r

,

•

.

.

.

SECTION "D"

•

•

,

•

.

1

"THE SEVEN CELL OXIDATION POND "

l 305

INTRODUCTION

Raw sewage of Ahmedabad has been utilised directly for irrigation since 1894, after screening and removal of detritus in the two pumping stations. The total quantity of sewage and industrial wastes at present is about 50 mgd. of which about 10 mgd. consists of treated textile mill wastes. Owing to the limited available area of about 2856 acres in the farm, most of the sewage finds its way into the river Sabarmati throughout the year excepting the monsoon season, when the entire sewage is diverted into it. So, inadequacy of the farm area, application of a heavy dosage of raw sewage on land and the resultant odour and mosquito nuisance have all created problems for an immediate solution.

One of the remedial measures taken by Mr. M.J. Kakkad, the city Engineer, was the construction of a series of stabilization lagoons in the Pirana Sewage Farm beginning from four cells in April 1961 to seven cells in 1963. The results of examination of the bio-chemical changes taking place in each of the seven cells or ponds working in series during the year 1963 are discussed in this paper.

2. STRUCTURAL FEATURES OF THE PONDS.

(a) Location: The ponds have been constructed at the junction of the farthest end of the auxilliary sewage

н	
NO.	
TABLE	

,

MORPHOMETRIC DATA ABOUT THE SEVEN PONDS AS FURNISHED BY THE CITY ENGINEER, AHMEDARAD MUNICIPAL CORPORATION. . 202

Cell No.		MEASUREMENT OF THE SIDES (Feet).	гог тн т).	IE FOUR	Total Depth	SURFACE AREA Sq. ft.	A Acres		Λ	DEPTHS (Feet FIVE	~
		N	3	4	IN IT.	************		C.ft. x 100	m. gallons	C.ft. x 100	m. gallon.
•	1090	475	1100	485	Ĺ	573600	13.16	21944	13.715	28680	17.925
លំ	85	475	85	475	Ø	40375	0.93	1615	1.009	2019	1.262
3.	450	475	450	475	œ	213750	4.97	8550	5.344	10687	6.679
4.	250	375	260	475	œ	127400	2,92	5096	4.185	6270	3.919
5.	250	255	246	375	Ø	70150	1.61	2806	1.754	3507	2.192
6.	238	144	19 <i>5</i>	255	Ø	37 27 5	0.86	1491	0,932	1864	1.165
7.	255	228	144	1	Ø	17100	0.37	684	0.427	855	0.534
Total	2618	t	1	1	r!	1079650	24.82	42186	27.366	53882	33.676

.

(304

main carrier and the sewage channel which branches off from the main carrier from the spot where the single unit pilot-plant oxidation pond is located in the Pirana sewage Farm (Fig.25). The sewage after a travel of nearly six miles in these open channels reaches the ponds.

(b) <u>Topography</u>: The area in which the ponds are situated is on the eastern bank of the river Sabarmati, and is open and exposed to prevailing winds.

(c) <u>Soil characteristics</u>: The ponds are situated on a sandy loam extending to a depth of 25 feet.

(d) <u>Shape of the Ponds</u>: The first three ponds are rectangular, the next three are quandrilaterals and the last one is triangular and have been constructed according to the suitability of the available area on site.

(e) <u>Area and Volume</u>: The area of each of the seven ponds and their volumes are given for 4' and 5' depths in <u>Table No. I.</u>

BOTTOM: The bottom is a natural sandy soil made as level as possible and having no obstruction to circulation. No attempt was made at artificial sealing of the bottom as that would have increased the cost of construction of the ponds, which came to about Rs.3000/- per acre. Also this portion of the farm was used as "drying beds" (Ganapati

(305

et al 1965) for more than a decade and so the bottom had become compacted and relatively tight to prevent excessive seepage.

<u>DYKES</u>: The embankments are also made up of excavated soil from the surrounding sandy area and they were compacted where required by buttressing the sides with the city refuse collected by the municipal conservancy department. Top width is about 4 feet, free board is kept minimum at 2 feet in order to allow the action of wind to play fully upon the water surface of the ponds. No attempt was made to prevent erosion of the inner sides by pitching as that would also have increased the cost; and the inner and outer slopes were kept at two horizontal to one vertical. The embankments were not seeded. Yet rank vegetation was found to grow almost throughout the year on the innerside slopes abo**ut** water level. They were removed by manual labour of the strength of one person per bond which prevented the likely breeding of mosquito larvae.

Inlet and Outlet arrangements: The inlet and outlet to each pond were made of Hume pipes of one foot in diameter simply placed on the dykes pending the construction of regular weir structures their inverts being 5 feet from the bottom excepting the inlet to the first pond, and the final outlet which were provided with regular steel weirs each measuring 2'-6". The inlets were also located diagonally to the outlets in each of the ponds so that

· (306

there was no possibility of short circuiting.

3. CLIMATIC CONDITIONS

The climatic conditions for 1963 are shown in Table No.1 (Appenxix). It will be seen from a study of the Table that the range of temperature is highest during summer (18.6-41.2) and lowest during the cold weather (12.3-33.6). The range of monthly hours of bright sunshine (357.7-281.3) is also highest during the hot weather and lowest (119.8-202.1) during the monsoon season. During the cold weather the range of monthly hours of bright sun-shine is comparatively higher than in the monsoon and post-monsoon seasons although the temperature range is comparatively lower. In the post-monsoon season the temperature and the hours of bright sunshine are comparatively higher than the respective minimum ranges. Also the total annual rain fall and the monthly fall are not high. So it would appear that all the year round favourable conditions for growth of algae for the production of photosynthetic oxygen seem to exist in Ahmedabad. The total evaporation per annum is about 5 ft.

4. FEED SEWAGE: ITS QUALITY & QUANTITY.

The essential characteristics of the sewage of Ahmedabad have been described in detail by Kothandaraman

ſ 307

et al (1962). Suffice it to say that the sewage which was feeding these ponds had travelled over a distance of nearly six miles in open carriers of channels as a result of which a certain amount of natural purification had taken place (Ganapati and Bppardikar 1962). It is a strong domestic sewage mixed with textile mill wastes in the ratio of nearly 4:1. The quality of sewage entering the first pond is described at the appropriate places in the body of this paper.

The quantity of sewage flowing into the first pond was found to fluctuate between 1.0 and 5.0 mgd. depending upon the time of the day.

5. COLLECTION OF SAMPLES

Grab samples were taken once a week and in special cases twice a week at about 11.00 a.m. and 12 noon, from all the seven ponds from one and the same place i.e. near the inlet of Pond 1 and from the outlets of each of them. **Three** sets of samples were taken from each pond in the following order. Samples for Chemical examination were taken first, next for biological examination. Two separate samples; one for dissolved oxygen and the other for BOD were taken in narrow mouthed glass stoppered bottles of 250 ml capacity, taking the usual precautions for excluding air bubbles.

All examinations were done under comparable conditions and the maximum time between collection and analysis did not exceed one hour. Temperature and colour of the liquid as it appeared to the naked eye were recorded for studying the physical conditions. Tests for dissolved oxygen, 5-day BOD, oxygen consumed from acid permanganate at 27 °C, alkalinity, chloride, ammoniacal nitrogen and phosphates were done for studying the important chemical conditions. Numerical estimation of the dominant algal organisms was also made by the drop-sedimentation method. The methods followed for the tests were the same as those described in the first paper, Part II. The data collected under physico-chemical, and biological conditions are presented in a series of basic tabulations condensed to form monthly averages separately in appendix. A discussion of the salient features of each important factor is made in the body of the paper. All results are expressed in milligrams per litre or parts per million unless otherwise stated.

6. PHYSICAL CONDITIONS

(a) <u>Temperature</u> ($^{\circ}$ C): <u>Maximum and minimum varia</u>tions: The monthly averages are shown in Table 2 in the appendix from which the maximum and minimum values for each of the seven ponds are shown below:

TABLE NO. "2"

Sou	rce			Maxim Temp.	um <u>Month</u>	Minim Temp.	um <u>Month</u>	Annual average
Inl	et to	Por	nd I	32.8	May & June	24.5	Jan.	30.2 .
	luent d No.	fro	om I	30.6	May	, 29.8	Jan.	27.9
-	do	-	II	30.7	May	20.9	Jan.	28.1
	do	~	III	29.8	July	20.1	Jan.	27.4
	do	-	IV	29.9	May	19.8	Jan.	27.1
-	do		V	29.5	July	20.0	Jan.	27.1
	do		VI	30.3	July	19.5	Jan.	27.1
-	do		VII	30.7	May	19.5	Jan.	27.4
Ave	erage			30.2		20.1	anna 49° ang	27.4

The temperature of the effluents from the seven ponds was always less than the temperature of the influent. Maximum reduction of 20.4% was found in January and the minimum reduction (nil) in December. The annual average reduction was 9.3% (Table II, Appendix).

SEASONAL VARIATIONS:

The results are shown in Table NO. 3

(310	
-------	--

SOUI	RCE		*2. *	Cold weather Dec. Jan. & Feb.	Hot weather Mar. to June	Monsoon July to Sept.	Post- monsoon Oct. to Nov.
Inlet i	to Por	nd	I	26.2	31.9	30.9	30.7
Outlet	from	Pond	I	25.6	28.9	29.4	28.2
11	12	18	II	24.8	29.2	29.8	28.5
11	11	11	III	23.7	28.3	29.3	28.3
11	ft	18	IV	22.4	28.4	29.3	28,2
11	11	13	v	23.3	29.1	29.0	27.8
11	11	18	VI	23.0	28.0	2.6	28.0
Ħ	7 8	11	VII	23.1	29.4	28.7	28.0
Season	al Av	erage		23.7	28.6	29.2	28.1

TABLE NO. 3

The seasonal averages, also, were always less than the corresponding figures for the raw sewage entering the first pond.

