwar domes is a buried paleo-valley 

filled by Late Quaternary miliolite deposits that is presently drained by the narrow and incised 



channel of the Gangeshwar river. The paleo-valley extends southwards into the wind gap which 

is also filled by miliolite deposits. The term ‘wind gap’ is defined as fragment of an abandoned 

channel that is filled with sediments of mainly fluvial origin. 

Three topographic profiles oriented in N-S, NE-SW and E-W directions drawn from 

the Survey of India topographical maps to 1:50,000 scale, illustrate a strong influence of 

structure on the geomorphic set up of the Gunawari basin. 

MECHANISM OF DRAINAGE REORGANIZATION 

The present study shows that the restructuring and rearrangement of the drainage 

divides of the paleo-Gangeshwar and paleo-Gunawari river basins occurred through multiple 

processes of drainage realignment induced by tectonic tilting in the last ~30 ka B.P. The major 

events of drainage readjustment and realignment include formation of ‘V’ and ‘S’-shaped 

bends, abandonment of buried paleo-valley by river diversion, beheading of paleo-Gangeshwar 

river and westward directed headward erosion of the paleo- Gunawari river in the saddle zone 

to the east of Ler dome.  

The occurrence of multiple (three) co-seismic surface faulting events in last ~30 ka B.P. 

was shown by previous and present field and GPR data of offset aeolian miliolite sediments 

over the KHF caused uplift accompanied by southward tilting of the Katrol Hill Range 

triggering the phase of drainage of rearrangement. The rearrangement of drainage lines 

occurred both by top-down and bottom-up processes and involved carving of new channels 

dominantly controlled by E-W trending strike of Mesozoic rocks with anomalous ‘V’ and ‘S’-

shaped bends. Upliftment of the wind gap and paleo-valley due to southward tilting of Katrol 

Hill Range led to the beheading of the paleo-Gangeshwar river as it was cut off from its 

catchment in the south.  Inability of the river to flow northward through the wind gap and paleo-

valley located in the up-tilt direction resulted in the formation of ‘V’-shaped bend and the 

straight eastward channel up to ‘S’-shaped bend by forward erosion i.e., top-down process. The 

‘S’-shaped bend was formed as this channel met with the channel of paleo-Gunawari river 

advancing westward by headward erosion i.e., bottom-up process. The present study suggests 

that the absolute influence of tectonic factors on the complex processes of drainage 

rearrangement are more explicit for younger and shorter timescales than geologically older 

drainage adjustments interpreted for regional and continental scales involving longer time 

periods. 

 

 



IMPLICATION FOR EARTHQUAKE HAZARD IN KACHCHH 

The identification and characterization of active faults as earthquake sources are 

essential parts of seismic hazard evaluation because they enable forecasts to be made of 

locations, recurrence intervals and sizes of future large earthquakes. Large magnitude surface 

rupturing events are expected along the KHF at the scale of few thousands of years, making it 

the only fault in Kachchh with an unusually long recurrence interval. There are temporal 

variations in recurrence intervals of great earthquakes on a larger time scale. Therefore, the 

seismicity along KHF does not follow a following a normal seismic cycle. Because the strong 

ground motion travels large distances and thus impacts larger areas, there is need to understand 

direct impact of surface rupture induced ground deformation that tends to affect the structures 

on or close to the trace of the fault. The analogous reverse faulting earthquakes in 

recent times, El Asnam 1980, Sahellgiers 1989 and the Mascara 1994, reinforce the idea that 

surface faulting in the KHF is a potential source of future large earthquakes.  

The seismic hazard analysis attempts to deliver better results for developing advanced 

building codes by correlating a multitude of data. In order to achieve this, the development of 

models based on fault parameters data, which is entirely based on geological evidences poses 

as a significant task to be accomplished. For achieving this, different methods which impart 

long-term and comprehensive paleoseismic records, as provided by fault rocks studies and 

geochronologic data, are required which incorporate multi-proxy evidences. At this point, the 

geological methods for overcoming the above specified tasks, which involve the use of detailed 

paleoseismic data such as information related to the magnitudes, locations, and types of 

earthquakes associated with long recurrence intervals (~ thousands of years) can provide 

information that is largely absent from most historical, geodetic, or seismicity records (~ tens 

to hundreds of years). Such information forms an essential part of any seismic hazard 

assessment process and can be assessed by employing various geological and 

geomorphological techniques. The information provided by the geologic and geomorphologic 

analysis is used to develop earthquake models which delivers important knowledge about the 

location, dynamics and geometry of active faults; estimates of former fault rupture magnitude 

and its timing of occurrence. 

