<u>BIBLIOGRAPHY</u>

J

•

1.	T. Ando	:	On hyponormal operators, Proc. Amer. Math. Soc. Vol.14 (1963) pp. 290 - 291.
2.	W. A. Beck and C. R. Putnam	:	A note on normal operators and their adjoints, Jour. London.Math. Soc. Vol.31 (1956) pp 213 - 215.
3.	S. K. Berberian	•	A note on hyponormal operators, Pacific Jour. Math. Vol. 12 (1962) pp 1171 - 1175.
4.	* *	•	The numerical range of a normal operator, Duke. Math. Jour. Vol.31(1964) pp 479 - 483.
5.		:	A note on operators unitarily equivalent to their adjoints, Jour. London. Math. Soc. Vol.37 (1962) pp 403 - 404.
6.	. T T	:	Approximate proper vectors, Proc. Amer. Math. Soc. Vol. 13 (1962) pp 111 - 114.
7.	William. F. Donoghue Jr.	:	On a problem of T. Nieminen, Inst. Hautes Etudes. Sci. Publ. Math. No.16 (1963) pp 127 - 129.
8.	Nelson Dunford and Jacob T. Schwartz	:	Linear operators Part I, Interscience Publishers, Inc. New York, 1958.
9.•	E. Durszt	:	Remark on a paper of S. K. Berberian, Duke Math. Jour. Vol.33(1966) pp 795 - 796.
10.	P. R. Halmos	:	Normal dilations and extension of operators, Summa Brasiliensis. Math. Vol.2 (1950) pp 124 - 134.

...

•

.

11.	Vasily Istratescu	:	On some hyponormal operators, Pacific Jour. Math. Vol.22 (1967) pp 413 - 417.
12.	Vasily Istratescu, T. Saito and T. Yoshino	:	On a class of operators, Tohoku Math. Jour. Vol. 18 (1966) pp 410 - 413.
.13.	S. L. Jamison	:	Perturbation of normal operators, Proc. Amer. Math. Soc. Vol.5; (1954) pp 103 - 110.
14.	C. R. MacCLUER	:	The numerical range of a normal operator, Proc. Amer. Math. Soc. Vol.16 (1965) pp 1183 - 1184.
15.	C. A. McCarthy	:	On a theorem of Beck and Putnam, Jour. London. Maths. Soc. Vol.39 (1964) pp 288 - 290.
16.	C. H. Meng	:	A condition that a normal operator has a closed numerical range, Proc. Amer. Math. Soc. Vol.8 (1957) pp 85 - 88.
17.	T. Nieminen	2	A condition for the self-adjointness of a linear operators, Anna. Acad. Sci. Fenn. Ser. AINO 316 (1962) pp 3 - 5.
18.	G. H. Orland	:	On a class of operators, Proc. Amer. Math. Soc. Vol.15 (1964) pp 75 - 79.
19.	C. R. Putnam	:	On normal operators in Hilbert space, Amer. Jour. Math. Vol. 73 (1951) pp 357 - 362.
20.	. t t	:	On commutators and Jacobi matrices, Proc. Amer. Math. Soc. Vol.7 (1956) pp 1026 - 1030.

.

`

.

,

21.	C. R. Putnam	•	On the spectra of semi-normal operators, Trans. Amer. Math. Soc. Vol.119 (1965) pp 509 - 523.
22.	F. RIESZ and BELA SZ-NAGY	:	Functional Analysis, Frederick Ungar Publication Co., New York, 1953, second edition.
23.	T. Saito and T. Yoshino	•	On a conjecture of Berberian, Tohoku Mathematical Journal Vol.17(1965) pp 147-149.
24.	M. Schreiber	:	Numerical range and spectral sets, Michigan Math. Jour. Vol.10 (1963) pp 283 - 289.
25.	I. H. Sheth	:	On hyponormal operators, Proc. Amer. Math. Soc. Vol.17 (1966) pp 998 - 1000.
26	J. G. Stampfli	:	Hyponormal operators, Pacific Jour. Math. Vol. 12 (1962) pp 1453 - 1458.
27.	t t	:	Hypenormal operators and spectral density, Trans. Amer. Math. Soc. Vol.117 (1965) pp 469 - 476.
28.	* *	:	Extreme points of the numerical range of a hyponormal operator, Michigan Jour. Math. Vol.13 (1966) pp 87 - 89.
29.	M. H. Stone	:	Linear transformations in Hilbert space and their application: to analysis, American Mathematical Society Colloquium Publication Vol.XV, 1932.

-

,

•

•

72

30. A. E. Taylor : Introduction to functional analysis, John Wiley and Sons. Inc. New York, Third Printing, 1963.
31. T. Yoshino : On the spectrum of a hyponormal operator, Tohoku Mathematical Journal Vol.17(1965) pp 305 - 309.
32. A. C. Zaanen : Linear analysis.

2

: Linear analysis, North-Holland Publishing Co., Amsterdam, 1956.

٠.

,

.

ON HYPONORMAL OPERATORS

ву І. Н. SHETH

Reprinted from the Proceedings of the American Mathematical Society Vol. 17, No. 5, October, 1966 pp. 998-1000

ON HYPONORMAL OPERATORS

.

~

3

.

ву 1. Н. SHETH

•

~

Reprinted from the PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Vol. 17, No. 5, October, 1966 pp. 998-1000

ON HYPONORMAL OPERATORS

I. H. SHETH

1. An operator T defined on a Hilbert space H is said to be hyponormal if $T^*T - TT^* \ge 0$, or equivalently if $||T^*x|| \le ||Tx||$ for every $x \in H$. An operator T is said to be seminormal if either T or T^* is hyponormal. If T is hyponormal, then T - zI is also hyponormal for all complex values of z.