(b) <u>Colour</u>: (vide Table III, Appendix): The colour of the raw sewage entering Pond I was black or greyish but the colour of the effluents emanating from the seven ponds varied from purple to green. The effluent from Pond I was purple from January to May and later it was pale green or dark green with an occasional pink, during the remaining months of the year. The effluent from Ponds 2,3,4,5,6 and 7 were also purple from January to April, and later on they turned pale green or dark

(311

green with an occasional pink for a few days during the remaining eight months of the year. On the whole the ponds turned out pale green expluents for the major portion of the year.

7. CHEMICAL CONDITIONS

(a). <u>Dissolved oxygen:</u> The monthly averages expressed in mg./l. are shown in Table No. 4 Appendix from which the following data have been gathered.

MAXIMUM & MINIMUM VALUES:

SOUR	CE				lmum <u>Month</u>	Min Value	Lmum / <u>Month</u>	Annual averages
Inlet to	Pond		I	Nil		Nil	1997 - 1996 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Nil
Effluent	from	Por	nd I	4.62	Sept.	18	Jan May	1.89
78	13	11	II	9.04	11	17	Jan April	2.62
11	18	Ħ	III	3.92	11	11	13	1.37
12	18	11	IV	5.72	11	11	18	2.25
17	11	н	v	5.92	11	18	19	1.96
18	29	It	VI	6.23	Oct.	11	11	1.83
tt.	Ħ	n	VII	7.14	Sept.	18	n	2.50
Avera	age			6.08	Sept.	Nil	Jan April	2.06

TABLE NO. 4

Maximum production of oxygen was found in the effluent from Pond II and the minimum from Pond III. Oxygen was found

	Se Cumu- se cumu- se ve	3	6.97	10.25	12.45	15, 53	18.43	21.92	1
	POST-MONSOON 0. Increase C ng./(+)or(-)1 Decrease v over the preced-	8	-0.17	-0.12	-1.18	+0.88	-0.18	+0.59	
	D.0.0 D.0.0 J.) (3. 57	3.40	3.28	2.20	3,08	2.90	3.49	• 11
	Cumu Lati- Tucre - ase	ı	8.48	10.90	15.31	19¢60)	25,09	30.51	7 7 7 7
	MONSOON Therease (+) or(-) Decrease over the preceding		+2.46	-3.05	+1.99	-0.12	+1.20	-0.07	
		3.01	5.47	2.42	4.41	4.2	5.49	5.42	(n) (i
	Tati- Tati- Trere Trere	1	3.01	3.70	4.57	5.16	6.30	8.02	8) 87 81 11 81 81 81 81 81
LE NO. 5	HOT WEATHER Increase (+)or(-) Decrease over the preceding	ł	+1.05	- 1.34	+0.18	-0.28	+0.55	+0.58	11
TABLE	D-001	0.98	2.03	0.69	0.87	0.59	1.14	1.72	1.15
	Cumula - tive incre-	1	1.20	1.49	2.14	3.19	3.93	4.41	
	COLD WEATHER Increase ((+)or(-) Decrease over the preceding	ł	-0.50	-0.06	+0.36	+0.40	-0.31	-0.26	87 87 87 87 87 87 87 87 87 87 87 87 87 8
		0.85	0.35	83.0	0.65	1.05	0.74	0.48	0.63
	1 I 1 I	н	TT	TII	ΤV	Λ	TΛ	IIΛ	11
		t from	Ħ	z	E	łi	E	= 1	0 0 0 0
375	I 0 1	Effluent Pond	a Mar Aira	den an	47 4	=	1	: = 1	

(313

from June to December only in all the ponds. The annual average was found to be 206 mg./l.

SEASONAL VARIATIONS: The seasonal averages for each of the seven ponds are shown in Table No. 5.

The production of oxygen was found to be maximum in the monsoon season and to be least in the cold weather.

The seasonal increase or decrease in oxygen content over the preceeding pond and the cumulative increase for the series of ponds in each season are shown in <u>Table No.5.</u>

The cumulative increase for the whole series of ponds is found to be highest in the monsoon season and lowest in the cold weather period. The maximum cumulative production was 30.51 mg./l. in the monsoon season and the least was 4.41 in the cold weather, period. There was a progressive increase in the average oxygen content from the cold weather to the monsoon season and then there was a slight fall in the post-monsoon season.

(b) <u>B.O.D.</u> (<u>5 days at 20° C</u>):

The results of analysis of the quantity of oxygen required for satisfactory oxidation of organic matter by aerobic bacteria are shown in <u>Table 5</u> (Appendix) from which the following observations are made:

(314

T	AE	3L	Ε	NO	- 6

SOUR	C E	1997 - 1999 - 1999 - 1999 1997 - 1999 - 1999 - 1999 - 1999) ann ant 1955 1995) ann ann 1955 1995	Max <u>B.O.D</u> .	imum <u>Month</u>	Mini <u>B.O.D</u> .		Annual Average
Inlet to	pond		I	257	Jan.	133	May	189
Effluent	from	Pond	ĪI	51 0	Dec.	60	May	125
n	13	11	II	152	Feb.	40	Aug.	98
18	11	n	III	130	Feb.	38	Aug.	83
12	Ħ	18	IV	118	Jan.	36	Aug.	69
t	78	11	V	82	Jan. & Feb.	30	Oct.	58
11	18	n	VI	75	Jan.	25	Oct.	44
12	11	".	VII	74	April	12	Oct.	37
Aver	age			120		34		73

It will be seen from Table No. 6 that there is a progressive reduction in BOD values both in the maximum, minimum and annual averages. Maximum percentage reduction of 94.1% in October and the minimum percentage reduction of 57.7% in April have been recorded (Table No.V), appendix.

Seasonal Changes are shown in Table No. 7:

From a study of the above table it will be seen that (i) the greatest percentage reduction in BOD takes places in Pond II being 55 in the post-monsoon season and the lowest percentage reduction of 3 in Pond VII in the monsoon season.

5	
. ON	
TABLE	

!	Cumu- lative reduc- tion	1	Ŧ	59	62	68	78	86	93	74/ -	11 71 11 71
I	MONSOON Inction Vious	1	თ	55	7	17	30	37	50	187	11 11 11 11 11 11
1		0	182	80	76	63	44	28	14	70/ 65.0	11 11 11
1	tive tive tion f	ł		62	64	67	70	81	82	/12	11 11 11 11
	MONSOON %reduc- tion over the previous pond	I	46	31	Q	2	11	36	ო	20/	81 81 83 81
	BOD 1.	168	T 6	63	60	56	50	32	31	55/ 67.3	f: 3) 12 14
	Ltreding Aredin	1	1	45	42	65	69	73	72	-19	11 11 11
TABLE	T WEA ction ction cver the pond	1	42	ი +	90 +	ŝ	11	13	∾ +	15/	,11 11 11 11
, , , ,	BOD	~	114	108	115	70	62	54	55	82/ 58.4	11 11 11
1		1	ı	32	44	55	64	72	77)
1	vious pond	ı	ω	26	18	19	20	61	17	18/	
1	BOD TOUR	161	176	130	106	86	69	53	44	95/ 56.3	84 81 81
	-	н	ы	H	III	ΤV	Λ	ΤΛ	TIV		11 11 11
1	, , , , , , , , , , , , , , , , , , ,	Pon	t from		\$	ŧ	ŧ	, đ		/ tion	11 11 11
1	318	nle	止ffluent Fond ・・		80	#	#		4	Average/ % Reduction	11 11 11

The greatest cumulative percentage reduction of 93% takes place in Pond No. VII in the post-monsoon season and the lowest of 72% in the hot weather.

(c) OXYGEN CONSUMED (4 hours at 27° C)

This test measures the quantity of oxidisable carbonaceous matter and the results are shown in Table No.VI (Appendix) from which the following conclusions are made.

MAXIMUM & MINIMUM VALUES:

SOUR	СЕ	~~ ~~ ~~ ~~ ~~ ~~	MAXIMUM Oxygen consumed	Month	MINIMUN Oxygen consum	Month	ANNUAL AVERAGE
Inlet to	Pond	I	74	April	39	August	52
Effluén: Pond		I	84	98	21	11	48
18	11	II	87	13	20	11	45
11	11	III	76	7 8	20	July & Oct.	44
11	11	IV	87	78	16	October	43
18	71	v	85	st	12	78	40
12	5 8	VI	, 80	18	10	11	39
11	18	VII	86	18	7	73	36
Aver	age	41	83	April	15	October	42

TABLE NO. 8

.

TABLE NO. 9

.

