
Chapter 4

Regularized Deep Neural Network

with hybrid approach of

Independent Component Analysis

———————————————————————————————————–

Deep learning is a sub-field of machine learning, which is an important step on the

path for creating artificial intelligence. There are complex non-linear functions that

are beyond the capabilities of architectural representation. ANN contains very few

hidden layers and consequently very few nonlinear transformations which are not

capable of representing the complex non-linear functions. Which is the most signifi-

cant disadvantage of ANN. As a direct consequence of this, ”Deep Neural networks,”

so-called due to the complexity of its internal structure, have seen a rise in their

level of utilization. This chapter includes the predictive models constructed using

ANN and DNN architectures and trained with a variety of optimization algorithms

for breast cancer classification. The model’s validity is established by computing its

predicted results using different performance measures. Overview of ANN and DNN

is covered in Section 4.1. The DNN learning process and optimization strategies are

explained in Section 4.2 and Section 4.3. The method for minimizing features using

Independent Component Analysis is described in Section 4.4. Section 4.5 discusses

the experiments and their outcomes for different cases of proposed Regularized Deep

Neural Network (R-DNN) and standard DNN, while Section 4.6 includes a conclu-

sion.

39

4.1 Introduction

As neural networks were revived in the 2000s, Deep learning emerged as a new

research frontier that paved the way for the development of contemporary machine

learning. Before this algorithm was known as an ANN. However, DNN encompasses

many more domain of interconnected device then ANN. DNN is sub part of AI that

enables computer systems to enhance automatically via the use of experience and

new or existing data.

Neurons in the human brain are connected into complex networks. The goal of ANN

is to establish a simulation of these networks and program computers to behave

like interconnected brain cells. This will allow the computers to learn and make

judgments in a manner that is more similar to how humans do so. The human

brain is organized hierarchically or in layers, such that distinct areas of the brain

are responsible for processing different types of information. In this manner, as

information is received by the brain, each level of neurons analyses the information

gains insight from the processing and then passes the knowledge to the next layer and

gives the conclusion. The foundation behind ANNs is to mathematically simulate

how the human brain processes information. Perceptron are the building blocks of

ANNs which are designed to mimic the organization or architecture of the human

brain. Classical Neural networks have the drawback of being overly simplistic as

they are unable to accurately represent certain complex non-linear function due to

shallow architecture since then, there has been an effort to develop neural network

with deep architecture.

Deep Neural Network (DNN) are exactly the same as classical Neural Network apart

from that they have more hidden layers, which makes them ”Deep”. Deep learning

is a form of computer learning in which, unlike traditional methods of ML, which

include humans instructing computers how to process and learn from data. Deep

neural Network is widely used in medical field to diagnose diseases. ANN is a

mathematically developed computational network which is modelled after biological

neural networks that from the structure of the human brain. In the same way that

neurons in a human brain are connected to each other, neurons in ANN are also inter

connected to each other. These neurons are called nodes. It produces an output

pattern for a given input pattern. It is a study of a network consisting of nodes

connected by changeable weights. Neurons perform as summing and non-linear

mapping junctions. The nodes store experiment at knowledge through a process of

learning. The nodes of the brain are changeable. They gain knowledge by change

40

in weights.

A human brain consists of approximately 100 billion of processing units which is

called neuron. They are communicated through a connection network of axon and

synapses. They have approximate 1014 density synapses per neuron. Neurons are

the building block of our brains. Dendrites of neighboring neurons transmit input

signal to a neuron. These signals are first processed in the cell body of the neu-

ron and then they are transfer via the axon to another neuron which is known as

output terminal. In ANN, Dendrites represent as input cell nucleus represent as

Nodes, Synapse represent as weights and Axon represents as output. Relationship

or terminology of biological neural network and ANN is as shown below in table 4.1.

Table 4.1: Associated terminology of BNN and ANN

Biological Neural Network (BNN) Artificial Neural Network (ANN)

Dendrites Inputs
Cell Nucleus Nodes
Synapse Weights
Axon Output

In the late 1800s, scientists began studying the functioning of the human brain,

potentially establishing the beginning of the neural network. In 1890, William James

published the first book of brain activity patterns. In 1943, Warren McCulloch and

Walter Pitts introduced the first mathematical model of single idealized biological

neuron which is known as McCulloch – Pitts neuron model which is shown in fig. 4.1.

