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4. Transformation Technique 

 

4.1. Introduction: 

In this chapter, we focus on transformation technique i.e., Fuzzy Laplace Transform (FLT) to 

solve a system of fuzzy differential equations. Most of the articles solved the linear differential 

equation with fuzzy initial condition as   by fuzzy Laplace transform under 

generalized Hukuhara derivative as in [18]. We initiated our work [64] using the transform 

technique for linear homogeneous system i.e.,  as well as 

nonhomogeneous system i.e.,  , involving fuzzy parameters and 

fuzzy initial conditions, as in [18]. 

And following it, we solved semi-linear dynamical systems with fuzzy parameters and initial 

conditions involved in the system, using Fuzzy Laplace Transform.  

 For the rigorous development of solution, for fully fuzzy dynamical system using the Laplace 

Transform technique, we afresh define Modified Hukuhara derivative (mH-derivative) [65] 

which is later explained in Section 4.3.1. Under this new derivative, we have redefined the FLT 

with existence condition and other results. All results are proposed and proved in this chapter. 

 

In the next section, we establish the theory for the fuzzy non-homogeneous linear dynamical 

system and give result for fuzzy homogeneous linear dynamical system considering a special 

case of it. 

4.2.  Fuzzy Nonhomogeneous Linear Dynamical Systems 

Consider a fuzzy nonhomogeneous system as follows, 

   

with fuzzy initial condition, 

(4.1) 

where,  and . 

We propose, the following lemma as a result of fuzzy Laplace Transform which is useful in 

proving further results for equation (4.1).  

  



53 
 

4.2.1. Lemma  

Let  be a continuous fuzzy valued function and its fuzzy Laplace transform,  

then, 

 

if it satisfies two conditions given below, 

     

  

 

 

(4.2) 

 

Proof: By fuzzy Laplace Transform, we have 

 

     Taking L.H.S, 

 

Using these notations,  . 

 

 

 (4.3) 

Now by the first decomposition theorem, as in [70], if equation (4.3) satisfies the two 

conditions as given in (4.2), then we can write, 

 

In the next lemma, we propose and prove results related to the fuzzy solution of fuzzy non-

homogeneous linear dynamical system using the decoupling method. In this method, we 

diagonalize the system represented as in parametric form with diagonal matrix  such that 

 

4.2.2. Lemma  

A nonhomogeneous fuzzy dynamical system  with initial condition 

    is diagonalizable. 
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Proof: Consider a fuzzy nonhomogeneous linear dynamical system as in equation (4.1). 

The parametric form of equation (4.1), using fuzzy multiplication and addition,  

;  (4.4) 

Now comparing the components of equation (4.4),  

 

   

with initial condition,  

The matrix form of the above equations is given below, 

   ;  
(4.5) 

If the system is nonhomogeneous so first, we use the decoupling method to diagonalize 

equation (4.5). For decoupling, put  and  , here  and  are corresponding 

orthogonal matrices of matrix  and . 

Equation (4.5) gets converted as, 

 

with initial condition .  

Now using diagonalization, we have,   

  

 

with initial condition . 

If and  contains some negative elements then to obtain a fuzzy solution, for such system 

after taking an alpha cut, interchange parameters  with  as in [30] and 

[72]. Similarly, for  and . 

In the next section, we give a fuzzy solution of the nonhomogeneous linear system. 

4.2.3. Theorem  

A fuzzy nonhomogeneous dynamical system given by equation (4.1) is diagonalizable then 

using FLT, solution of the above system is, 
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Proof:  Using lemma 4.2.2, a fuzzy nonhomogeneous linear dynamical system in equation 

(4.1) gets converted to diagonalized form as, 

 

 (4.6) 

with initial condition . 

Taking FLT on both sides of (4.6),  

 

 

Taking the first equation, we get, 

 

 

 

              (4.7) 

Taking inverse fuzzy Laplace Transform of equation (4.7), 

  

Similarly, 

] 

 
(4.8) 

Taking inverse fuzzy Laplace Transform of equation (4.8), 

 

Using the solution   with initial 

condition  can be given as, 

 

 

Similarly, if equation (4.1) does not contain the non-homogeneous term i.e.,   then the 

fuzzy dynamical system is given as follows, 

                  (4.9) 
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The fuzzy solution of equation (4.9) in parametric form is given below, using Sections 4.2.1 

and 4.2.2. 