	3 t 1 3 t		COLD WEATHER	THER	1 1 1	HOT WEATHER			MONSDON			POST_MONSOON	
S O U R C		Oxygen Gons. mg./l.	% Reduc- tion over the previous pond	te-Cumula -tive the % re- bus ducti-	Oxyg- en Cons. mg./1	%Reduction over the previous pond	L Cumula - tive % re- duc- tion	Oxygen Cons. mg./l.	tion tion the previ-	Cumu- Lati- ve % reduc		Reduc- tion over the previous pond	Cumula Cumula % re- duc- tion.
Inlet to Pond		44	-	1 1 1 1		1 1 1 1 1 1 1			, pond		54		-
Effluent from Pond	н	46	+ 4	i	64	ო +	1	89	23	I	40	26	I
11	II	45	N	ດາ +	58	6	v	3 30 30	15	35	33	ъ	о Ю
	TII	40	11	, ,	55	£	TT	, 25	11	41 Vi	37	ო	31
	ΛI	41	C) +	2	56	(V) +	10	22	12	50	Ö.	80	45
82	Λ	40	ເນ	თ	54	4	13	21	4	51	23	BO	56
41 HC	ΤΛ	41	∾ +	7	50	7	19	19	IO	56	କ୍ଷ	13	63
28 28	ΙIΛ	42	വ +	S	51	ଦ୍ୟ +	18	16	16	63	14	30	75
Average/ % Ředuction		42	ri 1	i O	55 11.3	CV 1	13	23 16 5	13	<u>4</u> 9	8 6	18	50

•

Maximum values have been recorded in April and the minimum in October. The annual averages show a gradual decrease from first to the last pond.

There is an increase in organic matter content varying between 16.0 and 23.0% in the final effluent during January to April due to the presence of sulphides in all the vonds. From May to December, the final effluent shows a reduction varying between 44.0% and 83.0%, when there is algal development in the ponds. In the final effluent maximum reduction of 44.0% in May rse seen. In the first four months i.e. from January to April there is an increase in the values which vary between 16% and 23% and this increase is attributed to the presence of sulphides, resulting from anaerobic decomposition of sulphates and sulphur containing organic matter in the individual ponds (Table VI appendix). Seasonal variations are shown in Table No.9. The seasonal average reduction is lowest in the cold weather and highest in the monsoon season taking all the ponds into consideration. But the cumulative reduction in the final effluent is lowest in the cold weather (5%) and highest in the post monsoon season (75%).

(d) PHENOLPHTHALEIN ALKALINITY:

۰,

This test is an indication of bacterial or algal activity. In the sase of the former the figures are phenolphthalein alkalinity will be lower or nil and in the case of latter the figures will be higher. The maximum, minimum and

318

the seasonal variations in phenolphthalein alkalinity have been taken from table No. VII (Appendix) and are shown in Table No.10.

MAXIMUM & MINIMUM VALUES:

.

,

TABLE NO. 10

SOUR	СЕ		MAXIMUN P.Alka- <u>linity</u>		MINIM P. Alka- linity		Annual average
Inlet to	Pond	I	52	May	15	Nov.	34
Effluent	from	P. I	95	July	25	Feb.	47
11	11	II	167	Sept.	23	Jan. & Feb.	67
11	12	III	120	Sept.	15	Jan.	57
n	11	IV	130	Sept.	28	Feb.	56
13	18	V	140	Sept.	24	April	66
18	14	VI	138	June	10	Feb.	62
12	12	VII	166	Sept.	20	Jan.	64
Aver	a g e		136		21		60

The pond water is alkaline throughout, the annual average maximum being 136 ppm which is about 161 % over the raw water maximum. The average minimum is 21 which is about 40% over the raw water minimum. The annual average is 60 ppm. TABLE NO. 11

FEFEEFFF	* * ? * *															
			-	8	COLD WEATHER	THER	-		HOT WEATHER	THER	•	MONSOON	-	PO.	POST-MON SOON	NOC
S O U R C	ы		A HIS	ka hiu	<pre>% inc- Cumulat rease -ve(+) (+)or increas (-)Dec or(-)De -crease-crease</pre>	-'Cumula '-ve(+) 'increa 'increas se-creas	inc-Cumulati ase -ve(+))or increase)Dec or(-)Dec rease-crease	P. Alka- ty	<pre>%increa -se(+) or(-) Decrea- se</pre>	Cumulati -ve(+) increase or (-) decrease	P. Al- kali- e, nity	%incre- ase(+) or(-) decrea- se	Cumula- tive(+) increa- se or (-) dec- rease %	kali- hity	%incre -ase (+)or (-)de- crease	いしょうくら
				- **			- •••]				 	1		 	! 	se %
Inlet to P	Pond) t ! !	E H	31	1		1	47	8	I	83	2 2 2	1 1 1	80	I	ł
Effluent f	from Pond	bno	ся Н	31	0		1	44	ບ ເ	I	63	+125	ł	54	+170	1
E		#	5 TT	ŝ	+ 26	(1) +	26	68	28 +	+ 45	69	6 4	+147	51	9 +	+155
21	*	۲ ۲	e III	35	+ 10	۳-1 +	10	58	-15	+ 24	80 80	+ 25	+207	46	- 10	+130
#	ŧ	5	IV 4	43	83 4	4 4	40	19	+ 5	4	8 8	۲ ۲	+230	60	+ 30	+ 200
ę.		R	V 4	45	ດາ +	+	45	65	+ 7	+ ∉0	80	м Т.Э.	+186	75	+ 25	+275
z	Ħ		C IA	38	- 10	€ 1	20	19	۱ ۍ	90 1 20 1	72	- 10	+160	85	+ 13	+325
ŧ	Ŧ	n V	VII 4	43	+ 13	+ 4	40	78	+30	+ 66	96	+ 33	+243	67	- 21	+ 235
AVEra	(1) 00		V	40	t	ლ +	30	62	ĩ	+ 34	80	I	+186	62	ł	+ 220
N T D C T N T D C T	თ დ	0 D	30.0	0	1		1	32.0	1	1	186.0	f	1	210	1	ł

٦

Ô

•

Taking the final per centage of increase or decrease into consideration, it is seen that there is decrease in values from January to April the range being (38 to 61%) and that there is an increase in values during the rest of the year, when a maximum per centage increase of 403 in September and a minimum per centage increase of 60 in August are recorded (Vide Table VII Appendix).

SEASONAL VARIATIONS: are shown in Table No.11.

The seasonal averages show a definite increase over the corresponding raw sewage figures from the cold weather to post-monsoon season. The increase **is** greatest during the post-monsoon season being 22% increase over the corresponding raw sewage value. Lowest increase of 30% is recorded in cold weather. The increase in the values has to be attributed to algal activity.

(E) TOTAL ALKALINITY:

The values for this test are shown in Table No. VIII (Appendix) from which the following inferences are drawn.

MAXIMUM & MINIMUM VALUES:

TABLE NO. 12 (see next page).

TA]	BL)	ΞÌ	10	4	12
the second second second	-	and statistics of	_	-	

SOURC	Ē	u	MAXIMU M.O. Alka- linity	Month	MINIMUN M.O. <u>Alkali</u> -nity	Month 	Annual Average
Inlet to	Pond	I	713	Jan.	475	April	613
Effluent Pond		I	773	Feb.	49 7	August	609
79	It	II	727	Jan.	487	11	598
19	ŧ	III	770	Feb.	490	11	617
18	n	IV	770	Feb.	475	18	607
11	28	v	800	Feb.	490	October	60 7
38	F#	VI	690	Jan.	446	Sept.	564
72	72	VII	838	Feb.	459	27	58 7
Avera	. g e	1992 1923 1947 1937 2936 493 1923 1935 1949 1949 1949 295 1941 1946 1946 1946 1946 1946	766		478		598

The maximum values are found to fluctuate between 690 and 836 ppm (in January and February) the average being 766 ppm. The minimum values also are found to fluctuate between 446 and 497 ppm (in August, September & October), the average being 478 ppm. The annual average for the ponds is found to be 598 and that for raw sewage to be 613 so that there is a small reduction of 2.4% only which has to be attributed to the fact that from January to April (excepting March) there is an increase of 9 to 22% and that from May to December there is a decrease of 4 to 30% in the values of final effluent.

(+)or(-) tive % decrease increa-1 se(+)o1 (-)dec-MincreaseCumulacrease 1 tive ŧ -30.0 0.2 တ် ကို -3°2 -10.7 0.6--10.3 1 I ł 1 ŧ 1 t POST-MONSOON t ł 1 -5.3 -7.5 -9.5 -11.1 +6.0 -4.1 nil I ł ł ŧ I ŧ 1 - I Alka-1 ٩., Total 'lini. 1 ı 565 502 00 00 1 598 558 622 555 600 567 589 tγ 1 %inc-' cumula' -) dec -tive (+)or rease rease I ł -10.0 -0° -15.0 -6.0 -1°0 2 2 2 =I1.6 t ١ £ 1 1 ł ł "%increa--'(-) Decŧ MONSOON se(+)or 5 ŧ 1 rease -4.3 +1.8 -1.4 +5.0 1.6--1.4 -6.9 t I ı 1 I ł Alkave % 'lini-Total 00 00 00 562 582 554 500 587 509 539 1 1 588 537 I incre ty 1 'lati-' -よの(+) (+) decre Mincrease Cumu--0 2 0 1 Laseł +4.2 +4.2 +4.4 +4.2 -3.6 +3.0 +0.2 I ŧ 1 ŧ HOT WEATHER I 13 Į decrease ł $(-)_{10}(+)$ TABLE NO. ł 1 4 -7.5 +4.1 ł +34.6 ţ ł nil nil Lin 1 t ÷ ł 1 ŀ 'Alka-' '%incre'lini-' 'Total ±6.3 622 ł t 585 587 611 610 610 610 564759 ' ty 1 1 1 rease¹ -)dec Cumula. +)01 -tive ŧ -ase +1.3 сл С ŝ +5.5 -5.0 +2.7 45.7 ł ł I I ł 1 t 1 ł WEA THER 'decrease' % increa 1 $Alka-^{i}-se(+)$ ł ł (-) ro'-inil -4.4 +2.7 +3.2 -5.0 လ **+11.3** ŧ ł 1 1 ł nil +4 1 ł Sold 1 Total ŧ 1 670 698 685 707 636 708 681 +1.7 667 667 tγ ŧ ţ 1 TIT IIΛ ш Н H μ Þ Z i 01(-) Pond = Ħ = = = * to Pond + from v ł ÷ = = = # increase (decreáse : ۵0 ۶Ę 1 đ \mathbf{c} Effluent Influent ۶., **2**4 Ð 25.3 þ = = = ** = ⊳ 0 ۱

11

11

11

11

20

4

S

ł

ł

SEASONAL VARIATIONS: (See Table No.13)

The seasonal averages do not show a definite increase or decrease only, but increases are found to fluctuate. Sometimes there is an increase and sometimes there is a decrease. The annual average increase is found to be 1.3% in the cold weather and 6.2% in the hot weather. But it is found to decrease by 8.2% and 9.0% in the monsoon and postmonsoon seasons, respectively.

