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ON HYPONORMAL OPERATORS
I. H. SHETH

1. An operator T defined on a Hilbert space H is said to be hypo- 
normal if T*T—TT*zzQ, or equivalently if jjT'*ac]| ^|]for every 
x£U. An operator T is said to be seminormal if either T or T* is 
hyponormal. If T is hyponormal, then T—zl is also hyponormal for 
all complex values of z.

The spectrum of an operator T, in symbols <r(T), is the set of all 
those complex numbers z for which T—zI is not invertible. A complex 
number z is said to be an approximate proper value for the operator 
T in case there exists a sequence xn such that ||x„|| = 1 and || (T—zI)xn|| 
—>0. The approximate point spectrum of an operator T, in symbols 
H(r), is the set of approximate proper values of T. The numerical 
range of an operator T, denoted by W(T), is the set defined by the 
relation

WIT) = {(r*,*): ||*|| = 1}.

Cl (W{T)) will, as usual, denote the closure of W(T). An operator S 
is said to be similar to an operator T in case there exists an invertible 
operator A such that S=A~1TA.

In this note, all the operators will relate to a Hilbert space H.
We shall prove the following theorem.

Theorem. Let N be a hyponormal operator. If for an arbitrary op
erator A, for which 0(£C1 (W(A)), AN = N*A, then N is self-adjoint.
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For proving this theorem, we need certain results which we formu
late in the form of lemmas.

2. Lemma 1. Let T be a hyponormal operator and let zi, z-iGIUT), 
Zi=^z2. If xn and yn are the sequences of unit vectors of H such that 
|i(r-ziI)*„||-»0 and ||(T—z2I)yn\\~>Q, then (xn, y»)-*0.

Proof. See [l, p. 170],

Lemma 2. If T is hyponormal, <r(T*) =II(T'*).

Proof. See [2].

Lemma 3. If T is a hyponormal operator such that ar{T) is a set of 
real numbers, then T is self-adjoint.

Proof. See [3, Theorem 4, Corollary l].

Lemma 4. If an operator A is similar to an operator B, then A is 
bounded below iff B is bounded below. In other words if A and B are 
similar, thenTl(A) =11(5).

Proof. Let A — T~lBT for an invertible operator T. Now if B is 
bounded below, then B*B^aI for some constant «>0. Since T is 
invertible, there exist constants |3>0 and 7>0 such that T*T^(3I 
and (TT*)-1 = T*-1T-1^yI.

Now A*A = T*B*T*~1T~1BT= (BT)*T*~1T~1BT^(BT)*yIBT 
=yT*B*BTsZyT*aIT = ayT*TsZal3yI i.e. A is bounded below. 
Since the above process is reversible, the stated result follows.

The relation H(^4) =11(5) follows from the following two observa
tions.

(i) If A is similar to B, then A—zI is similar to B—zI for all 
complex numbers z.

(ii) z£jEII(4) iff A—zI is bounded below.

3. Proof of the theorem. Since 0(£C1 (W(A)), A is invertible. 
Hence N=A~XN*A and it follows from Lemmas 2 and 4 that <r(N) 
=<r(N*) =II(N*) =n(N).

In order to complete the proof of the theorem, it is sufficient, by 
virtue of Lemma 3, to prove that cr{N) is real. Suppose on the con
trary that there exists a z£<r(iV) such that z^z. Since z<Ezcr(AT) 
=13 (N), there exists a sequence xn of unit vectors such that

Since 0f$Cl (W(A)), the relation ||(iV*-zIK|| =||(^NAL"l-z7)*:„|| 
= ||4(IV—zr)A~~lxJ\—>0 implies that ||(/V—Hence 
(»„, A^Xn) = (AA~lxa, j4_1k„)->0 by Lemma 1. Put yn
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=A~lxJlA-ix^i, then |jy„|] =1 and (Ayn, yn)->0 i.e. 06C1 {W{A)), 
a contradiction. This completes the proof of the theorem.

We deduce, as a corollary, the following result.
Corollary. Let N be a seminormal operator. If for an arbitrary 

operator A, for which 0£CI (W(A)), AN-=N*A, then Nis self-adjoint.
Proof. Suppose that N* is hyponormal. The proof of the theorem 

shows that O^Cl (W{A)) implies O^CI (W(A~1)). Now AN=N*A 
implies A~lN* = NA~l i.e. where M=N* is hyponormal
and 0(£C1 (W(B)) =C1 (W(A~r)). Hence M=M* by the theorem 
i.e. 2V=N*.
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