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A Study of Heat-Transfer by free and forced convection

Introduction

It is well known that Heat transfer takes place by the
processes of conduction, convection and radiation. We are
concérned here exclusively with convection. in thig process,
the fluid and the heat contained in it move in‘a sysbematlc
manner so as to transport neét from one region to another.
Feat transfer by convection means the exchange of heat
energy between moving parts of the f£fluid or between these
parts and obher surfaces at a2 different temperature. Now
convection can be of two types (i) natural or frse
convection and (ii) Artificial or forced convection. In
natural or free convection the motion of the fluid is
caused solely by gravity forcgs due to difference of
density between the hotter and cooler parts. The lighter
parts which generally are those of higher temperature,
move upwards while the heavier ones fall down under the
action of gravity. In forced convection the fluid motion
is caused by forces independent of the temperature of the
fluid, such as exbernally applied pressure differences
ag in the flow through a tube. Streams of alr riging aboub
varm surfaces like that of a hot metal cylinder are examples
of free(natural) convec?ion whereas bthe heating of a vessel
by & current of hot air and tihe cooling of a surface with an
electric fan are examples of forced convection.

A knowledge of the convective processes of heat transfer

and the laws governing them is very important and useful in
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various branches of engineering like electrical,chemical,
mechanical ete. It is finding an ever increasing -
application in nuclear engineering because in almost all
nuclear reactors it is the process of forced convection
by which heat is removed from the fuel.

In the following sections we shall discuss the
fundamental and basic egquations of thermal convection and
obtain from them the various dimensionless groups that
are frequeﬁtly ugsed in our investigations of heat transfer
by free and forced convection. The dimensionless groups
will be first derived by means of differential equations
and later by using the dimensional eguations. The last
section of this chapber will deal with the importance
of these dimensionless groups.

Thermal canvection:-

Thermal convection may be regarded as a combination
of fluid flow and heat conduction, or it can be looked
upon as é hydrodynamical flow accompanied by a thermal
flow. In obbtaining basic equations of thermal convection
therefore, we mist consider the equationg of n_zechanical
(hydrodynamical) flow and the eguation of thermal
conductivity.

Eguations of Fluid Flow:-

The mechanical flow of fluids is governed by Newton's

Second law of motion Viz:-

Force=lass Xacéelerétion s & o o 2 o o s » (1)
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Wwe can opbtain an exgrepszgji.on for the -acceleration by
considering the change of velocity v, of a fluid in

a pabh element dz and in time interval dbt. Let us imagine
a parallelopived of volume dx dy dz at a disbance x, ¥, 2z,
from the origin. If we consider the fluid flow along bthe
direction of z axis with velocity v, at distance z and at

time t, we can exprescsam the change in the velocity v, as
dv, — -é_Yzou:' +.?.!?.al7_ - - - - (2)
2t 2

The first term in the above expression for dv,
represents the change of velocity abt a fixed distance 2
in the time inberval 4t while the second term denotes
the difference of velocity ab time t bebtween two points
in the fluld separated by a distance 4z

Dividing by dbt throughout we geb

JVZW% V’?._g’- _ L e .- (3)
O’L_:L_“"‘fat- t 22z .

In the above egquation the firgt term on the right,
(%—%) may be called local acceleration, since it arises
from a change of state of flow at the point z while the
second ’Germ(\fz %) may be called convechive acceleration

because it arises from the fact thabt the particle under
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consideration comes from a neighbouring place where it
had a different velocity. For simplicity we restrict
ourselves 0 unidirectional flow and neglect the velocity
components V), & -V, in the directions x and y.

Now the force in Newbon's second law of motion is
composed. of three different types of forces (a) Inértia
force Fg due 0 gravity (b) frictional force Tsj*c‘iue to

viscosibty and (c¢) dynamicai force ¥ due t0 pressure drop.

P
Thus Newbon's equabion (1) applied to the motion of unit

volume of the fluid. in the direction of z-axis becomes,

d.Vz D VZ i -y
‘02- — F%“’I}(“l’lp —---»—(l‘)_
ol,t
The inertla force Fg generally occurs as a buoyancy

and according to Archimedes principle, the unit volume of

fluid of density\f'in a medium of density f,is subjected

to a buoyancy force given by ({,- fJlg. Thus we get

g @ = (P - - .. &
The difference (f,~f) in a homogeneous fluid is

caused by a corresponding temperabure difference(T = T o)

and we have '

h=r{rpar)] o (i f ) = tf (7%)=F PO

where @ stands for (7— 7). Thus we get

= (f-f)§ = FFOG - - - - .- (6)

