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ON HYPONORMAL OPERATORS
I, H. SHETH

1. An operator T defined on a Hilbert space H is said to be hypo-
normal if 7*7—TT*20, or equivalently if || T*x|| <|| 7%|| for every
x&H. An operator 7 is said to be seminormal if either T or T* is
hyponormal. If T is hyponormal, then T'—2I is also hyponormal for
all complex values of 2.

The spectrum of ‘an operator T, in symbols ¢(7), is the set of all
those complex numbers z for which T—zI is not invertible. A complex
number z is said to be an approximate proper value for the operator
T in case there exists a sequence %, such that ||%,|| =1 and |[(T—2D)x.||
~0. The approximate point spectrum of an operator T, in symbols
TI(T), is the set of approximate proper values of T. The numerical
range of an operator T, denoted by W(T), is the set defined by the
relation

W(T) = {(Tx, %) Hx” = 1}.

Cl (W(T)) will, as usual, denote the closure of W{T"). An operator S
is said to be similar to an operator T in case there exists an invertible
operator A such that S=A4-1T4.

In this note, all the operators will relate to a Hilbert space H.

We shall prove the following theorem.

TarorREM. Let N be a hyponormal operator. If for an arbitrary op-
erator A, for which 0ECl (W(A4)), AN =N*A, then N is self-adjoint.

Received by the editors April 11, 1966.
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For proving this theorem, we need certain results which we formu-
fate in the form of lemmas.

2. LeEMMA 1. Let T be a hyponormal operator and let 21, 2&II(T),
f#2. If x, and y, are the sequences of unit vectors of H such that
T —aD)xal| =0 and ||(T—21)y.]|—0, then (2., ya)—0.

Proor. See [1, p. 170].
LeMMA 2. If T is kyponormal, o(T*) =IL(T*).
Proor. See [2].

LemMa 3. If T is a hyponormal operator such that o(T) is a set of
real numbers, then T is self-adjoini.

Proor. See [3, Theorem 4, Corollary 1].

LemMA 4. If an operator A is similar to an operator B, then A is
bounded below iff B is bounded below. In other words if A and B are
similar, then I1(4) =11(B).

Proor. Let 4 =T"BT for an invertible operator 7. Now if B is
bounded below, then B*Bzal for some constant a>0. Since T is
invertible, -there exist constants 8>0 and v>0 such that T*T =81
and (TT*)1=T*1T"1z2+I. -

Now A¥*A=T*B*T* T BT =(BD)*T*T-'BT=(BT)*IBT
=y T*B*BT 24T*alT=ayT*TZafyl i.e. A is bounded below.
Since the above process is reversible, the stated result follows.

The relation I1(4) =1I(B) follows from the following two observa-
tions.

(i) If A is similar to B, then 4 —2z[ is similar to B—3zl for all
complex numbers z.

- (i) 2€II(4) iff A —3l is bounded below.

3. Proo¥ oF THE THEOREM. Since 06 Cl (W(4)), 4 is invertible.
Hence N=4"1N*4 and it follows from Lemmas 2 and 4 that ¢(&)
=g(N¥) =II(N*) =II{N).

In order to complete the proof of the theorem, it is sufficient, by
virtue of Lemma 3, to prove that o(V) is real. Suppose on the con-
trary that there exists a z&o(N) such that z3% Since z&o(N)
=II(N}, there exists a sequence x, of unit vectors such that
1 (V* —z2D) x| || (N —2D)wa]|—0.

Since 0GECl (W(4)), the relation ||(N* —2D)x,|| = || (A N4~ —31) x|
=||4(N~20)A~x,||—0 implies that ||(N—z])4—'x.]|—0. Hence
(%ny, A g)=(44"%, A %,)—0 by Lemma 1. Put v,
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=A-x,/||A~%,]|, then ll9all =1 and (Aya, y2)—0 ie. 0&CI (W(4)),
a contradiction. This completes the proof of the theorem.
We deduce, as a corollary, the following result.

CoroLrarY. Let N be a seminormal operator. If for an arbitrary
operator A, for which 0ECl (W(A)), AN = N*A4, then N is self-adjoint.

PRroOF. Suppose that N* is hyponormal. The proof of the theorem
shows that 0 Cl (W(4)) implies 0 Cl (W(4-1Y). Now AN =N*4
implies A~'V* = N4~ i.e. BM = M*B, where M = N* is hyponormal
and 0ECl (W(B))=Cl (W(4~Y)). Hence M=M* by the theorem
i.e. N=N*
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