This model is quite simple and divided into two parts because it does not required

learning. In 1958, Rosenblatt introduced first learning algorithm to classify the

linearly separable data known as perceptron. It is a single layer network consists

of only input and output layer. But after 1986 ANN become more popular because

having multi-layer network which contain input layer, output layer and one more

hidden layer with back propagation algorithm. Back propagation algorithm was

discovered by Rumelhart, Hinton and Williams in 1986. ANN Models mimic this

process by considering input signals as input variables which stores the information

about the pattern. To mimic the behaviors of dendrites, these input variables are

weighted based on their relative relevance. Comparison of BNN and ANN is depicted

in fig. 4.2 Different activation functions like Sigmoid, Tanh, ReLU, etc. are applied

to these weighted signals in hidden layer [102].

41

Figure 4.1: Architecture of McCulloch Pitts

Figure 4.2: Biological Neuron versus Artificial Neural Network [85]

I. Maglogians et. Al. compared ANN and Bayesian classifiers with SVM for the

diagnosis of breast cancer [74]. NN with L-BFGS optimization algorithm on breast

cancer data set, SPECT heart problem , Australian Credit approval problem least

problem and Escherichia coil problem were discussed by M.S. Apostolopoulou et.

al. [11]. Q.V. Le et. al. used deep learning for MNIST data set using SGD and

L-BFGS optimization algorithms with line search [68]. G.I.Salama et. al. employed

multi classifier for diagnosis of breast cancer. Where they used MLP, Naive Bayes,

SMU and Instance based for KNN [105]. R. Fakoor et al. studied about how deep

learning can be used to improve cancer detection by implementing unsupervised

feature learning [102]. G. Zoriluoglu and M. Agagla achieved 94.44% and 96.77%

classification accuracy for ensemble approach and respectively [42]. A. Mart et. al.

investigated about feature reduction technique ICA with KNN, ANN, and SVM [77].

A. Esteva et. Al used DNN for diagnosis of skin cancer and achieved 72.1% classi-

fication accuracy [36]. Z. Han et. Al used deep learning in classification of breast

cancer and obtained 93.2% accuracy [44]. A.F. Agarap attained 99.04% accuracy

using ML algorithms [6]. Authors employes SVM, ANN, KNN, DT and NB with fea-

ture reduction technique in classification of breast cancer and obtained with different

42

optimization algorithms near by 98% of accuracy [32] [130] [89]. 17) M. Tiwari et.

Al. proposed various modals such as ANN, SVM, MLP etc. in diagnosis of breast

cancer and obtained 97.3% classification accuracy [121]. S. Aalaei et. Al. employed

ANN with GA. Based algorithm for feature selection and used PSO algorithm for

optimization in diagnosis of 3 different breast cancer dataset namely WBC, WBDC

and WPBC [1]. A.M. Abdel-Zaher and A.M. Eldeib employed computer aided based

Deep Belif network with recursive feature elimination method for classification of

Breast Cancer [3]. L. Abdel-Ilah et. al. used WBC dataset in classification of breast

cancer using ANN and achieved 98% accuracy [2]. H. Tike Thesin , K, Kaushik and

C, Prasetgo, utomo et. Al. employed ANN, in identification of breast cancer for

WBC, WBDC dataset and achevieed 98% of classification accuracy [120] [59] [97].

S. Karthik et. al. proposed DNN with REF feature selection technique and eval-

uated on WBC dataset andobtained 98.62% accuracy [58]. 10-11) ANN Cascade –

forward NN, RF, KNN, NB, SVM were employed in diagnosis of breast cancer for

WBC and WDBC dataset by Ms. M. Gayatheri, B. Sahi et. al. [104] [72]. D.A.

omondiagbe et. Al. diagnosed breast cancer by employing SVM, ANN and NB

using Linear Discriminant Analysis which is feature reduction technique [89]. SVM

and ANN employed with correlate feature selection technique by R. Aiyami et. al.

and achieved 97.14% and 96.71% classification accuracy [9]. I.Maglogiannis et. al

and M.A. Gokhan Zorluogul employs different classifier in diagnosis of breast cancer

[74] [42].

In this chapter Regularized Deep Neural Network (R-DNN) is proposed in classifi-

cation of breast cancer data. Proposed R-DNN is compared with ANNs and results

are obtained. Also Independent Component Analysis (ICA) is employed for feature

reduction in proposed R-DNN model, which is validated on WBC and WDBC data

sets. Optimization techniques and ICA are explained in depth in the next section.

