Table 2.1: Review of work done on Tacrolimus
Table 2.2: Review of work done on Febuxostat
Table 2.3: Literature Review on Cubosomes for Transdermal Delivery45
Table 2.4: Literature review on nanocarriers loaded microneedles for transdermal
permeation47
Table 3.1: Reported analytical methods for TAC and FBX
Table 3.2: Materials & Equipment employed in analytical method development of TAC60
Table 3.3: Chromatographic condition for HPLC of TAC61
Table 3.4: Formulation prototypes for determination of specificity of analytical methods65
Table 3.5: Chromatographic condition for LC-MS of TAC
Table 3.6: Materials and Equipment used in analytical method development of FBX68
Table 3.7: Chromatographic condition for HPLC of FBX
Table 3.8: Mean area of TAC obtained using HPLC75
Table 3.9: Sensitivity evaluation of HPLC method of TAC77
Table 3.10: Intraday and interday precision analysis of HPLC methods of TAC
Table 3.11: Accuracy evaluation of HPLC methods of TAC by standard addition technique78
Table 3.12: Mean area of TAC obtained using LCMS80
Table 3.13: Sensitivity evaluation of LCMS method of TAC81
Table 3.14: Intraday and interday precision analysis of LCMS methods of TAC
Table 3.15: Accuracy evaluation of LCMS methods of TAC by standard addition
technique
Table 3.16: Peak area data of FBX at 0 and 24 h for calibration and stability
Table 3.17: Sensitivity evaluation of developed HPLC method of FBX
Table 3.18: Intraday and interday precision analysis of HPLC methods of FBX
Table 3.19: Accuracy evaluation of HPLC methods of FBX by standard addition technique86
Table 3.20: Absorbance data of FBX in ACN:MOH (9:1) and Phosphate buffer pH 7.4 at 0 and
24 Hrs for calibration and stability
Table 3.21: Sensitivity evaluation of UV methods of FBX in ACN:MOH (9:1) and Phosphate
buffer pH 7.4
Table 3.22: Intraday and interday precision analysis of UV spectrophotometric methods of
FBX90

Table 3.23: Accuracy evaluation of UV methods of FBX by standard addition technique91
Table 4.1A: Mixture components and their ratio for compatibility evaluation
Table 4.1B: Mixture components and their ratio for compatibility evaluation
Table 4.2: Characteristic FT-IR spectrum bands of TAC100
Table 4.3: Characteristic FT-IR spectrum bands of FBX
Table 5.1: Quality risk assessment criteria for various attributes
Table 5.2: Composition of checkpoint batches
Table 5.3: Screening of stabilizers for Tacrolimus
Table 5.4: Selection of concentration of stabilizer for cubosomes of Tacrolimus
Table 5.5: Selection of concentration of GMO for cubosomes of Tacrolimus
Table 5.6: Selection of stirring speed for preparation of cubosomes of Tacrolimus124
Table 5.7: Selection of stirring time for preparation of cubosomes of Tacrolimus
Table 5.8: Selection of temperature for preparation of cubosomes of Tacrolimus
Table 5.9: Selection of volume of organic phase for preparation of cubosomes of
Tacrolimus125
Table 5.10: Selection of rate of addition of organic phase for preparation of cubosomes of
Tacrolimus126
Table 5.11: QTPP and CQA elements with justification for cubosomes of Tacrolimus127
Table 5.12: Qualitative risk assessment of independent variables
Table 5.13: Various parameters affect the product quality along with their levels for screening by
fractional factorial design
Table 5.14: 2-Level fractional factorial batches suggested by Design Expert 7.0134
Table 5.15: Independent variables along with their level for optimization by 3^2 factorial
design137
Table 5.16: Randomized design matrix for 3 ² factorial design
Table 5.17: Analysis of variance of full quadratic model for % entrapment efficiency
Table 5.18: Coded coefficient of full as well as reduced quadratic model for % entrapment
efficiency
Table 5.19: Analysis of variance of full quadratic model for vesicle size
Table 5.20: Coded coefficient of full as well as reduced quadratic model for vesicle size141
Table 5.21: Analysis of variance of full quadratic model for PDI