(f) <u>Chlorides</u>: do not seem to have any biological significance. The results are shown in Table No. (X in the appendix from which the following Tabular statements, have been prepared.

MAXIMUM AND MINIMUM VALUES:

				<u></u>	MAX	MUM	MINI	MUM	Annual
SOUR	ζC	E			Value	Month	Value	Month	Averages
Inlet t	to P	ond		I	464	Nov.	272	Aug.	338
Effluer	nt f	rom	Pond	1 I	450	72	310	Sept.	366
17		11	19	II	451	14	300	Sept.	358
38 ·		Ħ	n	III	457	April	290	Octobei	c 370
11		11	11	IV	420	May & June	335	Sept.	381
18		11	17	V	477	April	.280	Sept.	384
18		11	12	VI	485	April	300	Sept.	386
Ħ	•	11	18	VII	455	April	270	Sept.	377
A v e :	r a	g e			456		298		375

TABLE NO.14

TABLE NO. 15

,

•

î

<pre>ASOON aa'Cumulati- b've % inc- b'rease(+) a-'or (-)dec '-rease</pre>	1	ì	+14.5	+ 7.5	+12.6	+13.5	+13.4	+12.7	+12.7	ł	11 11 11 11 11
STI-MONSO Aincreat or (-) se decrea-	I	+ 1.5	+ 1.3	1.0	+ 5.0	+ 1.0	+ 0.5	0°T +	1	ĩ	E1 11 11 11
IO H	332	385	380	357	374	37'7	375	371	374	12.7	11 11 11
	1	ł	÷ 4.4	+ 1.2	+20.4	+12.9	+13.5	+12.2	+12.2	ł	11 11 11
MONSOON %incre ase (+)or rease rease	l	+12,9	+ 0.4	+ 7.1	+ 7.6	+ 6.2	Liu	0 1 1	1	1	11 11 11
	205	333	308	330	355	333	335	331	3 32	12.5	11 11 11
THER There we have the there are the theorem of theorem of the theorem of the theorem of the the	1	ı	+ 1.0	+ 5.0	+ 6.3	+11.5	+13.1	310. 8	+ 6.5	ł	11 11 11 11
HOT WEATH MINCTEATH Secrearise	I	د. ۲. ۵	+ 1.6	+ 6.0	v + +	+ 4.4	4 1.4	- 2°-1	à	ł	11 11 11 11
rides	382	373	379	401	406	426	432	423	406	ଅ ୧	11 17 11
HER trive % trive % se (+) decrea	 	ł	+ 3.7	+ 5.4	+ 7.0	0*6 +	+ ∞°5	+ 3,4	0 •0 +	3	11 11 11 11
COLD WEATHER 	 1 	+ 6.5	ອ ເຈົ້າ 1	+ 1.6	+ 1.3	+ 1.9	nil	- 4.7	, 1	1	11 11 11
rides	353	376	366	372	377	384	383	365	375	9. 9	11 11
	 - 	н	Ч	TTT	TΛ	Λ	ΤΛ	ΛII			11 11 11
1	Pond	from Pond	7		E	Ŧ	# :	=	<i>A</i> .		11 11
	to I		ŧ	ŧ	21	87	*	2	0 යා ත්	9 9 9	
352	Influent	Effluent		R,	*	2	ŧ;	4	Avera	📈 increase	11 11 11 11

.

.

The maximum value is shown in April, May, June or November and the minimum value in September or October. The annual average value shows an increase of about 11.0% in the final effluent over the corresponding values for raw sewage and this may be attributed to **kma** evaporation and the resulting concentration.

<u>SEASONAL VARIATIONS</u>: The results are summariesed in Table No. 15.

In the above Table there is a cumulative annual average increase of 6.2% in the cold weather, 6.5% in the hot weather, 12.2% in the monsoon season and 12.7% in the post-monsoon season. This increase has to be attributed again to evaporation, and the resulting concentration.

(g) <u>Ammoniacal nitrogen</u>: The maximum and minimum values and the seasonal variations are discussed below:

MAXIMUM AND MINIMUM VALUES:

					IMUM .	MINI	the second s	Annual
S O U .	RCE			Value	Month	Value	Month	average
Inlet	to Po	nd .	I	30.0	May	17.0	Sept.	23.5
Outlet	from	Pond	I	28.0	April	10.0	Dec.	17.5
11	12	19	II	28.0	Fêb.	7.5	11	15.8
11	78 58	41	III	29.0	Jan.	5.5	71	16.9
23	11	18	IV	27.0	Jan.	6.0	11	15.8
13	Ħ	18	V	29.5	Mar.	4.0	11	14.6
11	18	11	VI	22.0	Jan.	3.0	Oct.	10.8
19	18	11	VII	28.0	Mar.	2.0	18	11.6
A v e	rag	e		27.3		4.2		14.7

TABLE NO. 16

	- MONSNOM-	ncrea- ¹ Cumula- (+) ¹⁺¹ vo %		decrease		15.7 -	17.9 30.8	1.6	11.5 38.0	26.0 54.1	59.0 81.1	43.0 89.2	I	1	-
	LSOd	AM-N %1	500 		1 1 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 8 1	15.6	12.8	13.0 +	11.5	ວ• ເບ	3.5	0°3	9•6	1.64	
	1	Cumula-		or (-) decrea- se	! ! ! !		28.5	32.0	32,5	48.5	71.0	54.0	ţ	1	
	MONSOON	Mincre-	or (-) decrea-		;]] ;	35.0	+10.0	5.0	1•0	24.0	43.6	+60.0	I	1	- yes) Joon Aire Two The This size
	; ; ;	N-M-I	9 9 9		- 0.02 - 02	13.0	14.3	13.6	13.5	10 . 3	5.8	ଷ ଚ	11.4	43.0	
	HER	'Cumula- 'tive %	94 40	decrea-	1 1 1		40.0	7.0	34.6	33 °1	45.4	41,1	I	I	
	T WEAT	AIncre- ase (+)	or (-) decrea-		-	24.0	21.4	+55.1	30.0	വ വ +	18.4	+ 8.0	ð	I	And yes the set of the set of
		AM-N	4. 8 6.	 	27.5	21.0	16.5	25.6	18.0	18.4	15.0	16.2	18.7	36.0	s the two the two the two the
	HER -	Cumula-	increa-	decrea- se	 	1,	26.0	20.8	26.4	26.4	38.0	35.0	I	I	the loss and the loss for the loss the
	LD WEATHER	$(C \cap)$	or(-) decrea-	1 1 0 1	1 1 1	25.2	0.8	+5.2	-7.1	nil	15.8	+6.0	1	1	- Pering Hands Hands Hands Hands Hands Hands
,	COLD	AM-N 1		 	25.0	18.7	18.5	19.8	18.4	18.4	15.5	16.5	17.8	23 . 8	
	1 - ' 1	j - -	8 44 845	 	н	н	II	TTT	ΛI	Λ	ΤΛ	IIV			
~ ~~	f 1 2 1 1		IRCE	1 1 1 1	to Po	lent from	#	z	4.	£	Ŧ	Ŧ	е. Т. д. В. С. В.	Reduction	nav dag tau un in. The same part of the part of the
2.2		-	0 0 8	1 - 1	-	Rffluent Pond	£	=	#	z	=	*	A V 6	/ Red	

TABLE NO. 17

-

It will be seen from a study of Table No. X in the appendix that the effluents from the ponds do not show any reduction till April due to the production of H₂S and the concomitant development of purple coloured sulphur bacteria in the ponds. From May onwards reduction in ammoniacal nitrogen was noticed accompanied by algal growths in the ponds. So, maximum values were found to be higher, and they were reached during January to April; and the minimum values were reached during October or December. But the annual average value for each of the ponds is lower showing greater reduction from May onwards. The reductions varied between 4.2% and 89.0%. The annual average reduction was only 50.6% in the final effluent.

SEASONAL VARIATIONS: (See Table No.17).

The average highest reduction of 49.1% and the lowest reduction of 28.8% were seen in the post-monsson and the cold weather periods respectively. But the cumulative percentage reduction was 89.2% in the post-monsoon season and 35.0% in the cold weather period.

(h) <u>Phosphates</u> (PO₄):

The maximum and minimum values and the seasonal variations are shown in Table No.18).

From the above Table the maximum average reduction was 70.4% and the minimum average reduction was 46.9% and the annual average reduction was 56% taking all the ponds into consideration.

SEASONAL VARIATIONS: (See Table No. 24).