4.2 Learning using DNN and ANN

ANN is consisting of single hidden layer and then it is extended to multi hidden layers

which is known as Deep Neural Network with advanced optimization techniques. It

has 3 layers namely input layer, hidden layer, output layer. Each layers consists of

nodes. Each neuron in neural network is connected to at least one other neuron.

Moreover, each connection in neural network is associated with a weight. These

weights are multiplied by the input value which receives from the previous layer. It

determines the significance of this relationship. Each neuron possesses an activation

43

function which determines the neurons output. The activation function is utilized to

introduce non-linearity into the network’s modelling capabilities. Let network has m

training samples where each sample consist of n inputs say X = {x1, x2, ..., xn};X ∈
ℜn. The layer which receives these input signal is known as hidden layer. Let Z =

{z1, z2, ..., zj} be the outputs of the J neurons in the hidden layer [134]. Then this

Z is an input for the output layer. Let Y be the L- dimensional Y = {y1, y2, ..., yl}
which is output vector corresponding to n dimensional input vector. Each neuron in

the hidden layer receives the n inputs through weighted links. Each neuron in the

output layer receives the J input from the hidden layer as input through weighted

links. When the network is fully trained, the output vector Y should be identical, i.e.

it should be very close to desired output vector d associated with the input vector X.

Deep Neural Network is divides into two phase : i) forward propagation ii) Backward

propagation. Training algorithm is applied to the multi-layer feed-forward networks.

Once the loss for the trained network is calculated, this error propagated backward.

Consider each neuron in the hidden layer uses an activation function fh and each

neuron in the output layer uses an activation function fo. Choice of activation

function depends on the application and range of output values. Fig. 4.3 shows the

difference between Simple Neural Network and Deep Neural Network.

Figure 4.3: Shallow Artificial Neural Network vs Deep Neural Network [124]

4.2.1 Methodology

Let wji be the weights of the link connecting the jth hidden neuron zj to the ith

input xi. Also let wlj be the weights connecting the lth output neuron yl to the

jth hidden neuron zj. After passing the input data through the network with all

internal calculations in forward phase, the final layer will calculate the result of

the input samples and give whether the bad or good prediction. Then calculate loss

using loss function to estimate the loss and compare network’s predicted output with

44

original output. Once the loss is calculated to reduce the error, loss is propagated

backwards. To reduce the error, weights of inter connections of the neurons will be

updated using weight optimization technique in back propagation phase. It starts

from output layer to hidden layer where loss information propagates to all neuron

which takes part directly to calculate output of the network. Then further it is

propagated between hidden to input layer. This procedure is repeated, one layer

at a time, until all of the neurons in the network have received a loss signal which

represents their mutual contribution to overall loss. The main aim is to minimize

the error between network output and desired output by optimizing weights i.e. by

finding weight which can reduce the error. Network’s error is given by eq. 4.1.

E =
l∑

j=1

e2ij =
1

2

l∑
j=1

(
yij − y∗ij

)2
; i = 1, 2, ..,m (4.1)

Procedure of the forward and backward phase is as follows:

1. Consider random weights {wj1, wj2, ..., wji}, j = 1, 2, ..., J , from each input

node to jth hidden neuron. Where, n is the number of input nodes and j is

the number of neurons at the hidden layers. The input of the jth hidden node

is calculated as follows:

netj =
n∑

i=1

wjixi; j = 1, 2, ..., J

2. The output of jth hidden node is given by zj = fh

(∑n
i=1wjixi

)
; j = 1, 2, ..., J ,

where, fh is activation function used at the hidden layer.

3. Network output is calculated as: y∗ = fo

(∑J
j=1wljzj

)
; l = 1, 2, ...L, Where

fo is the activation function used at the output layer and zj is the output of

the jth hidden node.

4. After calculating output of the each node at the output layer in forward prop-

agation phase, calculate network’s total output. Compare network’s output

with original output and calculate the error using eq.4.1.

5. Initialize the tolerance. If the network error E is more than tolerance then

using back-propagation update the weights of the network to minimize the

error E.

45

6. We have used different optimization algorithm like Stochastic Gradient De-

scent (SGD), L-BFGS and Adam to minimize the network’s error E by up-

dating weights. Also we have used different activation functions like logistic,

tanh and ReLU.