 

 

. 

In the next section, we solved one example using proposed theory. 

4.2.4. Real life example 

There are two countries in an arms race where  is the yearly rate of armament expenditures 

for country and  is that expenditure of country  as in [71]. These expenditures on 

armament depend on other countries' war strategy so this model is more appropriate in fuzzy 

setup. 

So, the dynamical system in a fuzzy scenario, 

 

with initial conditions,  

(4.10) 

where, , and  

,  

But in this problem, parameters are negative fuzzy numbers. In this case, to obtain a fuzzy 

solution, for such system after taking alpha cut interchange parameters  with  

as in [30] and [72]. 

Now applying the technique mentioned in Section 4.2.3, that is obtaining the solution by first 

obtaining the solution of diagonalized system, we get, 

 

         

 

        

On plotting the solutions graphically with respect to time, we get the evolution as in figures 4.1 

and 4.2. 



57 
 

 

Figure 4.1: Expenditure for country  

 

Figure 4.2: Expenditure for country  

 

It is observed that as time increases, the solution becomes nonfuzzy for large times, so here we 

have taken evolution on a very small-time interval. From the fig. 4.1 and fig. 4.2, this fuzzy 

setup gives a range for the yearly armaments for both countries. As time increases, the range 

shifts left side from the initial condition for both countries. 

In next section, we have developed a theory for the fuzzy solution of fully fuzzy Semi-Linear 

dynamical System. 
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4.3.  Fully Fuzzy Semi-Linear Dynamical System: 

This section aims to obtain a fuzzy solution of the fully fuzzy semi-linear dynamical system, 

given as in (4.11), by redefining fuzzy Laplace Transform under a new fuzzy derivative i.e., 

Modified Hukuhara derivative (mH-derivative). 

 

 (4.11) 

where,  is continuous fuzzy valued mapping.  

Initially, people started work on fuzzy differential equations under Hukuhara derivative but 

this derivative has a drawback that if time increases then support becomes unbounded. This 

drawback has been taken care of by the generalized Hukuhara derivative. But when one uses 

generalized Hukuhara derivative to obtain the solution of differential equation, it gives the list 

of possible solutions from which one is supposed to pick the best possible solution. This 

limitation of manually selecting the solution is overcome by our proposed method. Our 

proposed derivative is as shown in [65] has the advantage, that it gives a unique solution with 

bounded support for fuzzy dynamical system automatically. 

In the next section, we have given the existence condition for the modified Hukuhara 

derivative. 

4.3.1. Existence of Modified Hukuhara Derivative: 

The motivation to propose the mH- derivative is to get the derivative of the function of the 

form  It was shown in [9] that the fuzzy Hukuhara derivative is, 

 if   but does not exist if For  using Generalized 

Hukuhara differentiability, the solution was obtained, but as mentioned earlier its  limitation is 

that it is not unique refer [9]. Following gives the definition of proposed mH-derivative. 

 

Modified Hukuhara Derivative: 

A function  is said to be mH-differentiable if, at   an element  such 

that for all  sufficiently small, there exists  and 

the limits, 

 

The equivalent parametric representation is given as, 
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 Now by using the proposed mH-differentiability, we obtain the derivative of  

 If,  and , then, the equivalent parametric form of right-hand side limit 

for the derivative is given as, 

 

=  

Since,  is a negative quantity so min (   ) and 

max (  ) value of the right-hand side limit is  and  respectively. 

Similarly, for the left-hand side limit, 
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Now,  is a negative quantity so again min (  ) and max 

(   value of the right-hand side limit is  and  respectively. 

Hence, the left-hand and right-hand limit exists and are equal. 

So,  differentiable function under modified Hukuhara derivative. 