The spectrum of an operator T, in symbols $\sigma(T)$, is the set of all those complex numbers z for which T-zI is not invertible. A complex number z is said to be an approximate proper value for the operator T in case there exists a sequence x_n such that $||x_n|| = 1$ and $||(T-zI)x_n|| \rightarrow 0$. The approximate point spectrum of an operator T, in symbols $\Pi(T)$, is the set of approximate proper values of T. The numerical range of an operator T, denoted by W(T), is the set defined by the relation

$$W(T) = \{(Tx, x) : ||x|| = 1\}.$$

Cl (W(T)) will, as usual, denote the closure of W(T). An operator S is said to be similar to an operator T in case there exists an invertible operator A such that $S = A^{-1}TA$.

In this note, all the operators will relate to a Hilbert space H. We shall prove the following theorem.

THEOREM. Let N be a hyponormal operator. If for an arbitrary operator A, for which $0 \notin Cl(W(A))$, $AN = N^*A$, then N is self-adjoint.

Received by the editors April 11, 1966.

ON HYPORNORMAL OPERATORS

For proving this theorem, we need certain results which we formulate in the form of lemmas.

2. LEMMA 1. Let T be a hyponormal operator and let $z_1, z_2 \in \Pi(T)$, $z_1 \neq z_2$. If x_n and y_n are the sequences of unit vectors of H such that $||(T-z_1I)x_n|| \rightarrow 0$ and $||(T-z_2I)y_n|| \rightarrow 0$, then $(x_n, y_n) \rightarrow 0$.

PROOF. See [1, p. 170].

LEMMA 2. If T is hyponormal, $\sigma(T^*) = \Pi(T^*)$.

PROOF. See [2].

LEMMA 3. If T is a hyponormal operator such that $\sigma(T)$ is a set of real numbers, then T is self-adjoint.

PROOF. See [3, Theorem 4, Corollary 1].

LEMMA 4. If an operator A is similar to an operator B, then A is bounded below iff B is bounded below. In other words if A and B are similar, then $\Pi(A) = \Pi(B)$.

PROOF. Let $A = T^{-1}BT$ for an invertible operator T. Now if B is bounded below, then $B^*B \ge \alpha I$ for some constant $\alpha > 0$. Since T is invertible, there exist constants $\beta > 0$ and $\gamma > 0$ such that $T^*T \ge \beta I$ and $(TT^*)^{-1} = T^{*-1}T^{-1} \ge \gamma I$.

Now $A^*A = T^*B^*T^{*-1}T^{-1}BT = (BT)^*T^{*-1}T^{-1}BT \ge (BT)^*\gamma IBT$ = $\gamma T^*B^*BT \ge \gamma T^*\alpha IT = \alpha\gamma T^*T \ge \alpha\beta\gamma I$ i.e. A is bounded below. Since the above process is reversible, the stated result follows.

The relation $\Pi(A) = \Pi(B)$ follows from the following two observations.

(i) If A is similar to B, then A-zI is similar to B-zI for all complex numbers z.

(ii) $z \in \Pi(A)$ iff A - zI is bounded below.

3. PROOF OF THE THEOREM. Since $0 \notin Cl(W(A))$, A is invertible. Hence $N = A^{-1}N^*A$ and it follows from Lemmas 2 and 4 that $\sigma(N) = \sigma(N^*) = \Pi(N^*) = \Pi(N)$.

In order to complete the proof of the theorem, it is sufficient, by virtue of Lemma 3, to prove that $\sigma(N)$ is real. Suppose on the contrary that there exists a $z \in \sigma(N)$ such that $z \neq \bar{z}$. Since $z \in \sigma(N) = \Pi(N)$, there exists a sequence x_n of unit vectors such that $||(N^* - \bar{z}I)x_n|| \leq ||(N - zI)x_n|| \to 0$.

Since $0 \notin Cl(W(A))$, the relation $||(N^* - \bar{z}I)x_n|| = ||(ANA^{-1} - \bar{z}I)x_n||$ = $||A(N - \bar{z}I)A^{-1}x_n|| \rightarrow 0$ implies that $||(N - \bar{z}I)A^{-1}x_n|| \rightarrow 0$. Hence $(x_n, A^{-1}x_n) = (AA^{-1}x_n, A^{-1}x_n) \rightarrow 0$ by Lemma 1. Put y_n

1966]

999

I. H. SHETH

 $=A^{-1}x_n/||A^{-1}x_n||$, then $||y_n||=1$ and $(Ay_n, y_n) \rightarrow 0$ i.e. $0 \in Cl$ (W(A)), a contradiction. This completes the proof of the theorem.

We deduce, as a corollary, the following result.

COROLLARY. Let N be a seminormal operator. If for an arbitrary operator A, for which $0 \notin Cl(W(A))$, $AN = N^*A$, then N is self-adjoint.

PROOF. Suppose that N^* is hyponormal. The proof of the theorem shows that $0 \notin Cl(W(A))$ implies $0 \notin Cl(W(A^{-1}))$. Now $AN = N^*A$ implies $A^{-1}N^* = NA^{-1}$ i.e. $BM = M^*B$, where $M = N^*$ is hyponormal and $0 \notin Cl(W(B)) = Cl(W(A^{-1}))$. Hence $M = M^*$ by the theorem i.e. $N = N^*$.

The author expresses his thanks to Professor U. N. Singh and Professor S. K. Berberian for their comments and suggestions and to the C.S.I.R. of India for the award of a Junior Fellowship.

References

1. S. K. Berberian, Introduction to Hilbert space, Oxford Univ. Press, New York, 1961.

A note on hyponormal operators, Pacific J. Math. 12 (1962), 1871-1875.
 J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476.

M. S. University of Baroda, India

1000