4.3 Optimization algorithm

An optimization algorithm is a process that is carried out in an iterative manner by

comparing various potential solutions by changing the hyper-parameters until the

optimal solution is determined, to create an accurate model with less error. Any

DNN model employs an optimization algorithm to generalize the data in order to

predict new data. During the training of DNN model, optimization algorithms op-

timize each epoch’s weights or parameters and also it minimize or maximize the

cost/loss function to reduce the error whom mapping inputs to outputs. Such opti-

mizers have a significant impact on the precision of the DNN model. The model’s

speed and learning capabilities are also impacted by these factors. By adjusting pa-

rameters like weights and learning rate, an optimizer can improve the performance

of DNN. As a result, the overall loss is reduced and efficiency of DNN is enhanced.

Before, proceeding with various optimization algorithms following few terms are

important to familiar with.

1. Batch: Indicates the group of samples that should be taken in order to update

the model’s parameter.

2. Epoch: Interactions over the entire training data set that the algorithm is

performed.

3. Sample :- A single row of data set.

4. Learning Rate:- It is a step size or α which is used to find the minimum of

cost function. Consider small values such as 0.1, 0.001 or 0.0001. Usually, if a

small value which is examined and modified according to how the cost function

is behaving. With small learning rate, any optimization algorithms converge

to its optimal solution or it may hit the maximum number of iterations. The

algorithm may diverge or fail to converge if the learning rate is two high.

5. Cost/Loss function:- It is a function that evaluate how well a model works

with the data that has been provided. It used to evaluate the error between

46

actual output and network’s predicted output. This enhances the model’s per-

formance by giving it the information if needs to fine-tune its parameters in

order to reduce error and determine the local or global minimum. A cost func-

tion is minimized by repeatedly iterating in the negative direction of gradient

until the function’s value approaches or equals to zero. The learning process

will come to an end for the model once find optimum solution.

6. Weights:- The parameters of a model that can be learned, which regulate the

signal that is sent between two neurons.

Various optimization algorithms are describe as follows.

4.3.1 Stochastic Gradient Descent

Gradient Descent (GD) is a first order iterative optimization algorithm which is

very popular in DNN for finding minima or maxima of a differentiable and convex

function. It is used to find optimized parameters of the learning model by minimizing

cost or loss function to approach the desired output. There are three types of GD

learning algorithms namely, i) Batch GD ii) Stochastic GD iii) Mini-Batch GD. In

this study, Stochastic Gradient Descent (SGD) algorithm is used to optimize the

weights of the network.

Minimizing a given cost / loss function is the objective of the GD algorithm. For

this purpose, it repeatedly carry out the following two steps:

1. Determine the gradient of the cost function at the given point.

2. Take a step in the direction which is opposite to the gradient direction by

multiplying the gradient α times from the current point.

Iterative calculating the next point based on the gradient at the current position,

scaling it by learning rate and then subtracting the resultant value from the current

position is precisely what GD algorithm does. The value is subtracted to minimize

the cos function. If the function is maximized then add the value [88].

Stochastic Gradient Descent

SGD is one of variant of GD which proceed with one training sample from data set

for each iterations. As a consequence, the parameters continue to be modified even

47

after one iteration has passed and only one sample has been worked through. So,

SGD is a lot quicker than batch GD. However, even when there are many training

samples, the system only process one sample at a time. For SGD, algorithm 1 is

written as follows:

Algorithm 1 An algorithm for SGD

Require: Training samples: {xi, yi}ni=1; where n is no. of samples
Require: Initialize weight Parameter: w
Ensure: Set as the limit of convergence as: ϵ
Ensure: Learning rate: α
for i = 1 to n do

for t = 1 to m do
Compute network prediction:

y∗i ← h(xi)
Compute total Loss/Error function J:

L(w)← 2
n

∑n
i=1(yi − y∗i)

2

while |wj+1 − wj| > ϵ do
wt+1 = wt − α ∂L

∂w
;

end while
end for

end for

48

4.3.2 Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) optimizer is improved algorithm of SGD

which was introduced by Diederik Kingma and Jimmy Ba in 2015 in the paper

entitle ”Adam: A method for stochastic optimization” [61]. It is a first and sec-

ond order gradient based optimization algorithm which is used to update network’s

weights for training data iteratively [61].

Adam combines the best characteristics of AdaGrad (Adaptive Gradient) and RM-

SProp (Root Mean Square Propagation) algorithms. In SGD throughout the train-

ing process, the learning rate α remains constant and applied to all weight updates.

