CHAPTER - IV

LEVELS OF GAPITAL UTILISATION.

This chapter attempts to quantify levels of utilisation of capital stock in the Indian Railways. Generally in output-capital studies, output is adjusted to full capacity of capital to make up for utilisation levels.¹ But the present study is concerned with three variables -capital, labour and value added. If value added output is adjusted to capacity, what about labour? It also needs adjustment. Instead of two adjustments, it is convenient to adopt the concept of 'technologically necessary capital'. Capital figures alone are adjusted to existing levels of utilisation keeping output and labour series unadjusted. First levels of utilisation have to be determined.

4.2 In railways, measurement of utilisation is extremely difficult. Railways operate with different types of capital viz. track, engines, wagons and vehicles. Track capacity is not a static capacity. It depends on investment in signalling and communication systems. Thus the nature of the problem is so highly technical that very few studies have been taken up so far. ^But in a study of technical relations like the present one, it isnot possible to ignore the levels of utilisation, however onerous and imperfect the task may be. It is impossible to evolve/ideal methodology. ^However we have made a serious attempt at measurement.

1. G.Rosen, <u>Industrial Change in India</u>, Asia Publishing House, Bombay, 1959, pp. 43-44. 4.3 Solow, when confronted with the problem of capacity output, merely adjusted the capital taking overall unemployment as an index and observes,² "What belongs in a production function is capital in use, not capital in place. Lacking any year-by-year measure of the utilisation of capital I have simply reduced the Goldsmith's figures by the fraction of the labour force unemployed in each year, thus assuming that labour and capital always suffer unemployment to the same percentage. This is undoubtedly wrong, but probably gets closer to the truth than making no corrections at all". But the method we have adopted is more scientific though admittedly it is not perfect.

Section 'A', that follows, deals with the theoretical and practical issues involved in the measurement of capacity utilisation. Section 'B' discusses estimation of underutilisation of capital in the Indian Railways.

SECTION 'A'

Measurement of Capacity:

4.4 In recent years, attempts are made by various economists to measure capacity or potential output at micro and macro levels. Various measures are used to determine capacity output such as straight forward regression relating output to unemployment and fitting of aggregate production functions to data.³

^{2.} R.M. Solow, 'Technical Change and the Aggregate Production Function', <u>Review of Economics and Statistics</u>, Vol.39, 1957.

^{3.} cf.L.Taylor, D.Winter and D.Pearce, 'A 19 Industry Quarterly Series of Capacity Utilisation in the United Kingdom, 1948-68', <u>Bulletin of the Oxford University Institute of Economics and</u> <u>Statistics</u>, Vol.32, No.2, 1970.

In the U.S., various methods are used to compute capacity All these utilisation figures of the American economy. variants take into account peak production points and then certain adjustments are made. 4 However, from the point of view of operational use, the method adopted by the Wharton School, popularly known as 'Trend-Through-Peak' method may be regarded as a successful approach. Originally this method was developed by Klein.⁵ and later its details were discussed by Klein, Summers and Preston. Since the Wharton School capacity measure has a fairly recent theoretical support. it is not inappropriate to state the method in brief. The monthly physical output series of each industry are seasonally adjusted and then averaged into quarterly production figures. These are arrayed and peaks in each of the series are selected. Each peak represents capacity and a straight line from peak to peak denotes capacity during the intervening periods. To cover the whole period, the linear segments at both the ends of the series are extrapolated. For macro purposes, the individual industries' capacity outputs are combined by assigning

- 5. L.R. Klein, 'Some Theoretical Issues in the Measurement of Capacity', <u>Beonometrica</u>, Vol. 28, April, 1960.
 6. L.R. Klein and R. Summers, 'The Wharton Index of Capacity Utilisation', <u>Studies in Quantitative Economics</u>, No.1, University of Pennsylvania, 1966 and L.R. Alein and R.S. Preston, 'Some New Results in the Measurement of Capacity Utilisation', <u>American Economics</u>, Paris 1, 1967. American Economic Review, Vol. 57, No.1, May, 1967.
- 7. For details on the theoretical part, see L.R. Elein, op. cit.

^{4.} For details, see A. Phillips, 'An Appraisal of Measures of Capacity', Papers and Proceedings of the American Economic Association, Vol.52, No.2, May, 1963.

weights on the basis of value-added of each industry in the total production.

4.5 In adopting the Wharton School capacity measure, a number of conceptual and empirical problems are encountered.^{7A} First, the peaks selected should represent points of maximum output. For this purpose, the Wharton estimates of capacity utilisation for the U.S. economy made use of independent information, wherever possible, to substantiate the selection of peaks. In some cases, direct information was jusëd to estimate capacity instead of trends through peak method.

Second, unless net investment is constant, between two peaks, it is not justifiable to interlink them by linear lines. To overcome this problem, Klein and Summers made attempts to take into account cyclical fluctuations in net investment, when interpolating between two peaks.

Third, if there is an abnormal output, it should not be reckoned with capacity since it cannot be sustained.

Fourth, when a weak intermediate peak occurs, while the industry's trend is exponential, connecting the peaks by straight lines is unscientific.

Fifth, when an industry's production trend is declining linking two peaks is not logical. Suppose, production at two periodsof time is same, but out of these two, only one period's production is deemed as capacity output since it is at a peak point whereas the other is regarded as below capacity.