The frictional force fj; due to viscosity /4 may be
obtained as follows:-
The force due to Viscous drag over an element of

V
surface dy-dz abdistance x is ( },4 5o dy - dz ) and that
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at a disbance (=¢+du‘) -
VZ.“ ?Vr. ) Jy a(.z
Thus the neb force over the element of surface (dyx d.z)
will De
WV, i
-
(}4 ' ﬁ o

Hence for unit volume,the Jiscous force is given by

Vz.
x>

2.
A Ve e dy.dr
i p 3 Yo ez p Syl

,..}4 BVz. e e ——(7)
The dynamical force Fp d.ue to pressure drop of a fluid

which flows in the direction z apparently is —(——[’ )dzrelated.
40 the length dz and the unit of the cross-sectional area
;oerpend:mular to z. For umt volume it becomes
( I ¢ )
Subgtituting J’:‘or ;E‘g .‘u;‘_ a.nd ¥y from (6),(7),(8~) in

equation (4) we getb
'7..

’;wz_ s _(9)

Ff@?*j* R N

P2y ey

Eguabions of Head gonvection

If T be the temperature at a distance z and (T - 4ar)
at a distance (z + dz), the quantity of heat absorbed ]

by the volume element'd.x »dy = dz Dper second will De

]ad;aclydzqaou f’q,VlgE obne -y -olz.

where V = @i—) Now bhe amount of heat enbering per second
T

at z will be K dx ng and. the heat leaving per second
at (z + dz) will be k dx- oly (T“'g*z d%)Hence the net

amount of heat absorbed will be K 57_ do -dy-doyg »:{mtmg
z
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the heat balance equatign, we get,

chV o7 _ ZI _— e e e = v(’D)
oz — 2r -
Again the heat transfer by conduction and convection
is given by the general expression '

AQ = -k sj{—:o{ﬂ: haot. da - - - ()

where z is the direction of heat normal to surface element
and X is the thermal conductivity of fluild close to the
suzfé.ée. Here %z, is replaced by h, which is known as
heat transfer coefficient. Equations (9),{10) and (11)
may be regarded as the fundamental or basic equations

of thermal convection from which we can derive the
various dimensionless numbers (groups) which have been

used in the present work.

- Derivation of dimensionless groups
According to the principles of similarity, the

following eguations should be valid for two similar

systems, denoted by suffixes (1) and (2)
VZI_:‘ DVy, 5 X2~ Ax, > Ly =XE, L 8, = PO, TEAT

f.

R

]

ocf }3(,’:‘7!/‘19 3’9.:?’?0 » B ‘E’ﬁ ) C’f’z:/{c{a‘ - di2)
- =l p,
I:K) b} 42:'}&/"! 2 t “St' M JZ)’. /6

()

L

Here the Greek letters .<,6,%0, A, @, 7 ,Ojf/and the
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letters n, r, b, s, and 1 without subscript deslgnate
constants. We rewrite the basic equations (9), (10)

and (11) for systems (2) and (1) as follows.l
]0 gvzz ?Vz ’9/:2

v, = 6,9, +H, e~ 202 i)
3'1:1_ s 22_922 = Fl S /4 el 9L, -—-{13)
f CP vz ?__7; — 927“2 '_-t‘fl') 1(1(2_1_.2 — A AT, - i)
z P2 29z, = 25;; dz, — M2f'2
ol 2
9#‘( (')
'F av ’2 Y s | '
} 5_;' + ﬁv —— P P|9 ji 4"}‘" rbx BZ, . (“‘)
1
97; #}T i ?_.7.: — A AT, SRS AT
f) CF) lal - Irazl_--—(') k Bz'

Substitubing from (12) in (13) we geb ”
60 BVZ; °< ek’

Do, o, oYz, n 2 = D)
ye = at+ sz'az, __a‘-é-gﬂr’fﬁe e o
2
QD °7, ) 27
0-/5 _\0 Cf’l >, “ A — _Llf\ .-—-JL__,_ - (i)
>\ 22-' A‘ 92}
L)
A S = q}qvl.,m, ...... i) e
Now equations (15) must be indentical with equation (14)
and this will occur only if the following relabions é.re“
satisfied:~
oy o (1¢)
o6 o "nm Y § { 3
—_ = — = (0 ryj— %= =— = -
"y 1 ( ACF )“ A% A
) L £
L o e
A A% A p
__(t®
Now from (16) D= bprx-- - - ’
2> 4
[ n—z’w?‘_ 6.,25/'2_. 22 e nz lcpﬂh(% )
AT ¥ ~~(20)