.

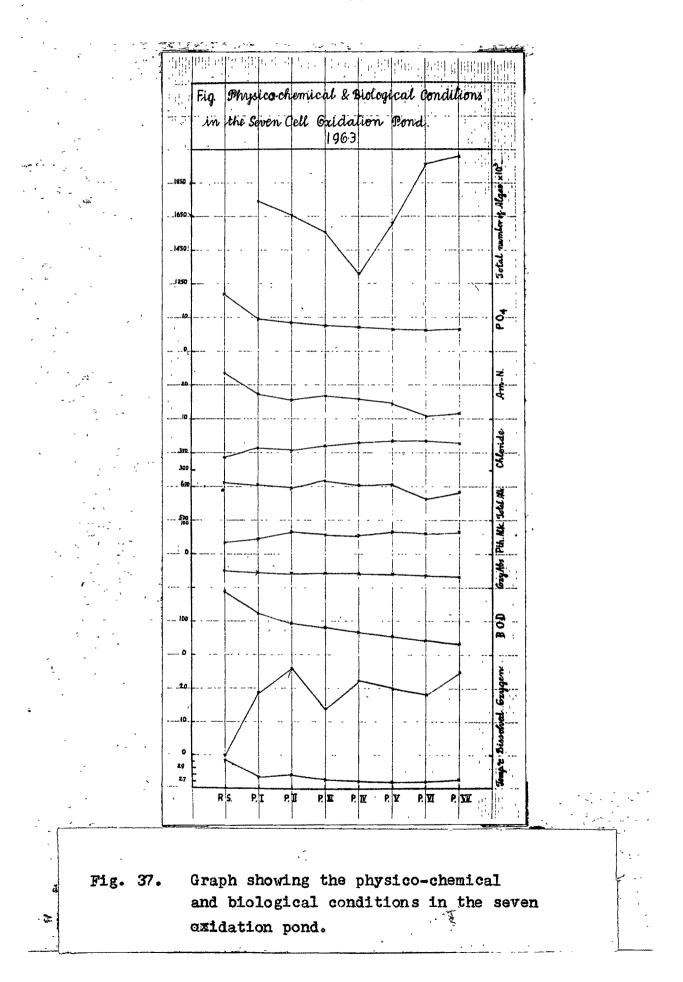
3 0 U 1	RCE	-		MAXI Value	MUM Month	MINI Value	MUM Month	Annual average
Inlet	to Po	nd	I	19.4	June	13.5	Jan.	17.0
Outlet	from	Pond	Ι	12.2	Sept.	6.2	Nov.	9.8
18	11	58	II	12.2	Sept.	4.6	Mar.	8.5
. st	12	9 2	III	10.9	Sept.	4.7	Oct.	7.8
IT	11	18	IV	10.0	Aug.	3.0	Mar.	7,2
Ħ	11	11	v	9.6	Aug.	3.0	Nov.	6.7
11	17	18	VI	8.4	June	3.0	Mar. & Nov.	6.3
13	11	tt	VII	9.2	June	3.7	Nov.	6.5
Ave:	rag	; e		10.3	-	4.0	-	7.5

TABLE NO. 18

The maximum average reduction was 80.1% in November and the minimum average reduction was 41.6% in August and the annual average reduction was 61.8% taking all the ponds into consideration (Vide Table XI, appendix).

TABLE NO. 19

•


-

 		ບ -	COLD WEATHER	HER		THETA: TOTT	VIII T VIII						
330		Phose (P04) o	00 H N H	Cumula- tive % increase (+)or(-) decrease	Phos- phate (PO)	%increa -se(+) or (-) decrea-	0-0-4-0-0-0-	Phos- phate (PO)	- %increa C e -se(?) -) or (-) 1 decrea-	Cumula - tive% increa -se(+) or (-)	Phos- phate (PO)	%increa -sse(+) or (-) decrea-	Cumula- tive % increase (+) or (-) decrease
\$ 5 5 8 8	1 1 1 1	1 1 1	1 1 1 1	• • • 1 • • • 1	, 1 1	 	1 0 1 0	-1	1 1 1		ו ו ו	1 1 1	1 1 1 1
Influent to	Pond I	12.4	ŀ	I	17.3	I	T	15.8	t	1	18.2	¥	Ŧ
Effluent from pond	н шо •	8 • •	21.0	I	14•1	18.5	t	10.4	34,1	I	7.2	60.4	I
t.	ΗI	8.4	14.3	32.2	7.6	46 . 1	56.0	0 0 0	21.1	48.1	6.9	4.0	62.1
1 8 1	TTT	7.4	12,0	40.3	7.6	nil	56.0	10.0	+22.0	36.7	5.3	23.2	70.9
41 41	ΔI	7.7	+4.0	38.0	6.3	17.1	63.5	8. 8	12.0	44.2	ઈ • 3	+11.3	67.6
t.	Λ		1.7	- 48.4	6.5	+3.2	62.4	∞ 4	5.0	60.0	4.6	22• 0	74.7
1) 1	ΙΛ	0	1•6	49 . 2	5 . 8	+10.8	66+5	8° 80	2 . 4	48,1	4.2	8.7	77.0
8 . •	TIV	6.2	1. 6	50.0	6.5	+12,1	62.4	7.6	7.3	52.0	5.0	0•6I+	72.5
A V G T 2 G	Ð	7.5	t	I	7.8	ł	1	00 -03	ł	i	6. 6	1	1
🔏 Reduction		40.0	1	T	55.0	r	I	44.3	ł	I	69 . 2	1	I

.

The highest average reduction of 69.2% is seen in the post-monsoon season and the lowest 40.0% reduction in the cold weather period. Also, the cumulative percentage reduction was highest (72.5%) in the post-monsoon and lowest (50.0%) in the cold weather period.

.

8. BIOLOGICAL CONDITIONS

LIST OF THE ALGAL AND OTHER ORGANISMS RECORDED IN THE SERIES OF SEVEN OXIDATION PONDS DURING 1963.

.

A. CHLOROPHYTA

- 1. Ankistrodesmus falcatus
- 2. Chlamydomonas sp.
- 3. Chlorococcum humicola
- 4. Chlorella pyrenoidosa
- 5. Micractinium sp.
- 6. Pandorina morum
- 7. Pyrobotrys sp.
- 8. Scenedesmus quadricauda.

B FLAGELLATA

- 9. Euglena gracilis
- 10. Phacus longicauda

C. <u>CYANOPHYTA</u>

- 11. Oscillatoria chalybea
- 12. Oscillatoria limosa
- 13. Chroococcus turgidus
- 14. Arthrospira khannae Dr. & Strickle.

D. PURPLE COLOURED SULPHUR BACTERIUM

15. Thiopedia rosea Winogradsky.

- II. THE DOMINANT AND SUB-DOMINANT ORGANISMS RECORDED AT ONE TIME OR ANOTHER.
 - 1. Chlorella pyrenoidosa
 - 2. Euglena gracilis
 - 3. Arthrospira khannae
 - 4. Oscillatoria chalybea
 - 5. Thiopedia rosea

The maximum and minimum number of organisms per ml recorded in each of the ponds during the year.

TA	BLE	NO.	20

,

,

SOURCE		Maximum Value x10 ³ per m			Month	Annual average	
Pond Pond Pond Pond Pond Pond Pond	I III IV V VI VII	6613.0 6297.7 4296.7 4368.6 4227.8 8978.8 8405.2	May May April Jan. Feb. Feb.	32.5 36.1 25.4 25.0 27.0 31.0 32.5	July Sept. July Sept. Sept. Nov. Nov.	1747.4 1661.2 1558.7 1301.1 1609.2 1958.0 2007.9	

Maximum number of organisms was recorded in the sixth pond and the minimum number of in the fourth pond.

The names of the dominant organisms in each of the ponds in each month during the year is shown below:-

TABLE	NO.	21

Month	I	II	III	IV	V	VI	VII
Month Jan. Feb. Mar. April May June July Ø July Ø July Ø Aug. Ø Sept. Oct. Ø Oct. Ø Nov.	Thiopedi	ia Euglena Arthrospi	Thioped: Chlor Arthro Chlor Arthro Arthro Thiop Ira Eugle	ia rosea " " ella " ospira ella ospira edia na		.Arthros	

.

.

۰ **ب**

The dominant organism was Thiopedia rosea during the first four months of the year in all the seven ponds, when bacterial photosynthesis was taking place. In May, Thiopedia continued to be dominant in the first pond only and rosea in the remaining six ponds Chlorella was dominant; and the same organism continued to be dominant in all the ponds in June and July. In July Arthrospira also was dominant towards the latter part. In August Thiopedia was first dominant and later it was succeeded by Chlorella. Arthrospira was the only dominant organism in September. In October Euglena in the remaining four ponds. Later the two organisms were replaced was dominant in the first three ponds and Arthrospira, by Thiopedia rosea in the same month. In November Euglena became dominant in the first pond, Arthrospira and Thiopedia in the second, Euglena in the third, and by Arthrospira and Thiopedia in the remaining ponds. Chlorella became dominant in all the seven ponds during December.

Viewed from the standpoint of seasonal variations, it was found that in the cold weather period the dominant organism was <u>Thiopedia</u> <u>rosea</u>; and it continued its dominante in the first half of the hot weather period. In the latter half <u>Chlorella</u> became dominant. <u>Arthrospira</u>, <u>Thiopedia</u> and <u>Chlorella</u> were dominant in the monsoon season; and in the following post-monsoon season, <u>Euglena</u>, <u>Arthrospira</u> and Thiopedia were dominant.