⁷A. Wharton School Method has been critically examined by many economists. See L.Taylor, D.Winter and D.Pearce, <u>op.cit</u>. and A.Phillips, <u>op.cit</u>.

Lastly, in the Wharton method, the latter part of the capacity figures will undergo constant revision as more current data become available. For example, if the actual output is greater than extrapolated capacity, the capacity line has to be revised upwards.

4.6From the above discussion, it is clear that there is some reservation in accepting the lowest of several capital output ratios for peaks of output as indicative of capacity. Though there are precedents to treat peak outputs as capacity, some modifications are essential. Inspite of these problems there is an important advantage in the Wharton method. When detailed technical data are not available from in-studies, this method gives reasonable hope to the analysist to proceed with his work. Once we know the actual output, reasonable estimates of indices of capacity utilisation can be easily compiled.

4.7 Since the Railways are a huge monolithic enterprise, employing highly qualified technical people, competent estimates are available within the enterprise about capacity utilisation. Thus there was no need to depend upon wharton - School method based upon observed peaks.

4.8 In any method of capacity measure, we face a serious problem. Generally if there is some 4% of unemployment of labour, it is regarded as full employment. If capital assets are unemployed, what is its equivalent?⁸ The concept and measurement

8. This question is raised by Solomon Fabricant in the discussion of Appraisal of Measures of Capacity', <u>op.cit</u>.

of capacity depend on how such questions are answered. Since, these questions are answered by economists differently even with same purpose, the concept and measurement of dapacity will vary. Thus, any measure of capacity is an approximate estimate and this is more true in the transport industry. We now discuss the difficulties involved in obtaining the relevant data of the Indian Railways and the method adopted to estimate capacity.

SECTION 'B'

There is great difficulty in determining the capacity 4.9 of capital in the Railways compared to capacity of capital in manufacturing industries. From the Engineering data, plant capacity of a manufacturing industry can be more easily ascertained. The capacity output of railways depends at least on a combination of four important types of capital assets viz. track, locomotives, cars (wagons and carriages) and the tele-communication system. On the same unit of track, different volumes of output can be produced by operating more or less number of cars with more or less powerful locomotives. Mention may also be made about the supply and demand factors. In certain sections of a region. demand may be more but the capital assets such as track. locomotives, cars may be in short supply. At the same time, in other regions demand may be less than supply. But the immobility of assets like track prevents shifting of services to other more favourable markets. The gauges (paths) are not of uniform type,

BG rolling stock cannot serve on MG or NG tracks. In view of these problems, estimation of capacity in the Railways has special problems. It may be stressed once again that our main objective is not primarily concerned with capacity as such but changing nature of technology. What we actually need is a reasonable estimate in order to correct the capital series. We now turn to the types of capital assets selected to estimate capacity.

4.10 The Indian Railways classify their capital expenditure into 9 broad categories such as land, rolling stock, structural engineering works, equipment.⁹ About 75-60% of total capital is represented by structural engineering works and rolling stock. In the former, about three-fourths is accountable for track. In the present analysis, we took into account only the major important types of capital assets — track, and rolling stock. Though the Railways output also depends on other factors such as marshalling yards, terminal facilities, buildings, telecommunications and signalling equipment, organisation, we could not estimate their capacity due to lack of data and technical problems. However, they are indirectly reflected in the estimation of capacity of track bnd rolling stock.

4.11. After making certain reasonable assumptions, we estimated the capacity of each of the four capital assets (track, locomotives, passenger carriages and wagons) separately. The attention is focussed in finding out the chief bottleneck to expansion of output.

9. For a detailed discussion on capital, see chapter V.

£ ⁵ .

Once we know the bottleneck, our problem is simplified. To the extent the chief bottleneck asset is under-utilised, it represents the overall under-utilisation of the Railways capital.¹⁰ We have taken into account existing conditions including the technological factors which condition the operations. To our knowledge, studies on capacity in railway except the in-studies by Railway's management. transportation are not conspicuous./ Hence, we are forced to fall back on our own methodology.

Definition of caracity output of Railways:

4.12 Capacity output of Railways may be understood in two ways viz. theoretical and potential. Theoretical capacity may be defined as that number of trains which can be moved if a perfect condition of train operation exists where all delays, other than those set by the time table schedule, are not considered. On the other hand, potential capacity means maximum number of trains that can be run over a certain division under existing method of directing train movements when it is assumed

Prof. Briscoe further comments that human skills might be one of chief limiting factor in fuller utilisation of capital. We do not have data to that depth to undertake the job. However we place on record our thanks for his kind interest.

^{10.} Prof. D.U. Sastry of Institute of Economic Growth, Delhi and Prof. Geoff. Briscoe of University of Warwick, commented on an earlier draft of this chapter and wrote that a composite index of capacity utilisation using weights would be more meaningful. They rightly feel that utilisation factor is inter-dependent in the railways. Yet we have not used weights. Our estimated track capacity takes into account such interdependence. Thus in para 6.24 it is demonstrated that that though frequency of trains have increased, track utilisation has decreased. Thus signalling and telecommunication improvements have increased both capacity and utilisation, the former more than the latter. Therefore ratios of utilisation to capacity have declined.

that trains are perfectly operated according to the rules. Thus the former concept does not consider delays set by rules such as safety train operation while the latter takes into account such delays. We follow, the latter concept in our analysis since it is more pragmatic.