¥rom (19) é.m&w(lo? = f?&%;g_ o A{2r)

Substitutigng from (12) gives
. 2

”—'5_::; 755 E;;- 7; ..5: . ?ﬁ*
Where E = 2 Or X stands for any considered length

(e+g. diameter of cylinder or sphere)

Thus

2
Lo, b _ LB HF Lo r’?ﬁ _ G (bevmedrt
. /uz /ul?._ — /LA Nuwrnfaby)
’ in Fr 17
o O
and from (16? M= Ao
Hence ‘ 1‘ - m S
or 2%k, k, Cpafa p )y “H e, (Rt
= - v = <, - K N )
P e, i<y ks e,
Similarly from (12) and (18) we have L A /
ke b _ by 0 Al BT "2 = M (Nacsell-
ki e Ka K Nwrmbey
and subsbituting (12) in (16) we obbtain
ﬁ.é Vz, — f?:..lj‘ sz.. = ﬁ I/ = Re- ( f\)‘e_\(mol.ﬂ(.s NM)
M M2
Finally from (17) and (18) we get ' = 7
and L:)G’A&Oﬂ Hence VY = o420
Thus ) A, 1\1_ A
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Iet us suppose that for free convection the heat
transfer coefficient “h is giving by the relation:-

h =c¢ LO’QA]D&/AL F»} Clﬂmj,%'k}k e . (r2)
where (¢ is a constant, f is the characteristic length
e .g. diameter of a cylinder or a sphere) M 1s viscosity,
K is the thermal conductivity and the other symbols
have their usual meaning. Since ‘A denotes the heat loss
ber unit area per unit time per unit change of termperature,
its dimensions will be those of heat divided by L5e
Thus we can writei~

Ch] = [HT*'L"Z'Q"'J -

The letters M, L, T, H and ¢ are used here for the basic

- (x3)

units of mass, length, time heat and temperature,
res;pec’gively.

gubstituting the dimensions of £, 8, f, M, [* % 7
and K in equation (22) and using (23) we get, ) .
TS ] 6w LETHTERTY prlom i

™M+T bef—rrg~
H ¥ & Fm

Hence, ,
—2 = a~— 36--—1,4—‘)1'—-7"'

_—1 = 6’}”7’1“‘%

0 = k=™

—f -2 -V

m + "



From these equations we can express the five exponents

L
2, 4n 1, T in terms of the remaining three vizi-

j, m, n thus: /
&237'1—)) A—w}) &:Zh.}f,.:m-y_n)’)’*: Jdr

Substitubing these in equation (22) we get,
3n-/ J‘ -2

N=Cd =6 x,o,(/u *F" 6 <q % K
s Ko (ST (or) (52)

Since 4, p and £ appear only in the form of a product

-2

in equations {6), & (9), they must have the same

exponent « Therefore 3 - n and the above equa’oion

becones M = C (Lgfz? P&)h( /“_%)M
k M 2. <

It can be easily seen that the terms in brackets
have zero (dimensions and they are known as Nusselt
number(i\/u = h ) Grashof number(fy :.Jiﬁf_@ ) and
Prandtl number (Pv = &fl ) as already mdwated_ in
the derivation by the method. of differntiasl equations.
Again let us assume that in the case of forced
convection, the heat transfer coefficient ‘A’ is given

by:-

a b F } ™M n
h:;vl/»Ji f C Y
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tihere C 1is a constant,{ is the characteristic length,
e+ge diameter of a cylinder or sphere, V is the
velocity of the fluid and the other symbols have their
ugual meaning. Thus we write, as in the case of free

convection, for the dimensions of h
— -] -2 -} _
Eh]:LHTLBJ-~—~—(“J

Substituting the dimensions of Vi L 4, k. ¢, and G in

equation (24) and using (25) we get ) .
a_+L_~A_-—j»—3“7 "‘Q'é_/'
b4

=)~ -7 7 +M -
HT L 6 =(x M&‘ < [ T
43¢ -3
J‘H‘} =< £ ¢=r .
Comparing indices
jrn =)
~}\">?= =1

— a - 8* ~J, =—
a.+/)~~&~-—;} -3 M ==-2__
F+m-mn=o0
from these equations we can express the four exponents,

o, (,, ?; . (} in terms of the remaining two vizi m and n.

Thus we have
- - )11

a.