DISCUSSION OF RESULTS

Parker (1962) had tried to purify Australian sewage by making it pass through a series of eight oxidation ponds. The chief point of difference between our series of seven ponds and his was that his first two ponds were anaerobic and the last six were aerobic while all cur pondsthough considered aerobic were working anaerobically for the first four months and aerobically for the rest of the year. Also we used only seven ponds. All the same an attempt is made below to compare his results with ours in respect of the three important parameters such as BOD and ammoniacal nitrogen and orthophosphates for the two seasons i.e. summer and cold weather or winter for which he has furnished figures. The results are shown below:

Analysis	'Raw 'sew-	. †	AUSTRALIAN PONDS NUMBER							Final -Red %
	"age	1 1	2	4	5	6	7	7	8	1
SUMMER										
5 day BOD Am-N	521 32.4	$100\\46.4$		22 .7 48 . 7						98.0 42.0
<u>WINTER</u> 5 day BOD Am-N	341 341 21.9			33.6 40.0					-	96.0 36.5

200	3	3	6
-----	---	---	---

	Raw		AH	MEDAB	D PON	ID NUM	IBERS		'Final
Analysis	'sew lage	, 1	2	3	4	5	6	7	Red %
<u>SUMMER</u> 5 day BOD	19 7	114	108	115	70	62	54	55	72.0
Am-N	27.5	21.0	16.5	25.6	18.0	18.4	15.0	16.2	41.1
P04	17.3	14.1	7.6	7.6	6.3	6.5	5.8	6.5	62.5
WINTER 5 day BOD	191	176	130	106	86	69	53	44	77.0
Am-N	25.0		18.5		18.4		15.5	16.5	35.5
P04	12.4	9.8 =====	8.4	7.4	7.7	6.4	6.3	6.2 ======	50.0

In respect of BOD, Parker's final effluent had given 96-98% reduction in summer and winter. In our case, the reduction was 72-77% during the same periods.

With regard to ammoniacal nitrogen, Parker's final effuent showed reductions ranging from 36.5 - 42.0% while our ponds showed 35.5 - 41.1% which were almost similar.

Unfortunately, Parker had not given any data regarding phosphate reduction. Our ponds showed greater reduction than ammoniacal nitrogen and ranged from 50.0-625% curves during the same periods.

Another point of difference between Parker's and our ponds was that the purple coloured sulphur bacterium -<u>Chromatium sp</u>. was dominant in his first two anaerobic ponds during the summer season only. In the case of our ponds, although none of them was working anaerobically, still the purple coloured sulphur bacterium, <u>Thiopedia</u> rosea was the most dominant organism from January to April.

Next, a comparative study of the results of the final effluents from the single unit (pilot plant) oxidation pond and from the series of seven ponds of Ahmedabad, is made. The results are shown in Table No.23.

From a study of the above results (Table No.23), it will be seen that there is a greater reduction in the series of oxidation ponds in respect of 5-day BOD at 20° C, ammoniacal nitrogen, and phosphates which are the most important factors to reckon with in purification of sewage.

The production of dissolved oxygen is greater in the single unit than in the multiple unit. There is the same amount of chloride concentration in both the cases.

So, it would appear that there is an advantage in running a series of ponds than a single unit alone.

,

.

,

TABLE NO. 23

DESCRIPTION	A N N Single Value (mg./ 1.)	The second se	V E R A Seven Value (mg./1)	% Reduc-
A. PHYSICAL CONDITIONS				
1.Temp.(°C)	27.5	-	27.4	-
2.Colour	Green	_	Purple & Green	
B. CHEMICAL CONDITIONS				
3. 5-day BOD at 20°C.	47.5	74.4	37.0	79,6
4. $KMn0_4$ value	30.2	29.6	36.0	19.0
5. Dissolved oxygen	6.68	,	2.50	
6. Phenolphthalein alkalinity	74.5	+109	64.0	+223
7. Total alkalinity	650	+10.4	587.0	4.0
8. Ammoniacal nitrogen	12.2	47.1	11.6	50.6
9. Chloride	365.5	+12.5	377.0	+11.0
10. Orthophosphates	7.1	52.4	° 6.5	51.8
. <u>EIOLOGICAL CONDITIONS</u>				
ll. Algal numbers per ml x 10 ³	1369.	6	2007	9
12. Dominant organisms:	Chlorococc Oscillatori	, Mieractinin um , Arthrosp ia , Englena Jseolia rose	nri, Ar E	lorella, Umospwa, uglena, ispedia roseo

-

SUMMARY

The working of a seven unit oxidation pond in the Pirana Sewage farm at Ahmedabad is described.

The ponds were working anaerobically during January to April and aerobically for the remaining period of the year. During the first period there was bacterial photosynthesis and the dominant organism was the purple coloured sulphur bacterium <u>Thiopedia rosea</u>, which was also effectual in bringing about sewage purification. A reduction of 57.0% to 74% in 5-day BOD at 20^oC. was noticed.

During the rest of the period there was algal photosynthesis when the reduction in BOD alone varied from 68% to 94%.

A comparison of the results obtained for the single unit and the multiple unit for 1963 has been made. It would appear that the multiple unit is more advantageous to use than the single unit.

REFERENCES

Pl. see pages 288 - 292.

339

TABLE NO. I

,

•

CLIMATOLOGICAL DATA FOR AHMEDABAD FOR 1963.

•

		Y		Monthly
Month	Season	Tempe: Maximum	rature (°C Minimum)'Average hours 'of bright 'sunshine
	1	1	t	t sausning
Dec.	Cold weather	29.5	15.1	273.2
Jan.	Ħ	26.3	12.3	292.0
Feb.	Ĩ	33.6	14.7	286.5
Average	11	29.8	14.0	283.9
Mar.	Hot weather	31.3	18.6	289.8
April	n	3 8.7	23.4	293.4
May	Ħ	41.2	25.9	357.7
June	Ħ	39.3	27.1	281.3
Average	•	37.6	23.7	305.5
July	Monsoon	33.0	25.8	151.3
Aug.	88	30.5	24.8	119.8
Sept.	**	30.1	21.6	202.1
Average	¥7	31.2	24.1	157.7
0c t.	Post- monseon	35.6	21.1	286.2
Nov.	••	32•2	18.5	268.1
Average	n	33.9	19.8	277.1

.

•

. - .

TABLE NO. II

AVERAGE TEMPERATURE (° C) OF THE SURFACE WATER TAKEN BETWEEN 11.00 A.M. AND 12.00 NOON ONCE A WEEK.

	Influ-				om Pon		bering		'Final %
Months	ent to Pond I		2	3	. 4	5	6	7	'Reduction
Jan.	24.5	28.8	20.9	20.1	19.8	20.0	19.5	19.5	20.4
Feb.	27.2	24.6	25.7	23.8	23.1	23.0	22.6	22.9	15.7
Mar.	29.5	26.8	27.0	26.0	25.7	25.2	25.2	28.1	4.8
April	32.5	28.4	29.1	28.8	28,4	28.9	27.8	29.8	8.3
May	32.8	30.6	30.7	29.3	29.9	29.3	30.0	30.7	6.4
June	32.8	29.8	30.1	29.2	29.8	29.2	29.0	29.1	11.3
July	31.9	30.2	30. 2	29,8	29.7	29.5	30.3	30.0	6.0
Aug.	29.9	29.0	28.8	28.9	28.6	28.4	·29.2	27.2	22.4
Sept.	31.0	29.2	30.4	29.1	29.6	29.1	29.2	29.0	6.5
Oct.	30.5	28.5	29.2	28.3	28.9	28.2	29.0	න.0	5.0
Nov.	30.9	28.0	27.8	27.9	27.5	27.4	27.0	27.0	12.6
Dec.	26.8	28.0	27 .7	27.1	24,3	27.0	27.0	26.8	0.0
						······			
Avera- ge	30.2	27.9	28.1	27.4	27.1	27.1	27.1	27.4	9.3

341

3

,

1

.

١

.

.

.

~

,

1

TABLE NO. III

r

COLOUR OF THE WATER IN THE PONDS AS IT APPEARED TO THE WAKED EYE

1963	-nlful	•		Effluent from Ponds numbering	m Ponds numbe.	ring		
Months	'ent to 'Pond I		5	1 3	1 4	1	9	4
Jan.	Black	Purple	Purple	Pu r ple	Burple	Purple	Purple	Purple
Feb.	Grey	*	8	11		3 4		-
March	t	\$ 7	8 77 811	8 5	47 8	11	-	13
April	Black	\$.	₩.,	4	z	*	800 801	Ŧ
May	18	#	P.Green	P.Green	P.Green	P.Green	P.Green	P.Green
June	â;	P. Green	36	€a Re			14	4
July	13	57.8	Green	2	÷	=	ŧ	ŧ
Aug.	=	Pink +Pale Green	P.Green	Green	=	Pink	Pink	Pink
Sept.		Green	Green	Green	Green	Green	Green	Green.
0ct.	z	Green + Pink	Green + Pink	Green + Pink	Green + Pink	F	=	æ
Nov.	R	Green	£ .	Green	Green	Green + Pink	Green + Pink	Green+ Pink
Dec.	8. 5	P.Green	P.Green	P.Green	P.Green	P.Green	P.Green	P.Green
Average Black P.Green Green Green P.Green Green P.Green P.Green	Black	P.Green	Green	Green	P.Green	Green	P.Green	P.Green

342

۰,

TABLE NO. IV

THE CONTENT OF DISSOLVED OXYGEN IN THE EFFLUENT FROM EACH POND. (Results expressed in mg./per litre)

1963	'Inlet	; 1	Efflue	ent fro	m Ponds	s number	ring	
	to Pond	1'1 I'	2	3	4	5	6	7
Jan.	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
Feb.	11	78	11	11	18	18	11	18
Mar.	18	11	18	11	11	11	11	38
April	11	n	18	18	**	ît	11	98
May	18	78	4.12	1.62	1.9 3	0.92	1.51	3.04
June	12	3.91	4.00	1.14	1.54	1.43	3.06	3.83
July	12	3.42	3.56	1.26	3.96	5.04	4.62	6.42
Aug.	n	1.00	1.32	1.07	1.54	0.92	0.81	0.70
Sept.	78	4.62	9.04	3.92	5.72	5.92	1.05	1.14
Oct.	12	3.23	3.35	2.83	3.53	3.33	6.23	3.54
Nov.	17	3.91	3.35	3.73	4.36	2.83	2.46	3.45
Dec.	12	2.54	1.04	0.88	1.94	3.14	2.21	1.43
Average	13	1.89	2.62	1.37	2.25	1.96	1.83	2,50

. . .

c

.