Table 5.22: Coded coefficient of full as well as reduced quadratic model for PDI143
Table 5.23: Summary of full quadratic model for all independent variables
Table 5.24: Criteria for optimization of Tacrolimus loaded cubosomes
Table 5.25: Levels of independent variables as per the point prediction analysis
Table 5.26: Levels of responses at 95 % confidence and prediction intervals
Table 5.27: Results of checkpoint batches obtained using optimized overly plot of Tacrolimus
loaded cubosomes151
Table 5.28: In-vitro drug release profile of TAC from drug suspension and prepared cubosomes
of TAC157
Table 5.29: Various statistical model for release kinetic with their R^2 value
Table 6.1: Quality risk assessment criteria for various attributes
Table 6.2: Composition of checkpoint batches
Table 6.3: Screening of stabilizers for FBX
Table 6.4: Selection of concentration of stabilizer for cubosomes of FBX
Table 6.5: Selection of concentration of GMO for cubosomes of FBX
Table 6.6: Selection of stirring speed for preparation of cubosomes of FBX
Table 6.7: Selection of stirring time for preparation of cubosomes of FBX174
Table 6.8: Selection of temperature for preparation of cubosomes of FBX
Table 6.9: Selection of volume of organic phase for preparation of cubosomes of FBX175
Table 6.10: Selection of rate of addition of organic phase for preparation of cubosomes of
FBX176
Table 6.11: QTPP and CQA elements with justification for cubosomes of FBX
Table 6.12: Qualitative risk assessment of independent variables 179
Table 6.13: Various parameters affect the product quality along with their levels for screening by
fractional factorial design
Table 6.14: 2-Level fractional factorial batches suggested by Design Expert 7.0
Table 6.15: Independent variables along with their level for optimization by 3^2 factorial
design
Table 6.16: Randomized design matrix for 3 ² factorial design
Table 6.17: Analysis of variance of full quadratic model for % entrapment efficiency187

Table 6.18: Coded coefficient of full as well as reduced quadratic model for % entrapment
efficiency188
Table 6.19: Analysis of variance of full quadratic model for vesicle size
Table 6.20: Coded coefficient of full as well as reduced quadratic model for vesicle size190
Table 6.21: Analysis of variance of full quadratic model for PDI
Table 6.22: Coded coefficient of full as well as reduced quadratic model for PDI
Table 6.23: Summary of full quadratic model for all independent variables
Table 6.24: Criteria for optimization of FBX loaded cubosomes
Table 6.25: Levels of independent variables as per the point prediction analysis
Table 6.26: Levels of responses at 95 % confidence and prediction intervals
Table 6.27: Results of checkpoint batches obtained using optimized overly plot of FBX loaded
cubosomes
Table 6.28: In-vitro drug release profile of FBX from drug suspension and prepared cubosomes
of FBX
Table 6.29: Various statistical model for release kinetic with their R ² value207
Table 7.1: Quality risk assessment criteria for various attributes
Table 7.2: Composition of checkpoint batches for cubosomes of TAC loaded MN Patch215
Table 7.3: Composition of checkpoint batches for cubosomes of FBX loaded MN Patch215
Table 7.4: QTPP elements of fast dissolving MN Patch with their justification
Table 7.4: Qualitative risk assessment of independent variables
Table 7.5: Various critical material attributes along with their levels for optimization of
cubosomes of TAC loaded MN Patch by 3 ² Factorial Design
Table 7.6: Randomized design matrix for cubosomes of TAC loaded MN Patch using 3 ² factorial
design with its CQA223
Table 7.7: ANOVA of full quadratic model for AFF
Table 7.8: Coded coefficients of full quadratic model for axial fracture force
Table 7.9: Summary of full quadratic model for AFF
Table 7.10: ANOVA of full quadratic model for in-vitro dissolution time
Table 7.11: Coded coefficients of full quadratic model for in-vitro dissolution time
Table 7.12: Summary of full quadratic model for in-vitro dissolution time