Track Capacity:

Track is one of the most important and expensive 4.13 type of capital contributing for production. Unlike in road, marine or air transport, path is the main constraint. Two trains cannot pass on the same track at a time. This means, until one train passes on a section of track, a second train has to wait at a crossing station (on a single line). On multiple tracks this constraint is not operative. Thus throughout the 24 hours in a day, continuously trains cannot be run. Besides, before a train is received at a station, many operations have to be performed such as signalling, operating token box instruments and other necessary formalities. The total time spent by a train is composed of operating time and running time and they depend on signalling facilities and speed. Thus the throughput is a function of the interval between a train reaching a station and a train in the opposite direction starting again. If this interval is minimised, more output is possible. Thus speeds of trains, composition of trains (passenger or goods, express or ordinary), operating time. type of technology, spacing of stations, efficiency of the personnel, time needed to maintain the track etc. determine the track capacity.

4.14 A number of formulae are used to estimate track capacity. One of the popular track capacity formulae is given by Scott (frequently quoted in the Railway in-studies) which is given below:

The minutes in a day are 1440, T means longest running time over any block station and t means operating time. Efficiency ratio refers to the efficiency with which personnel engaged in train operation discharge their duties.

Scott took the efficiency ratio as 70% and t as 5 minutes. If the T is 11 minutes, then

Line Capacity = $\frac{1440}{11+5} \times \frac{70}{100} = 63$ trains both ways.

Thus from each side about 32 trains can be operated in the above example. If there are two lines, assuming two trains are run unidirectionally, that is one line for up-trains and the other for down-trains, using the above formula line capacity can be calculated for each line separately. If there are three lines, capacity is worked out for 2 lines as mentioned above and for the third line on the basis of single line. In a similar way for quadruple or quintuple lines, capacity can be calculated.

4.15 In India till about 1960, track capacity used to be calculated on the basis of Scott's formula. From then onwards, it had been calculated by the use of Master Chart.From a scrutiny it is found that both the methods give almost the same results. The line capacity of a section is drawn up on a time-distance graph, which is known as Master Chart. In this method, the caloulations depend on the skill of the person who draws it. In the Chart, first passenger trains are fitted and then as many goods trains as possible will be fitted. Finally, paths in which the run is completed in reasonable time or the economic paths, are selected. Thus line capacity of a section is determined by the use of graphical method.

4.16 Line capacity data are not published in the annual reports of the Indian Railways. Some of the Zonal Railways publish line capacity data in the 'General Manager 's Annual Reports' for certain selected years specially from the beginning of the Third Five Year Plan (1961). Hence data were collected from the Railway Board's records and Zonal Railways' Annual Reports for the years 1956, 1961, 1966 and 1972. For 1951, line capacity data are not available. The area covered by a Zone is divided into certain sections. The distance of a section varies from 1 KM to 100 KMs. For each section, line capacity in terms of number of trains, per day as on 31st March is given. The distance of the section multiplied by capacity in terms of number of trains which the track permits, gives capacity train. Ms per day on that section.

4.17 Having measured line capacity by the above two methods, the average actual number of train KMs performed are compared with the capacity train KMs to arrive at percentage utilisation. The ratio of capacity utilisation of track for all the Zones.