.

.

6

-

TABLE NO. V

THE 5-DAY BOD AT 20 °C OF THE EFFLUENT FROM EACH POND

.

1963	Influ	ſ	Efflu	e n t f	rom Po	onds	numbe rir	ng	'Final %
Months	'-ent to 'Pond I	, 1	2	• 3	4	5	6	7	'Reduc- 'tion
Jan.	180	155	122	90	118	82	75	64	64.4
Feb.	153	162	152	130	72	82	55	51	66.7
March	257	127	140	103°	80	78	70	68	73.5
April	175	135	127	97	83	70	66	74	57.7
May	133	60	54	50	43	40	39	42	68.4
June	223	135	110.	96	75	60	39	38.	83.0
July	175	94	89	90	82	66	47	26	85.1
Aug.	155	107	- 40	38	36	42	26	21	87.0
Sept.	173	72	60	52	49	42	23	15	91.3
Oct.	206	93	75	68	[°] 47	30	25	12	94.1
Nov.	195	155	90	85	79	5 7	31	17	91.3
Dec.	240	210	117	98	67	43	28	16	93.3
Average	189	125	98	83	69	58	44	37	79.6

.

,

•

(Results expressed in mg./per litre)

-

TABLE NO. VI

.

THE VALUES FOR THE OXYGEN CONSUMED TEST IN THE EFFLUENT FROM EACH POND.

1963	'Influ-'		Effluent	from	Pond	number	ing		Final %
Months	'ent to' 'Pond I'	1	2	3	4	5	6	7	'Reduction
Jan.	42	48	47	46	48	46	50	50	+19.5
Feb.	48	53	58	48	50	54	53	59	+23.0
March	56	69	62	58	59	60	64	66	+18.0
April	74	84	87	76	87	85	80	. '85	+16.2
May	50	46	43	42	40	36	32	28	-44.0
June	67	56	39	43	39	33	26	23	-65.7
July	46	38	29	20	18	15	10	8	-82.6
August	39	21	20	27	25	24	20	18	-54.0
Sept.	55	41	34	28	24	23	28	21	-62.0
Oct.	41	25	24	20	16	12	10	7	-83.0
Nov.	67	55	52	55	43	34	29	20	-70.1
Dec.	42	38	31	27	25	21	19	1 6	-62.0
Average	52	48	45	44	43	40	39	36	+19.2 ≬ -65.4 ≬

 $\ensuremath{\emptyset}$ Results expressed in parts per million $\ensuremath{\emptyset}$

ł

.

•

n .

TABLE NO. VII

THE VALUES FOR PHENOLPHTHALIN ALKALINITY IN THE EFFLUENT FROM EACH POND

A Results expressed in parts per million A

1963	'Inlet '		Effluen		Pond		ring		'Final % 'Reduction
Months	'to 'Pond I'	1	2	3	4	5	6	7	1
Jan.	36	27	23	15	29	29	25	20	-44
Feb.	37	25	23	21	28	3 0	10	23	-40
March	67	27	28	40	32	26	18	26	-61
April	45	26	31	17	33	24	24	28	-38
May	52	31	112	70	85	76	64	98	+102
June	23	93	100	105	9 3 -	135	138	160	+208
July	30	95	87	83	.93	60	60	90	+200
August	20	47	52	56	53	35	36	32	+60 ·
Sept.	33	47	167	120	130	146	120	166	+403
October	26	65	53	50	70	91	86	75	+190
November	15	43	50	43	50	<i>,</i> 60	84	60	+300
December	: 20	40	172	70	73	76	80	85	+325
Average	34	47	67	57	56	66	62	64	- 24 ≬ +223 ≬

· ·

,

•

.

TABLE NO. VIII

THE VALUES FOR TOTAL ALKALINITY IN THE EFFLUENT FROM EACH POND

								-	
1963	'Inlet '		Effluent	from	Pond	number	ing		'Final %
Months	'to 'Pond I'	1	2	3	4	5	6	7	'increase 'or decre _!_ase
Jan.	713	732	727	687	701	731	690	780	+ 9
Feb.	687	773	701	770	770	800	678	836	+22
March.	603	623	642	647	647	640	656	573	- 5
April	475	5 3 5	630	623	623	623	466	568	+20
May	572	582	566	540	510	525	530	526	- 8
June	690	610	608	630	660	653	606	610	-12
July	610	586	514	640	526	530	505	531	-13
Aug.	500	497	487	490	475	513	550	538	- 7
Sept.	650	603	600	615	587	567	446	459	-30
Oct.	600	553	543	59 7	588	490	488	490	-18
Nov.	645	625	587	600	612	620	616	626	- 3
Dec.	610	590	573	563	583	590	540	508	-17
Average	613	609	598	617	607	607	564	587	- 4

& Results expressed in parts per million &

(

٠

.

TABLE NO. IX

CHLORIDE CONTENT IN THE EFFLUENT FROM EACH POND

(Results expressed in parts per million)

							• •• •• •• •• ••		999 998 999 999 999 994 94 94 94 94 95 99
1963	'Inlet '	Εf	fluent	from	Pond	number	ring		Final %
Months	Pond I	1	2	3	4	5	6		increase or decre-
						18 Jun - 18 Mil 14 1		۲ 	ase
Jan.	375	418	358	357	3 84	3 98	410	389	+ 3.7
Feb.	340	370	347	347	350	353	35 7	320	- 6.0
March.	383	313	356	383	393	403	400	393	+ 2.6
April	415	445	420	457	390	477	485	455	+ 9.6
May	345	372	360	371	420	400	380	427	+24.0
June	303	360	380	393	420	423	453	417	+37.6
July	290	378	320	380	338	400	3 9 3	373	+29.0
Aug.	272	312	305	317	343	320	312	350	+28.7
Sept.	323	310	300	294	335	280	300	270	+16.4
Oct.	300	320	310	290	330	340	343	307	+ 2.4
Nov.	364	450	451	424	418	415	40 7	435	+19.5
Dec.	345	340	393	413	397	400	383	387	+ 6.4
Average	338	366	358	370	381		386	377	+11.0
and the same and and a									

TABLE NO. X

.

THE VALUES FOR AMMONIACAL NITROGEN IN THE EFFLUENT FROM EACH POND (Results expressed in parts per million)

1963									'Final %
Months	'to 'Pond 1						6		'or reduc
Jan.	24	20	20	29	27		22	23	
Feb.	29	- 26	28	25	22.3	24.3	20.5	22	24.1
Mar.	25	,27	20.5	21	21	29.5	20	28	+12.0
April	27	28	20.5	27.7	23	21	21	20	26.0
May	30	18	16	17	14	10	8	6	80.0
June	28	11.2	9	11	13	13.3	11	11	.61.0
July	24	16	15	19	14	13	8	11	54.1
Aug.	14	11	16	10.2	10	10	6	7	63,2
Sept.	17	12	12	11.5	16.5	7.8	3.4	3.7	78.2
Oct.	19	13.3	9.6	10	7.8	6,6	3.0	2.0	89.5
Nov.	18	18	16	16	15.2	10.5	4.0	2.0	83.8
Dec.	22	10			6.0			4.5	
Average			15.8	16.9	15.9	14.6		11.6	•

1

TABLE NO. XI

THE QUANTITY OF ORTHO-PHOSPHATE (PO4) FOUND IN THE EFFLUENT FROM EACH POND.