Under the proposed new derivative, we solve the following fuzzy initial value problem in 

example. 

4.3.2. Example: 

Consider the fuzzy initial value problem (FIVP). 

 

An attempt to solve such an example was done by [14], which was corrected by [50] using gH-

derivative involving human intervene to pick the best solution. Using mH-derivative, it can be 

solved as follows,  

Taking  on both sides of the given example, 

i.e.,       

 

Comparing both the sides, we get, 

 

 

i.e.,        

and      

Solving these equations, we get, 

 

 

After putting initial condition, they become, 

 

 

which is the same for   as in [50]. 
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In the next section, we redefine fuzzy Laplace transform under Modified Hukuhara derivative. 

We also, give the results for the existence condition of FLT, FLT of derivative and convolution 

theorem. 

 

4.3.3. Fuzzy Laplace Transform under mH-derivative 

4.3.3.1. Fuzzy Laplace Transform 

The fuzzy Laplace Transform technique is very useful in solving FDEs and their corresponding 

initial and boundary value problems. In this section, we redefine the Fuzzy Laplace Transform 

(FLT) under the new proposed fuzzy derivative along with other properties. 

Definition: 

Consider a bounded and piecewise continuous fuzzy valued function whose parametric form 

is and let  is improper fuzzy Riemann integrable, then   

denotes fuzzy Laplace Transform and it is defined as, 

 

 

Taking alpha cut on both sides,  

 

 

   

where, 

 

 

And the Fuzzy inverse Laplace Transform is denoted by  and its parametric form is 

defined as, 
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4.3.3.2. Existence of Fuzzy Laplace Transform: 

We know that for crisp function if   is piecewise continuous in a given closed interval and is 

of exponential order then its Laplace transform exist. The existence condition for fuzzy Laplace 

transform in parametric form is defined as,   

should be exponential order i.e.,  and  

for some constants   and , ,    . 

Let  be fuzzy valued function and exponential bounded with constant  

Now, in the next section, we prove the existence condition for the fuzzy Laplace transform. 

4.3.3.3. Theorem  

Let  be piecewise continuous on every finite interval  and satisfies 

the condition as in definition 4.3.3.2 then  exist for  

 and  

 

Proof: From this inequality, 

 

 

 

As  

Similarly,   

   

 

 

As,   . 

Hence,   exist when it is of exponential order  with constant  
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In the next section, the result for the Laplace transform of fuzzy derivative is given in theorem 

form. 

4.3.3.4.       Theorem 

If  be continuous fuzzy valued function,  and 

 for large value of  and  is piecewise continuous then  exist, 

and is given by, 

 

 

Proof:  In theorem 4.3.3.3, we already proved  exist because  is of exponential 

order and continuous and  is piecewise continuous. So fuzzy Laplace derivative is given 

as, 

 

 

Taking alpha cut on both sides, 

 

 

Now using integration by parts, we get, 

 

 

Then, by the first decomposition theorem as in [70]. 

. 

4.3.3.5. Example 

We solve the illustrative example, 
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The solution of above problem [18] is given by FLT under generalized differentiability in such 

a manner if  is (i)- differentiable then support  becomes unbounded as and 

 is (ii)- differentiable then support  becomes bounded as Now, we solve 

this problem using FLT under modified Hukuhara differentiability and obtain a unique solution 

with bounded support. 

 

Taking   on both sides of the above equation, we get, 

 

which gives, 

 

Comparing component-wise, 

   

. 

Now, using Laplace transform of a fuzzy derivative under mH-derivative as in 4.3.3.4, on 

above equations, we have, 

  

  

After solving above equations using fuzzy Laplace transform and its inverse, fuzzy solution of 

a problem is, 

, 

. 

In the following section, we propose and prove the fuzzy Laplace transform for the product of 

two fuzzy functions.  
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4.3.3.6. Fuzzy Convolution Theorem 

Let  denote the fuzzy inverse Laplace transforms of respectively. 