Table 7.13: Criteria for numerical and graphical optimizations of cubosomes of TAC loaded MN
Patch
Table 7.14: Levels of independent variables as per the point prediction analysis
Table 7.15: Levels of responses at 95 % confidence and prediction intervals
Table 7.16: Results of checkpoint batches obtained using optimized overly plot of MN patch
loaded with cubosomes of TAC236
Table 7.17: Various critical material attributes along with their levels for optimization of
cubosomes of FBX loaded MN Patch by 3 ² Factorial Design236
Table 7.18: Randomized design matrix for cubosomes of FBX loaded MN Patch using 3^2
factorial design with its CQA
Table 7.19: ANOVA of full quadratic model for AFF
Table 7.20: Coded coefficients of full quadratic model for axial fracture force
Table 7.21: Summary of full quadratic model for AFF
Table 7.22: ANOVA of full quadratic model for in-vitro dissolution time
Table 7.23: Coded coefficients of full quadratic model for in-vitro dissolution time
Table 7.24: Summary of full quadratic model for in-vitro dissolution time
Table 7.25: Criteria for numerical and graphical optimizations of cubosomes of FBX loaded MN
Patch
Table 7.26: Levels of independent variables as per the point prediction analysis
Table 7.27: Levels of responses at 95 % confidence and prediction intervals
Table 7.28: Results of checkpoint batches obtained using optimized overly plot of FBX loaded
cubosomes
Table 7.29: Pore closure kinetic at different time intervals for MN patch loaded with cubosomes
of TAC257
Table 7.30: Pore closure kinetic at different time intervals for MN patch loaded with cubosomes
of FBX
Table 7.31: Size and entrapment data of cubosomes after dissolution of MN Patch compare to
previous results shown in chapter 5 & 6258
Table 7.31: In vitro release profile of drug from its drug and cubosomes loaded MN patch259
Table 7.32: Various mathematical models and their correlation coefficient values
Table 8.1: Treatment Map of Cubosomes of TAC and FBX on 3T3 cells

Table 8.2: Treatment Map of Cubosomes of TAC on RAW 264.7 cells	269
Table 8.3: Amount of TAC permeated across Rat skin	271
Table 8.4: Ex-vivo drug permeation of TAC across Rat skin	272
Table 8.5: TAC distribution profile after 24 hours of permeation study	272
Table 8.6: Amount of FBX permeated across Rat skin	274
Table 8.7: Ex-vivo drug permeation of FBX across Rat skin	275
Table 8.8: FBX distribution profile after 24 hours of permeation study	275
Table 8.9: In vitro cell viability data for cubosomes of TAC in 3T3 cells	278
Table 8.10: In vitro cell viability data for cubosomes of FBX in 3T3 cells	279
Table 8.11: In vitro cell cytotoxicity data for cubosomes of TAC in RAW 264.7 cells	280
Table 9.1: Animal grouping for pharmacokinetic study of TAC	287
Table 9.2: Animal grouping for pharmacokinetic study of FBX	288
Table 9.3: Animal grouping for pharmacodynamic study of TAC	289
Table 9.4: Parameters to be investigated for pharmacodynamic study of TAC	289
Table 9.5: Animal grouping for pharmacodynamic study of FBX	291
Table 9.6: Parameters to be investigated for pharmacodynamic study of FBX	291
Table 9.7: Plasma drug concentration of TAC after applying various formulation of TAC	292
Table 9.8: Pharmacokinetic parameters (TAC) computed using Kinetica Software	294
Table 9.9: Plasma drug concentration of FBX after applying various formulation of FBX	295
Table 9.10: Pharmacokinetic parameters (FBX) computed using Kinetica Software	296
Table 9.11: Paw volume determination in pharmacodynamic model of RA	298
Table 9.12: Determination of body weight change during therapy in pharmacodynamic	model of
RA	299
Table 9.13: Absorbance for preparing calibration plot of calibrator RF	300
Table 9.14: Determination of Rheumatoid factor in rat serum	300
Table 9.15: Determination of Uric acid level in rat serum	302
Table 10.1: Three month stability data of cubosomes and cubosomes loaded MNP	307