Central Using State South- S		6 ,7 4	TRACK CAPACITY	5	solim convertio			۰		,	
036 401 557 N.A. - 617 - N.A. 718 664 921 N.A. - 901 - N.A. 85.0 60.4 60.5 350 154 653 - N.A. 713 489 650 250 154 653 - N.A. 713 489 650 250 154 653 - N.A. 773.4 62.9 61.8 51.7 65.4 53.2 1321 - 73.4 62.9 61.8 51.7 65.4 53.2 1321 - 73.4 62.9 61.8 51.7 65.4 53.2 53.2 53.2 73.4 62.9 61.8 51.7 65.4 53.2 53.2 73.4 62.9 61.8 53.2 53.2 53.2 1283 53.5 53.3 1048 - 479 63.2 53.5 53.3 1048 - 61.4 63.2 53.5 53.3 1048 - 774 63.2 53.5 53.3 53.1 51.7 51.4 63.2 53.6 53.3 53.1 <th></th> <th></th> <th>Less Rech RLY.</th> <th>North- Grn RLY.</th> <th></th> <th>Corch- East- Fron- Poer Ary.</th> <th>South- ern Rly.</th> <th>Sonth Sente Fly</th> <th>South- Fest ern Aly.</th> <th>aest. Abr</th> <th>Total Lactan</th>			Less Rech RLY.	North- Grn RLY.		Corch- East- Fron- Poer Ary.	South- ern Rly.	Sonth Sente Fly	South- Fest ern Aly.	aest. Abr	Total Lactan
7/28 654 921 N.4. 901 M.4. 301 85.0 60.4 60.5 N.4. 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.7 55.5 55.7 55.9 55.4 55.4 55.4 55.4 55.4	1335-55 J Loosensee Loosensee	ගුලුල -	105	557 557	N.A.	1	617	1	N.A.	N.N.	
713 489 650 260 154 653 744 653 73, 593 232 1121 - N.A. 593 971 779 1051 503 232 1121 - N.A. 1035 73, 73, 4 62, 9 71, 8 51, 7 65, 4 58, 2 322 7 74 5, 51, 50, 1223 395 1375 565 334 1048 - 774 1248 55, 724 56, 1048 1048 1079 1000 599 346 923 729 1117 1253 61, 55, 4 15, 4	Concett Irats (Lakhs p.a) Concett Irats (Lakhs p.a) Colissenon (,)	7.8 85.0	664 80 4	921 60.5	A N	B B	901 68 . 5	\$ 7	N N		23° 4
713 489 650 260 154 653 53 971 779 1051 503 232 1121 503 1035 971 779 1051 503 232 1121 503 1035 971 779 1051 503 232 1121 503 1035 971 779 1051 503 232 1121 503 1035 312 566 736 .302 186 724 57.5 57.5 1223 53.5 53.3 1048 - 479 703 1223 53.5 53.3 55.7 59.1 59.1 57.5 53.2 53.5 53.3 55.7 59.1 57.5 56.4 53.2 55.7 59.1 59.1 - 61.4 1248 53.2 55.7 59.1 - 61.9 56.4 56.4 53.2 55.3 55.1 59.1 - 61.4 56.4 55.4 55.9 55.7	1367-61				, .	- ,			`		
Train Kis (Lekhs P.a) 312 566 736 3302 186 724 479 703 /Ire in Kis (Lekhs P.a) 1283 895 1375 565 334 1048 774 1248 /Iru (%) 69.1 69.1 601.9 56.4 /Irain Kis (Lekns P.a) 637 558 754 300 184 567 462 559 727 / Arain Kis (Lakhs P.a) 1041 1007 1000 599 346 923 720 1117 1253	-vevel Irain KMS (lakhs p.a) Capacity Traindis (Lakhs p.a) Juilleatten (,)	713 971 73.4	489 779 62 . 9	650 1051 61.8	260 51.7	154 232 66.4	652 1121 58.2	F F F 5	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	593 1.035 57.5	83. C
312 566 736302 186 724 479 703 1283 895 1375 555 334 1048 479 703 53.2 62.0 53.5 55.7 59.1 61.9 56.4 53.7 558 754 300 184 567 462 559 727 1041 1007 1000 599 346 923 720 1117 1253 61.2 55.4 75.4 50.0 53.0 61.5 64.1 50.7 550	1.1×5-66		1								
637 558 754 300 184 567 462 559 727 1041 1007 1000 599 346 923 720 1117 1253 61.2 55.4 75.4 50.0 53.0 61.5 64.1 50.1 53.0	otual Frain Kds (Ieahs p.a) Japoitsy freir Alis (Leahs p.a) Joilisation (%)	312 1283 63.2	566 395 62 0	736 1375 53.5		186 334 55•7	724 1048 1048	1 1 1	479 774 61.9	56.45 5421 5525	•••
537 558 754 300 184 567 462 559 727 1041 1007 1000 599 346 923 720 1117 1253 61.2 55.4 75.4 50.0 53.0 61.5 64.1 50.1 53.0	-32-122		1		•	•	-	•			
	.etual Iraın KMs (Iokns p.a) Liyacısy Arain' KMs (Izakıs p.a) ''ilisatıon (r)	537 541 61.2	558 1007 55 . 4	754 1000 75.4	300 599 50,0	184 346 53 . 0	567 923 61,5	- 195 - 180 - 180	559 1117 50.1	727 1253 58,0	60° -

105

.

,

(for which data are available) was calculated separately and are aggregated with the running track kilometrage weights. The overall utilisation ratios for the years 1956, 1961, 1966 and 1972 are plotted on a graph and are interpolated by linear segments to know the trend. Since data for 1951-52 are not available, we have assumed a similar percentage of utilisation in 1951-52 as that of 1955-56. Such assumption is not unrealistic in view of almost constant rate of utilisation of engine and vehicle capacity in 1951-52 (engine and vehicle capacity utilisation are discussed in paras 4.19 to 4.21 below).

4.18 Table 4.1 gives Zonal and overall track capacity utilisation ratios for the aforesaid selected years. It is evident from the table that track capacity utilisation varied between 60-70%. The track was better utilised in the earlier period than in the later years. The reason for such a drop is suggested in foot note 10 of this chapter. Since our interest is on aggregate capacity, an inter-comparison of figures for different zones was not attempted. Engine Capacity:

4.19. To estimate engine capacity, total engines of each Zone as on 31st March of each year were taken. Statistics pertaining to average daily percentage of engines in repair are available which account for about 15% of the total engines. By subtracting the engines in repair from the stock of total engines, net engines available for use are obtained. From this, engines used for shunting service are subtracted. Broadly, there are 3 types of engines — steam, diesel and electric.

ispie é.2

.