CONCLUSIONS 

The Katrol Hill Fault (KHF) strikes E-W and is structurally expressed as a high angle, 

south dipping, range bounding reverse fault in Central Mainland Kachchh. The fault that marks 

the lithotectonic contact between the Bhuj Formation to the north and Jumara and Jhuran 



Formations to the south. The KHF is marked by discontinuous and sparse occurrences of 

different varieties of Late Quaternary deposits, of which, the aeolian miliolites and valley-fill 

or fluvially reworked miliolites are the most common type found on both the windward and 

leeward slopes of the north facing scarps towards the southern side of the KHF and in the 

valleys and depressions respectively, present in the KHR. The thin sections analysis of fluvial 

and aeolian miliolites observed under optical/petrological microscope show faulting-related 

microfeatures such as microcracks along the grain boundaries of detrital mineral grains and 

prominent breakage and fracturing of peloid bioclasts, shape-preferred or crystallographic 

orientation among the elongated allochems and detrital mineral grains, formation of macro-

sparite by recrystallization of calcitic cement and detrital quartz grains and occurrence of 

polycrystallinity of quartz grains. The quartz grains from fluvial and aeolian miliolites samples 

collected from the KHF zone observed using SEM displayed the microtextures such as 

striation, exfoliation, fresh fractured surfaces, rolled and euhedral quartz grains and adhering 

particles in addition to the extremely broken and fractured grain surfaces. All the above-

mentioned microtextures found in the quartz grain samples collected from the fault zone can 

be attributed to the neotectonic processes/surface faulting, as these are not observed in the 

samples collected from the locations away from the fault zone.  Previous and present study 

shows that the sediments were offset during three surface faulting events that occurred at 31.8 

±2.8 ka, 28.5 ±3.7 ka and 3.0 ±0.3 ka B.P. The Khari river section is the most complete and the 

most well exposed section along the entire length of the KHF zone. The section was studied in 

detail to deduce the surface faulting parameters. The lateral extension of the surface faulting 

was determined using field evidences, GPR studies and microscopic studies using SEM. A slip 

history diagram to quantify the slip rate, is constructed by using the displacement values of 

3.5m, 2.2m and 2.3m measured in the Khari river section. The slip rate thus calculated 

belonging to the three surface faulting events is 0.66mm/yr and 0.09mm/yr for the two seismic 

cycles formed from the three above-mentioned surface faulting events. The GPR survey carried 

out along the KHF zone to precisely locate the trace of KHF in the shallow sub-surface near 

Bharasar, Tapkeshwari, Bhujodi and Ler. At these locations, the GPR results confirmed the 

propagation of faulting from the Mesozoic rocks in to the overlying Quaternary sediments 

found on the surface. 

The length of Late Quaternary surface faulting along the KHF is ~ 21 km as derived 

from the multiple evidences of surface deformation/faulting provided by field, GPR and 

microscopic studies. Based on fault parameters deduced like length of surface rupture, 

displacement and slip rate, the estimated magnitude of Late Quaternary surface faulting events 



and thus, the seismogenic potential of the KHF, calculated using empirical equations yielded 

Mw values consistently in a narrow range from 6.6 to 7.1. The field and GPR based study of 

the Gunawari and Gangeshwar river basins located in Katrol Hill Range shows that drainage 

reorganization occurred during the last ~30 ka B.P. in response to tectonic titling induced by 

surface faulting along the range bounding Katrol Hill Fault (KHF). The present study 

demonstrates that the KHF has produced high magnitude seismic events during the past ~ 30 

ka B.P., and is, therefore, a potential seismic source capable of generating surface rupture 

hazard in the Kachchh Basin. As Kachchh basin is an intra-plate seismic zone source, long 

recurrence intervals between earthquakes, is not unusual, which forms an important input for 

evaluation of seismic hazard. A combination of approach that incorporates both the 

probabilistic and deterministic methods of seismic hazard assessment and also integrates the 

results contributed by various geological and geomorphic methods, including the present study, 

is suggested. 
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