(Results expressed in parts per million)

1963 Months	'Influ-' 'ent to' 'Pond I'	<u>E</u> 1	ffluen [.] 2			numbe 5	ering 6	7	Final % Reduction
Jan.	13.5	10.5	10.0	7.3	7.5	4.2	5.0	4.5	66.7
Feb.	17.3	8.5	8.5	3.5	9.0	8.5	7.5	8.0	53,2
Mar.	16.2	12.5	4.6	7.5	3.0	4.6	3.0	4.9	69.7
April	15.6	7.5	7.2	6.5	4.5	5.4	4.1	4.0	74.4
Мау	18.0	10,5	8.4	7.6	9.0	8.4	7.6	8.1	55.0
June .	19.4	11.8	10.1	9.1	8.2	7.8	8.4	9.2	52.6
July	16.4	12.1	10.8	10.9	8.4	8.1	7.5	7.1	56.6
Aug.	14.9	7.0	9.9	9.8	10.0	9.6	9.8	8.7	41.6
Sept.	16.2	12.2	12.2	9.2	8.1	7.5	7.2	7.0	56.7
Oct.	17.9	8.3	7.3	4.7	6.8	6.3	5.5	6.4	64.2
Nov.	18.6	6.2	6.6	5.9	5.1	3.0	3.0	3.7	80.1
Dec.	19.0	10.4	6.7	6.5	6.7	6.5	6.5	6.0	68.4
Average	e 17.0		8.5				6.3	6.5	61.8

TABLE NO. XII

,

DOMINANT & SUB-DOMINANT (JAGAE FOUND IN THE EFFLUENT FROM POND NO. 1 DURING 1963. -

Month	'Total No 'per ml. '10 ³	Dominan	t Total	Sub-dominant	' % 'Total
Jan.	492.2	Thiopedia rosea	61.5	Chlorella	15.0
Feb.	5040.0	18	87.7	-	-
Mar.	1603.5	13	73.6	Ľ.	-
April	4657.0	28	67.0	Chlorella	22 .3
May	6613.0	11	11.4	18	. 8.0
June	2797.3 ,	Chlorella	47.7	Thiopedia rosea	17.2
July	1788.0	Chlorella	66.0	12	25.2
	32.5	Arthrospira	78.1	-	-
Aug.	1237.0	Thiopedia rosea	71.4	°	-
	2328.0	Chlorella	74.4	Thiopedia rosea	19.0
Sept.	37.6	Arthrospira	67.5	Oscillatoria	32.0
Oct.	50.8	Euglena	76.0	` _	
Nov.	162.6	Thiopedia rosea	87.5	-	-
Nov.	187.0	Euglena	59.0	—	-
Dec.	1184.0	Chlorella	71.6	Thiopedia rosea	28.3
1000 erer sim erer rei er			100 1010		-

.

.

,

, ,

TABLE NO. XIII

DOMINANT & SUB-DOMINANT ALGAE FOUND IN THE EFFLUENT FROM POND NO.2 DURING 1963.

Month	Total No. per ml x 10 ³	* Dominant	'% of 'the 'Total !	' Sub-dominant	'% of 'the 'Total		
Jan.	661.6	Thiopedia rosea	31.2	Chlorella	14.6		
Feb.	1941.0	18	32.6	-	-		
Mar.	1731.5	18	72.5	-	-		
April	4636.0	11	57.2	Chlorella	3.8		
May	6297.7	Chlorella	72.2	Thiopedia rosea	16.9		
June	3032.0	18	75.5	18	15.8		
July	2692.5	11	78.8	-	20.2		
~	41.8	Arthrospira	92.4	-			
August	. 459.6	Thiopedia rosea	76.9	-			
	2050.0	Chlorella	82.7	Thiopedia rosea	13.8		
Sept.	36.1	Arthrospira	70.4	Oscillatoria	28.0		
Oct.	66.0	Euglena	76.0	-	-		
*	78.2	Thiopedia rosea	72.6	-	-		
Nov.	42.7	Arthrospira	65.6	-			
	1679.0	Thiopedia rosea	84.2	-	-		
Dec.	1184.0	Chlorella	17.6	Thiopedia rosea	28.3		

.

.

TABLE NO. XIV

DOMINANT & SUB-DOMINANT ALGAE FOUND IN THE EFFLUENT FROM POND NO.3 DURING 1963.

Month	'Total No. 'per 'ml x 10 ³	, Dominant	'% of 'the 'Total	' Sub-dominant	'% of 'the 'Total
Jan.	1718.3	Thiopedia rosea	65.5	. Chlorella	13.2
Feb.	3346.7	78	83.2	-	-
Mar.	1553.0	12	77.5	-	-
April	3986.3	12	50.1	Chlorella	47.4
May	4296.7	Chlorella	68.6	Thiopedia rosea	20.4
June	1758.6	. 29	80.7	11	1.9 /
July	2186.5	19	22.4	11	9.4
	25.4	Arthrospira	92.0	-	-
Aug.	1538.0	Thiopedia rosea	41.3	Chlorella	30,6
	2050.0	Chlorella	82.7	Thiopedia rosea	13.8
	52.6	Arthrospira	90.7	-	-
Sept.	4142.2	78	59.1	Oscillatoria	24.5
Oct.	56.9	Euglena	50.0		
	78.2	Thiopedia rosea	72.6	-	-
Nov.	1067.0	Euglena	62.8	Arthrospira	20.0
Dec.	1184.0	Chlorella	71.6	Thiopedia rosea	28.3
		*****************			========

353

.

•

,

1

.

-

.

TABLE NO. XV

,

DOMINANT & SUB-DOMINANT ALGAE FOUND IN THE EFFLUENT FROM POND NO. 4 DURING 1963.

Month	Total No.	3 Dominant	%of the, , Total	Sub-dominant	% of the , Total	
Jan.	1563.1	Chlorella	43.1	Thiopedia rosea	33.3	
Feb.	1999.2	Thiopedia rosea	96.4	-	bute	
Mar.	2041.0	. 11	72.3	-	**	
Apr.	4368.6	FR	75.3	Chlorella	13.0	
May	2184.5	Chlorella	68.0	Thiopedia rosea	18.2	
June	2550.6	28	70.4	'n	16.7	
July	1788.0	38	61.4	19	5.5	
	39.6	Arthrospira	95.0	-	han	
Aug.	1308.0	Thiopedia roses	59.4	Chlorella	35.1	
	901.4	Chlorella	70.6	Thiopedia rosea	21.5	
	37.6	Artnrospira	86.5	-	-	
Sept.	25.0	17	67.1	Oscillatoria	32.5	
Oct.	50.8	18	72.0		~	
	79.5	Thiopedia rosea	a 54.9	-	-	
Nov.	.54.9	Arthrospira	75.8		140	
	1165.0	Thiopedia rosea	6 9.6		-	
Dec.	1962.0	Chlorella	65.7	Thiopedia rosea	34.2	

TABLE NO. XVI

DOMINANT & SUB-DOMINANT ALGAE FOUND IN THE EFFLUENT FROM THE POND NO. 5 DURING 1963.

Month	'Total No 'per mlx1		%of the Total	Sub-dominant	% of the Total			
Jan.	4227.8	Thiopedia rosea	69.5	Chlorella	22.7			
Feb.	2771.0	18	91.8		-			
Mar.	1936.0	rs -	68.4	-	-			
Apr.	3349.7	78	76.8	Chlozella	22.0			
May	3094.7	Chlorella	75.1 1	lhiopedia rosea	19.0			
June	2217.0	18	57.9	?\$	30.1			
July	1597.0	"	68.5	19	11.7			
	436.9	Arthrospira	90.7					
Aug.	. 1025.0	Thiopedia rosea	72.4	Chlorella	20.7			
	411.6	Arthrospira	97.5	-	-			
Sept.	27.0	n	78.2	Oscillatoria	19.0			
Oct.	27.6	11	53.8	-				
Nov.	32.5	tt.	95.2	-	-			
	1165.0	Thiopedia rosea	69.6	-	545.			
Dec.	1829.0	Chlorella	79.5	-				
= = =								

TABLE NO. XVII

.

DOMINANT & SUB-DOMINANT ALGAE FOUND IN THE EFFLUENT FROM THE POND NO. 6 DURING 1963.

Month	'Total No. 'per mlx10'	3, Dominant	'%of the 'Total '	Sub-dominant	¹ % of the ^r Total		
Jan.	1182.4	Chlorella	50.7	Thiopedia rosea	41.8		
Feb.	8978.0	Thiopedia ros	ea87.8		F		
Mar.	1925.5	19	73.2	-			
Apri	3824.6	52	66.0	Chlorella	26.4		
May	3560.0	Chlorella	67.2	Thiopedia rosea	20.0		
June	2132.6	18	57.2	79	34.2		
Júly	1788.0	73	61.4	27 -	5.5		
	43.7	Arthrospira	90.7	-	***		
Aug.	1255.0	Thiopedia ros	ea65.0	Chlorella	31.0		
Sept.	24.4.	Arthrospira	61.6	Oscillatoria	31.9		
Oct.	412.2	98	74.0	-	**		
Nov.	31.0	72	65.5.	-	-		
	990.0	Thiopedia rose	a 67.8	-	-		
Dec.	1264.0	Chlorella	79.6	-	-		

• .•

.

•

TABLE NO. XVIII

DOMINANT & SUB-DOMINANT ALGAE FOUND IN THE EFFLUENT FROM THE POND NO. 7 DURING 1963

Month	Total No.3,		of the Total	Sub-dominant	'% of the 'Total			
Jan.	1319.1	Thiopedia rosea	49.4	Chlorella	45.0 ·			
Feb.	8405.2 .	78	95.0					
Mar.	2306.0	91	58.0	, -				
Apr.	3831.3	ŦŴ	52,8	Chlorella	25.3			
May	2356.7	Chlorella	63.2	Thiopedia rosea	. 22.4			
June	2215.6	17	68.0	12	20.1			
July	1597.0	18	68.7	12	11.7			
Aug.	2704.0	Thiopedia rosea	62.4	Chlorella	21.2			
Sept.	243.9	Arthrospira	70.8	Oscillatoria	29.2			
Oct.	42.7	, 59	76.3	_				
Nov.	32.5	3 8	95.0	÷				
	489.7	Thiopedia rosea	67.8	-	, map			
Dec.	159.0	Chlorella	81.8	-	-			

٠

-

.

i.