ENCLIE CEPACITI - ULTURE - 1. AUTOS

		ern ard Rast- ern Rly.	siy.	frat franz. Ler Rly.	ать А.Ту.	cent. rai. Rly.	6 1 :	a a final a fin A final a final A final a final	Locar Lidea alys
1.95.1mg American contract and a second contract with the second contract of the second contract of the second contract American second contract of the second c		s t s f f s f f s f			9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	Fe E B & E T B & Fe E Fe		- 19 19 19 19 19 19 19 19 19 19	
Actual Trom KMs (POOs por day) Capacity Train KMs of Engines(000s periay) Uvillsation (%)	169 237 57 °0	333 655 50 • 8	58 118 48.7		271 271 53.0	099	१ द ह	500 50 50 50 50 50 50 50 50 50 50 50 50	ي • • • ور
1955-56	,	, , ,						.1	
Actual Frain KMs (000s per day) (apacity Train KMs, of Engines(000s perday Utilisation (\$)	174 235 61.2	207 447 45.3	152 275 55,4			<u> </u>	32°22	125 261 47,9	, , , , , , , , , , , , , , , , , , ,
19-00-01			, ,					i	
Actual Train KMs (000s per day) Capacity Train KMs of Engines(000s perday) Utilisation (\$)	196 354 55 . 2	198 45.0	178 281 63,3	02 92 29	179 323 56 , 3	7 2 8	102 214 47,7	168 332 48.9	
1963-65			,	ż			' ,		
Actual Train KMs (000s per day) Capacity Train KMs of Engines(000s perday) Utilisation (5)	222 421 52.8	238 467 50 . 9	202 250 26°5	51 51.4 41.4	199 303 50 55	P 11 %	151 272 4	193 373 573	6 8 .
27-141			ĩ		1 9 1	·			4
Actual Train KMS (000% per day) Capacity Train KMS of Engines (000% perday Utilisation (\$)	174 266 . 3	234 460 50 , 9	206 329 62 . 7	43 . 9	155 311 49.8	126 173 73,0	153 316 48.4	190 387 8.	54°5

•

,

107

-

.

.

•

с) четичии ротолову от йогса-Zastern Aly.(NZB) are operated by Eastern Rly.(ER). Hence, NEA flgures are complete with SB. .

;

From interviews held with the operating branch. it is known that steam. diesel and electric engines can be used for 12.20 and 21 hours in a day respectively. The actual speed of an average goods and passenger train works out to 21 KMPH.¹¹ Thus on an average a steam engine can perform 12 X 21 = 252 engine IMs per day. Assuming one engine is sufficient to operate an average train, engine KMs become synonymous with train KMs. Thus, the capacity output of a steam engine works out to 252 train Ms per day, and this multiplied by net steam engine stock gives total capacity train KMs of all steam engines. Similarly, the capacity train KMs of diesel and electric engines can be worked out. Thus, Zone-wise, for the selected years, we have calculated the capacity train KMs of of engines and expressed the actual train KMs as percent to capacity train KMs of engines to work out capacity utilisation. The zonal capacity utilisation figures are combined by running track KM weights to derive overall capacity utilisation of engines of the Indian Railways.

4.20 Table 4.2 presents the engine capacity utilisation ratios. It is noticed that the utilisation of engines capacity is fairly stable around 54%.

Passenger Vehicle Capacity:

4.21 Actual vehicles on line in terms of 4-wheelers are

^{11.} For details of speeds of goods and passenger trains on different gauges, see K.G.S. Iyer, Increase in Line Capacity on Single Line', <u>International Railway Congress Association</u>, Feb. 1966.