Then the Laplace transform of , is given by,  

 

 

Proof: 

 

 

From fuzzy multiplication, we can write, 

   

  

For solving the above integration, we use substitution,  

  

  

Then, by the first decomposition theorem as in Klir [70], 

           

Now we give the main result pertaining to the existence and uniqueness solution for the semi-

linear system such as in equation (4.11) by using Fuzzy Laplace Transform under mH- 

derivative. 

 

4.3.4. Main Theorem  

The solution of the system     as in equation (4.11) exists 

and is unique if   is a fuzzy valued continuous function and Lipschitz. 

Before proving the above theorem, in the most generalized form, we take up particular cases 

and prove them as lemmas. 

4.3.4.1. Lemma  

Suppose  in equation (4.11), then the solution of equation (4.11) is given by  
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where, ,  , and . 

Proof: If  in equation (4.11) then the parametric form is obtained as, 

 min (  , , ,  ) 

 max (  , , ,  ) 

with initial conditions  

 Now using, ,  , 

  

 

with initial condition,  

 Now using Laplace Transform of fuzzy derivative on  and  as in 4.3.3.4, 

we get, 

 

 

 Thus, applying inverse fuzzy Laplace Transform and we obtain the solution as, 

 

 

In the next section, we linearize the nonlinear term involved in equation (4.11) around the 

 and find the solution for the system. The result 

for the same is as follows. 

4.3.4.2. Lemma  

 and  in the system (4.11) is  times differentiable at a point then it can be 

linearized around equilibrium point by Taylor's expansion. 

  

Proof  System (4.11) is given as, 

 

with initial condition,  

First taking  cut of the above system, 

 min (  , , ,  )  
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 max (  , , ,  )  

where,    and   =  

Put   and we get   equilibrium point then applying Taylor's expansion  

and we have, 

   min (  , , ,  )  

         max (  , , ,  )   

         Since, using these notations, 

  min (  , , ,  ) and  

We get, 

    

   +  

Now, using the following notations,   

 ,    , 

   and  . 

We have, 

       + and    +  

Thus, by first decomposition theorem as in [70], using the parametric form of  

  and , we get, 

 

The solution of the above linearized system can be obtained as given in Section 4.3.4.1. 

In the next section, we give result that is useful for the fuzzy solution of equation (4.11) 

involving nonlinear term. For this, we extend the result refer [25] in a fuzzy environment. We 

apply fuzzy Laplace transform to the system (4.11) and converted this system into the Volterra 

Integral equation.  

4.3.4.3. Lemma  

System (4.11) can be converted into Volterra integral equation as given below, 
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And, 

 

  

where, 

   

 

Then equation (4.11) has a fuzzy solution if its integral equations have a fuzzy solution 

 i.e.,   

Proof: Taking   and apply Fuzzy Laplace Transform on both sides of equation (4.11), 

we get, 

 

 min (  , , ,  )  

 max (  , , ,   

where, 

 

Now the equation (4.11) becomes, 

  (4.12-a) 

 

                  (4.12-b) 

Taking Fuzzy Laplace Transform on equation (4.12-a), we get 

  

Using derivative of fuzzy Laplace transform, we get 

 

 

 

Now by  convolution theorem and inverse fuzzy Laplace transform, we get, 
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Similarly, 

 

Now applying iterative scheme, we get, 

 

 

Thus,   , equation (4.11) has a fuzzy solution. 

We prove the convergence result for the proposed scheme in 4.3.4.3 as follows. 

 

4.3.4.4. Theorem 

If  is Lipschitz then proposed numerical technique in 4.3.4.3 is convergent. 

Proof: Let   is the exact solution of system (4.11) and  be the 

numerical solution of the system (4.11). 

Consider error in term, 

 ,   

Considering the first term,  

 

 

 

Since,   
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is Lipschitz with Lipschitz constant  , which gives, 

  

 

 

Now, using the Ratio test, the right-hand side expression converges for all  . 

Thus,  is bounded. 

Similarly, using Lipschitz constant  for function  ,  is bounded.  

Hence,  is Lipschitz continuous with constant   

So, the proposed technique in Section 4.3.4.3 is convergent. 