L o= m-i
ér n—
yo= o0

Substituting these E’Ln equation (24 )mwe getb
k(" 7 P
kr—'“t(/ﬂ) (Jf;‘)k
I,
ﬁ = C < M V) ( %/"\—)

M’K
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The terms in brackets which have zero dimensions are
mown as Nusgelt Number({Nv = /‘ d ) Reynolds number
O?e = ) V ) and Prandtl Number(ﬁr- &f:‘) as already
1nulcated.

Finally we may assume that in the case of forced
convection the force upon bhe body, placed in a fluid
stream G.epend.e.‘uponw f, £, ana Vv Whereﬂ:ietters have

their usual meaningg. Thus we may write
¢ d

a b
=ep L
where ( is a constant
‘ Substituting the dimensions of the various g;uanﬁities
‘we geb
o ard  —a-3brerd ool

MLT —e¢ ™M % L - T

Bquating indicies

RS

Q..-l"()-:
o -3+ c+=)

—a ~ o =-2.

Expressing b, ¢, & in terms of a we have

= |- o C:Z—GL:OL

Thus F ) C ( ) V’ZZL
' t vl a
E M
OI’- “"""“"‘"A PWVZ" - 2 C fve. )

Where A stanc‘ts for area having dimensions Land. («M)
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is ’ohe wel.. mme Reynolds nunmber Re. Now e is
known as the J.I‘lOulQl’l drag. Coefficient Gf in K

aerodynamics..We have further, Stanbon number 8t=0p/2

| Sk, = ’;VQ’” & (f“/) C<RQ‘) -

Now € (Re)‘" can be easily shomn* to be equal to

-or

Nv Re. py Waich is not::ing but> ny q.,v as shown

by the diffrential method given before.
Advantages of dimensionless groups

In the discugsion of heat transfer by either free
or forced convection, the dimensionless groups like
Nusselt Number, Reynolds Number, Grashof Number ebc.,
will occur over and over again. One great advantage
of these numbers lies in the fact thal any involved
magnitudes can be changed in such a way that the
- numerical value of the dimensionless groups remains
the same. Hence the effect of changing each one of

these magnitudes in a group can be easily calculated

n-)

* We know ' ‘ , ™M~}
o My e (R ()
) Re. P ™

Where ¢! is a constant. Now m is always less than one

as found experimentally hence M-t L0 say equal to =3

and f‘or a given fluid (Pv) ls constant = ¢®. Thus

f‘/’-"/%e, Pr = C(KE_)

dherm G = {¢' X c") = Qonsbant.
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by determining experimentally the influence of the
variation of only one magnitude in thabt group.

Equations of dimensionless groups are therefore very
useful and they lead t0 g saving of considerable
amoun?t of work and time. For insténce let us consider

the well known dimensional equation of free convechion:

Nv = C(e*r)m(r\r‘)h

U ( Lsr’fa?ﬁ)”( %ﬁ)“"“

ov e e <

If we wish to find the change in the coefficient of
heat transfer *h' in the case of a sphere of dlameter
1t for Qifferent variabions of the involved magnitudes,
we can proceed by changing first '1' taking say, four
different sphere diamebers, then conducting experiments
with each of these and witnh fluids of four different
thermal conductivities 'k' further varying four times
anl repeating the process with ea¢h of bthe seven
independent variables Lk, f , £ Bpand ¢ This would
require 47 = 16384 tests. On the obher hami, if we
use the dimensional equation given above, it would be
sufficient to caduct experiments with four différen‘s
values of the Grashof number (Gr.), each with four
values of the Prandtl number Pr. i.e. 4% = 16
experimerbs in order to gebt about the sams result as
with more that 16000 bests by using the direct method.

In actual pragbice however more than the minimum of



16 bests may be necessary. Again all the variabion
ofthe seven independsnt variagbles referred to shove
would not be found necessary Or even possible. Xiven
then, the use of these dimensionless groups leads

0 an enormous saving of work and time.



Dimensions of guantities used 1n ths chapter.
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Symbol :Dimensidﬁs in berms i

of Mass Lengbh Time 3
Heat & Temperabure

(M) (D) (T) @%) (8)

N s BN &T % Be g

.bnavacterlstlc lengbh

-Temperature differencs
:between surface and
s fluid

¢ Density of fluid
:Vigcosity of fluid

: Goefficient of thermal
:expansion of fluid

: 8pecific heat of fluid
sat constant pressure

: Acceleration dues G0
:gravity

H
tThermal conductivity of
+fluid
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Forced velocity of fluid.

Heat transfer coefficient
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