Jent- Last- Horte- Loru- Journ-		And a subscription of the same to								
1506 2959 703 - 1603 12506 7281 1704 - 3571 12516 7281 1704 - 3571 12516 7281 1704 - 3571 12516 7281 1704 - 3571 12516 2036 41.6 - 40.4 1631 2031 1474 - 40.4 1631 2033 1474 - 40.4 2710 6039 2898 - 4295 2710 6039 2898 - 4295 2710 6039 2898 - 4295 281 44.3 26.2 34.3 5034 3281 6411 4123 1563 5034 3281 644.3 26.2 24.3 5036 281.7 33.9 44.1 24.3 56.2 3284 57.7 23.4 56.5 54.2 2829 234.3 27.7 56.4 56.4 2829 <td< th=""><th></th><th>Jeat Fal 31y.</th><th>cast- and North East- ern 31y,</th><th>Rorte- ern Rly.</th><th>Lorda Trost Tron- ther Aly.</th><th>South- ern Aly.</th><th></th><th>South Cast- Gast- Gira</th><th>Rest. ern Zly.</th><th></th></td<>		Jeat Fal 31y.	cast- and North East- ern 31y,	Rorte- ern Rly.	Lorda Trost Tron- ther Aly.	South- ern Aly.		South Cast- Gast- Gira	Rest. ern Zly.	
1506 2959 703 - 160.3 2254 7281 1704 - 3871 66.8 40.6 41.5 - 3871 66.8 40.6 41.5 - 3871 66.8 40.6 41.5 - 3871 66.8 40.6 41.5 - 40.4 271.0 6089 2334 50.9 - 271.0 6089 23.4 50.9 - 4296 271.0 5039 23.4 50.9 - 4296 271.0 5039 23.4 50.34 50.34 50.34 271.0 50.4 1848 44.10 1728 50.34 32.81 6.12 33.5 24.4 50.34 36.5 32.81 24.4 1848 141.0 1728 50.34 36.5 32.81 34.4 36.2 24.4 36.2 34.3 36.5 34.3 36.5 34.3 36.5 34.3 36.5 34.3 36.5 34.3 36.5 <td< td=""><td>1931-52</td><td></td><td>-</td><td></td><td>, ,</td><td></td><td>art dan dan bar ya ma kan dan dan</td><td></td><td></td><td>er er e</td></td<>	1931-52		-		, ,		art dan dan bar ya ma kan dan dan			er e
1631 2031 1474 - 1636 2710 6089 2898 - 1536 2710 6089 2898 - 4295 2710 6089 2898 - 4295 2710 6089 284 50.9 - 33.1 1796 2164 1848 410 1728 2821 6411 4123 1563 50.24 3281 6411 4123 1563 50.24 3281 544.8 45.2 24.3 26.2 24.3 24.35 73.5 21.47 50.7 20.36 50.24 25.6 24.3 26.2 24.3 26.5 24.3 25.7 23.9 44.1 24.1 36.5 50.34 26.2 24.3 26.2 24.1 36.5 50.34 27.7 23.9 44.1 24.1 36.5 50.34 27.7 23.9 24.1 24.1 36.5 50.34 28.9 24.4 23.4 24.1	ar uir Vohnole Kás(000s per dar) Japacity Veniale MMs (000s per day) Jsilasætron (š)	1506 2554 66,8	2959 7281 40 . 6	708 1704 41.5) † g	1603 3971 40,4	¥ 2 4	£ ₹ \$	1832 3332 36,32	থা ৷ ৷ ৩ ঘ
1631 2031 1474 - 2710 60.89 2898 - 4295 2710 60.89 2898 - 4295 2710 60.89 2898 - 33.1 1796 2164 1848 410 1728 3281 6411 4123 1563 5024 3281 6411 4123 1563 5024 3281 6411 4123 1563 5024 3281 644.8 144.8 26.2 34.3 3281 24.5 2147 507 2036 24.5 23.5 24.4.1 26.2 34.3 26.5 23.4.2 21.4 36.5 5036 21.7 33.9 44.1 24.1 36.5 5036 21.7 33.9 44.1 24.1 36.5 5036 2209 51.7 23.9 24.1 36.5 5036 2229 224.4 51.7 24.1 36.5 5042 2229 224.4 577	. 36 5-55 		,				1			
1796 2164 1848 410 1728 3281 6411 4123 1563 5034 54.8 33.3 44.8 26.2 34.3 23.9 44.1 2407 2036 44.1 2407 2147 507 2036 44.1 24.1 36.5 51.7 33.9 44.1 24.1 36.5 51.7 229 2344 571 1766	weiget Fehicle XMs (000s per day) Varacuty Vehicle XMs (000s per day) Cillisation (%)	1631 2710 60.2	808 808 808 808 808 808 808 808 808 808	1474 2898 60 . 9	1 E X	1636 4295 33 . 1) T T	737 1817 40.6	1295 2023 42 . 9	47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1796 2164 1848 410 1728 3281 6411 4123 1563 5034 3281 6411 4123 1563 5034 54.8 33.5 44.8 41.2 5034 54.8 33.5 44.4 26.2 34.3 54.8 73.9 44.1 21.47 507 2036 51.7 33.9 44.1 21.05 5036 5036 51.7 33.9 44.1 24.1 36.5 5530 51.7 33.9 44.1 24.1 36.5 5530 51.7 33.9 44.1 24.1 36.5 5530 51.7 33.9 44.1 24.1 36.5 5530 5229 72.59 2344 577 50.42 5042	T9-096-	·								
2310 2497 2147 507 2036 4489 7364 4572 2105 5580 51.7 33.9 44.1 24.1 36.5 2056 5580 35.9 2344 571 1760 2229 7843 4571 2376 5042	Actual Vehicle MMs (000s per day) Capacity Vehicle MMs (000s per day) Utilitation (Å)	1796 3281 54.8	, 2164 6411 33.5	1848 4123 44.8	410 1563 26,2	1728 5034 34,3	1 B B	2187 26.6	1716 1833 36.5	မှု ရေ () ()
2310 2497 2147 507 2036 4489 7364 4572 2105 5580 51.7 33.9 44.1 24.1 36.5 2.54 2759 2344 571 1762 2229 7243 4277 2376 5042	35-755T		,			3 ,				1 6 1
2(54 2759 2344 571 1762 3229 723 4277 2376 5042	actual Vehicle Kis (000s per day) Capitoloy Vehicle Kis (000s per day) Juilisation (x)	2215 4489 51 . 7	2407 7364 33 .9	2147 4572 44•1	207 24.1	2038 5580 36 • 5	- 1 t 5	997 2643 57,8	1992 5705 34.9	1 دری دری
2054 2739 2344 571 1762 3229 7243 - 4277 2376 5 042	1.3/1+78	•			5		-	J L		
62r6 25.2 43.1 2400 35.1	acurt Vehicle KAS (000% per day) Surfoity Vonicie KHS (000% per day) V.lilsation (6)	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7827 77277	571 2376 2400	1762 5042 35 . 1	1262 2763 45 . 7	1159 3321 34.9	2231 6211 37 . 5	ن • اب
•			Be man can and put the tax can car	han an a	*********		· · · · · · · · · · · · · · · · · · ·	10 oc. a) co co co a o a		

PSSAMGAR (IHIALS) (4-MILLS N. 9. 2AUIL - C. ILISALION EALION

,

fatie 4.3

,

éc;

1

Source: Sirvhlewents.