 

4.3.4.5. Proof of Main Theorem: 

The solution of the system (4.11) is obtained using Sections 4.3.4.1, 4.3.4.2 and 4.3.4.3. 

4.4. Example: 

Now we apply these 3 cases to solve the fuzzy Prey- Predator model [73],  

 

 
(4.13) 

with initial conditions,  and  

where, the value of parameters is given as, 

 

, 

 

[0.05 + 0.05 , 0.15  0.05 ]  
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Solution: 

The solution of above problem is given by considering the following three cases.  

 

Case 1: 

Neglecting the nonlinear term in equation (4.13) that is considering the homogeneous system 

only. 

 

 
(4.14) 

with initial condition,  and  

After applying the proposed scheme as, in Section 4.3.4.1, graphs are obtained as follows,  

 

Figure 4.3: Fuzzy Number representation of Prey population at &  

 

Figure 4.4: Fuzzy number representation of Predator population at &  

The number of Prey-Predator at different time is given in Table 4.1. 
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Table -4.1: Number of prey and predator in first approach

Time Number of Prey Number of Predator 

0 (120,130,150) (20,40,50) 

0.1 (12.61,14.36,17.42) (1.21,2.68,3.704) 

0.2 (25.23,28.73,34.85) (2.426,5.36, 7.408) 

0.3 (37.84,43.10,52.28) (3.63,8.04,11.11) 

0.4 (50.46,57.46,69.71) (4.85,10.72,14.81) 

0.5   (63.07, 71.83, 87.13) (6.06, 13.4, 18.52) 

1 (126.15,143.67,174.27) (12.13,26.81,37.04) 

 

Case 2: 

First, linearize the eq. (4.13) around equilibrium point by Taylor's expansion, we obtain the 

linearized form as below, 

 

 

(4.15) 

with initial conditions,  

where, the value of parameters in fuzzy triangular form is given as, 

 

 

The parametric form of parameters is given below, 

 

 

. 

Applying the proposed scheme as, in Section 4.3.4.2, graphs are obtained as follows, 
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Figure 4.5: Fuzzy Number representation of Prey population at t = 0 & 0.1 

 

 

Figure 4.6: Fuzzy Number representation of Predator population at t = 0 & 0.1 

The number of Prey-Predator at a different time is given in Table 4.2. 
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Table 4.2.  Number of prey and predator in second approach

Time Number of Prey Number of Predator 

0 (120,130,150) (20,40,50) 

0.1 (118.66,127.10,147.54) (24.45,46.28,59.152) 

0.2 (119.54,128.93,149.12) (21.79,42.54,53.68) 

0.3 (119.27,128.35,148.63) (22.68,43.80,55.51) 

0.4 (118.98,127.74,148.10) (23.57,45.05,57.33) 

0.5 (118.66,127.10,147.54) (24.45,46.28,59.56) 

1.0 (116.67,123.43,144.177) (28.78,53.31,68.05) 

 
Case 3: 

Applying technique as given in Section 4.3.4.3, we obtain following graphs for fuzzy solution, 

 

 

Figure 4.7: Fuzzy Number representation of Prey population at t = 0 & 0.1 
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Figure 4.8: Fuzzy Number representation of Predator population at t = 0 & 0.1 

The number of Prey and Predator for different time is given in below Table 4.3.  

 

Table 4.3. Number of prey and predator in third approach 

Time Number of Prey Number of Predator 

0 130 40 

0.1 118.49 60.56 

0.2 114.774 66.2506 

0.3 114.19 65.18 

0.4 116.41 65.229 

0.5 117.199 60.27 

                                                 

4.5.  Conclusion 

In this chapter, first we have solved fuzzy linear dynamical system using the existing fuzzy 

Laplace transform. We then redefined Fuzzy Laplace Transform under new derivative i.e., 

Modified Hukuhara derivative along with its existence condition.  We also revised all results 

related to Fuzzy Laplace Transform under this new derivative. Lastly, we have solved fully 

fuzzy Prey-Predator model by considering three cases and results in all cases are compared at 

the core. 