.

`hotes : 1) weighted average of Zonal Rlys utilisation ratios weights boing Kunning Frack Kilometrage.

2) Jertain portions of Morth-Eastern Rig. (NIR) are worned by Eastern Rig. (ER). Hence, NER figures are computed with ER. ,

.

. .

taken into account. On an average 15% of the vehicles will be under repair and 3% of the available vehicles will be in the yard for getting cleaned.¹² The vehicles in repair and cleaning are deducted from the total stock of carriages to obtain net carriages which can be used for 24 hours per day. The actual average speed of a passenger train is 30 KMPH.¹³ Thus a vehicle can perform 30 X 24 = 720 vehicle KMs per day which is its capacity output. 720 multiplied by net stock of vehicles gives total capacity vehicle KMs. The actual vehicle KMs (in terms of 4-wheelers) are expressed as percent to capacity vehicle KMs (in terms of 4-wheelers) to calculate utilisation ratio. The zone-wise capacity utilisation ratios are combined with running track KM weights to determine overall utilisation ratio.

Table 4.3 gives capacity utilisation ratios of vehicles. It is evident from the table that the utilisation ratio varied between 39 and 44 percent and there is a slight drop over the years.

Wagon Capacity:

4.22 Actual number of wagons (in terms of 4-wheelers) on line are considered. From the interviews held with the Railway ^Officers, it is learnt that the safe percentage of wagons under repair may be assumed to be 15% on a day. By applying this percentage, we calculated the net number of wagons available for service for 24 hours per day. The lowest actual speed of an

12. This information is inferred from interviews held with the Railway Officials.

13. K.G.S. Iyer, op.cit.

	Canto Val. RIY	East- ean North- Last- Ruy,	arn arn â.ly.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	s cuth- ern Rly,	south- setter RLY.	as contra source source source source source source	1985 19. 219.	Total Lucian RLYS,
u u v 1961. ok kontennete ense ense ense ense ense ense e						· · · · · · · · · · · · · · · · · · ·		, 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Actual Megon MAs (300s) per day Capacity Magon MAs (300s) per day Utillsation (%)	2350 6626 255 6	6905 24996 27,09	586 2698 21.7	۲ ک ۲	1857 5939 31.0	ā t E	8 5 5	1776 5848 30.4	ស ស្ត្រ រ
1955-56									
Actual Algon XMS (000s per day) Capacity Lagon Mds (000s per day) Utilisation (%)	<i>1</i> 616	4145	2606	9 4 9	2076 6798 30 . 5	038	2125 6627 33.2	2227	5, 8 (S
1 9 60- 61							x		
actual Magon KMs (000s per day) Caracity Magon KMs (000s per day) Utillsation (\$)	4078 8869 46°0	4708 18543 24.3	3594 8037 44•7	844 89292 29292 29292	2016 2014 29 .3	9 Q 3	2832 2650 2660	8408 8398 80°6	ំ សំ សំ សំ សំ សំ សំ សំ សំ សំ សំ សំ សំ សំ
1965-66	,								
Autual Mag on KM3 (000s per day) Capacity Magon KMa (000s per da <mark>y)</mark> Utilisation (%)	, 5020 12590 59°90 59°90	6158 2927 29_42	4559 12430 36•7	1247 5564 22°4	2052 12010 25 . 5	5 I E	4463 14460 30°9	4504 10730 ,42.0	ဖ ကို ကိ
1971-72									
Actual Magon EMs (000s per day) Capacity Wagon EMs (000s per day) Utilisation (g)	4456 10400 13.7	5556 25485 21,8	4956 14140 36 . 1	1221 5468 22.3	2467 859 6 23 .7		5575 15950 35 . 6	4699 11330 41 . 5	မ းက္လ ကိ

`

.

,

• 1

•

Te	ole	4.5

١

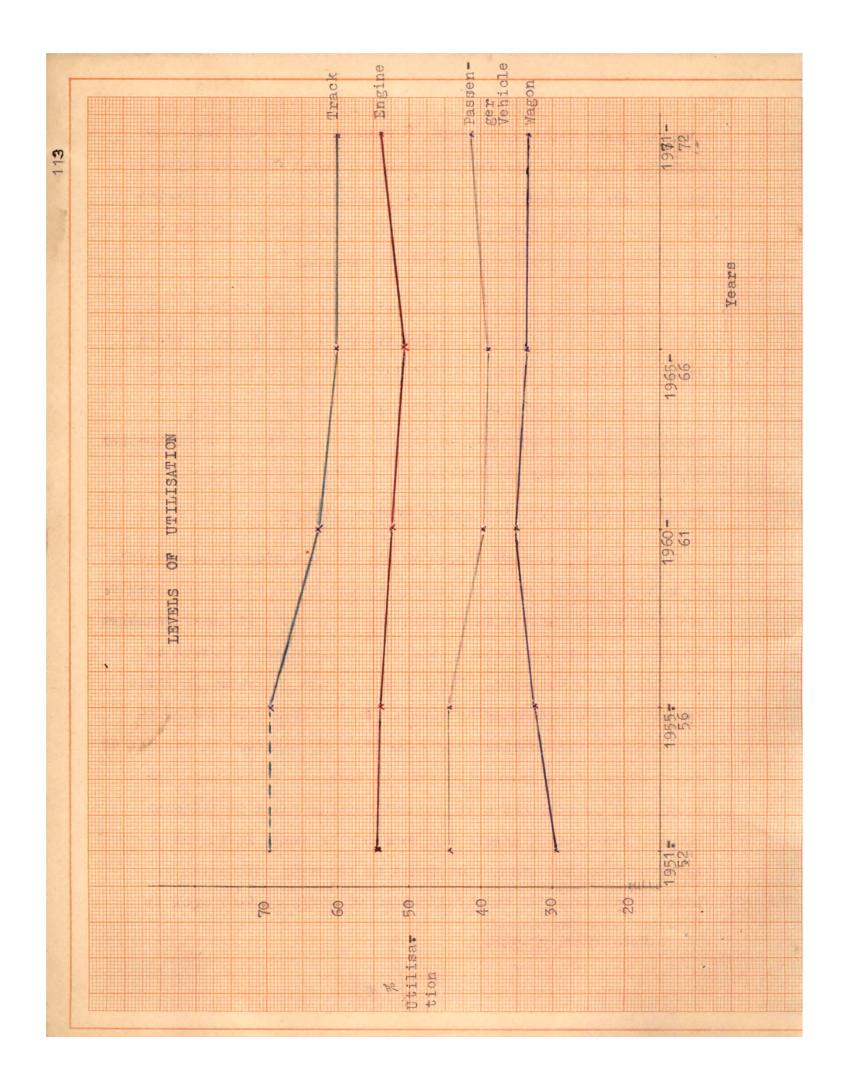
CAPACLY UTILISATION - TRACK AND ROLLING STOCK

Years	Perc	entage	Utllisat.	ion of
	Track	Engines	Passenger Vehicles	Wagons
	स्था प्रेस्ट द्वारा स्वयं स	و مدين هيند جين مين معر معر هيو جين جين هيو المان در ي ي	9 16 2 2 69 10 10 10 10 10 10 10 10 10 10 10 10 10	ی بری بری بری
tang gun gan kan kan kan kan kan kan	nud ande dine jour ener lass fest fest hold asse lang **	් ANNE කිසිට කිරී වැඩි කිසිවී කිසි කියි පැවැතිය වෙනි කඩා හ	28 දිමා හුළ අති අතා කළ හැක අති විට නම අති හො සං වුණ හ	0 and add 155, 639 ey Tor (1) (1) (1)
1951-52	ଚେ.ଟ 🌮	54.5	44.4	29,5
1955-56	69,5	54.0	44.3	32,4
1960-61	63.0	52,5	29.6	. 35.2
1965-66	0.09	51.2	39.1	33.0
1971-78	60.2	54.2	41.5	80,8
هام این بین وی وی دی ان ا	ریکه بیسه دراه بیش دربه رکه یک این بیس میش ایند ا	، ۲۹۹ النگ ۱۹۵۹ میں خلف میں ۱۹۹۹ میں ۱۹۹۱ میں ۲۹۹	n yeu ana sha ana na na mu ana mu ana mu ka ka ka ka sa	

Source: Tables 4.1, 4.2, 4.3 and 4.4

•

,


.

1

Note : @ 69.5% is the assumed figure

112

-

average goods train is 11 KMPH.¹⁴ Thus 11 X 24 = 264 represent capacity wagon KMs per day. The actual wagon KMs (4-wheelers) per day are compared with capacity wagon KMs per day to arrive at ratio of utilisation. The zone-wise utilisation ratios are aggregated with running track KM as weights.

4.23. Table 4.4 gives the utilisation ratios of wagons. It is noticed that wagon utilisation varied around 30-35%. There is an improvement in utilisation ratios over the two decades.

Having calculated the utilisation ratios of track, locomotives and carriages, we turn to the discussion of estimation of overall capacity utilisation of the Railways capital.

Overall Capacity Utilisation of Capital Stock:

4.24 So far, we have discussed the methods adopted to estimate the capacity utilisation of four important types of capital assets. An analysis of the utilisation ratios of 4 types of assets enables us to determine the overall capacity utilisation of stock of capital of the Railways. These 4 ratios are presented in Table 4.5 and in the accompanying graph. It is clear from the graph that highest utilisation (about 60-70%) was achieved in respect of track while it is lowest (30-35%) in the case of wagons. The problem is to find out a single utilisation ratio to indicate how far the capital assets had been put to use. It can be inferred from the graph that track is the main bottleneck to increase output. If the utilisation of rolling stock goes on

14. K.G.S. Iyer, op.cit.

improving, track capacity utilisation will first reach to saturation i.e. 100%. Once track capacity is utilised to the maximum, eventhough rolling stock has still unutilised capacity, it cannot be used since unutilised track capacity is not available. We are aware that capacity of a track is a somewhat nebulous concept. Within certain limits it can be increased with innovations in signalling and tele-communication equipment. This factor has been taken into account while calculating track capacity. Hence, under the existing technology, rules governing their operation and other constraints, track is the main bottleneck and track capacity utilisation can be assumed to represent overall capacity utilisation of the Railways capital. Future innovations may change the whole picture but it is extremely difficult to conjecture. We have used this percentage of underutilisation to deflate the actual capital in use to determine the technologically necessary capital in the next chapter.