In Adam, each weight/parameter in the network is assigned a learning rate which

is updated individually during training process. The algorithm evaluates the first

and second Adapt moments of the gradients to determine individual learning rates

for each weight/parameter of the network, that’s why it is called Adaptive. Like

RMSProp, it scales the learning rate based on the squared gradients. But like Ada-

Grad, it also takes advantages of momentum by calculating the moving average of

the gradient, rather than gradient itself. Here, first moment means un-centered

variance (i.e. without subtracting mean during variance calculation). By modifying

the GD rate, Adam ensures the least amount of oscillation at the global minimum,

while taking large step size to overcome the local minima. Above two strategies can

be combined to find the global minimum effectively. Adam uses the average of the

second moments of the gradients in addition to the average of the first moments to

determine the learning rates for the parameters. Mathematically, it is define in eq.

4.2 and eq. 4.3:

mt = β1mt−1 + (1− β1)gt (4.2)

vt = β2vt−1 + (1− β2)g
2
t (4.3)

Here, g is the gradient of the cost function at time step t. mt is the exponential

average of the gradient along W and vt is the exponential squared average of the

gradient along W . The bias correction of moving averages is calculated using eq.

4.4.

49

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(4.4)

Weights or parameters are updated based on the calculated moving averages with

learning rate α using following eq. 4.5

wt+1 = wt −
α√
v̂t + ϵ

m̂t (4.5)

Where, m̂t and v̂t are moving averages and η is learning rate.

Adam relies on hyper-parameter β1 and β2 values, where β1 is the exponential decay

rate which is 0.9 for the first moment estimation and β2 is the exponential decay

rate which is 0.999 for second moment estimation. The vectors of moving averages

are initialized with zero at the first iteration. Adam algorithm is descibe as follows

in algorithm 2:

Algorithm 2 An algorithm for Adam

Require: Learning rate: α
Require: Exponential decay rates for the moment estimates: β1, β2 ∈ [0, 1)
Ensure: Set as the limit of convergence as: ϵ
Require: Objective function with parameter w: f(w)
Require: Initial weights vector: w0

m0 ← 0 ▷ Initialize 1st moment vector
v0 ← 0 ▷ Initialize 2nd moment vector
while |wt+1 − wt| > ϵ do

t← t+ 1
gt ← ∇wft(wt−1) ▷ Find gradient w.r.t. objective function at time step t
mt ← β1mt−1 + (1− β1)gt ▷ Update biased first moment estimate
vt ← β2vt−1 + (1− β2)g

2
t ▷ Update biased second row moment estimate

m̂t ← mt

1−βt
1

▷ Compute bias-corrected first moment estimate

v̂t ← vt
1−βt

2
▷ Compute bias-corrected second row moment estimate

wt+1 ← wt − α m̂t√
v̂t+ϵ

▷ Update parameters
end while
Return: wt ▷ Resulting parameters

4.3.3 L-BFGS

Finding the minimum or maximum value of any objective/cost/loss function is the

goal of optimization problems. First-order derivative methods like GD and steep-

50

est descent and second order derivative methods like newton’s method are both

deterministic ways to deal with optimization problems. In order to determine the

function’s maximum and minimum values, the first order derivative method depends

on the first derivative which is known as the gradient, in either a downward or an

upward direction for optimal solution. In order to estimate more accurately the min-

ima of the objective function, second-order derivative method uses the derivative of

derivative (i.e. Hessian matrix - a matrix holding the second order derivatives) have

been employed [40].

L-BFGS stands for Limited-memory Broyden–Fletcher–Goldfarb–Shanno. The L-

BFGS algorithm is non-linear and iterative algorithm. It is extension of BFGS

algorithm, which is second-order optimization algorithm that falls within the cat-

egory of Quasi-Newton method. As a second order derivative, the Hessian matrix

is utilized in Newton’s approach. The size of the Hessian and its inverse depends

on the number of parameters of the loss function. It can be challenging to manage

the size of the hessian if problem is really Vast. The L-BFGS is able to overcome

this problem by making the assumption that the preceding/last iterations inverse of

the Hessian can be simplified. In contrast to BFGS, which takes into account the

entire history of the gradient, L-BFGS only takes into account the most ′n′ recent

gradients. L-BFGS is desribe as in algorithm 3 [99].

51

Algorithm 3 Algorithm for L-BFGS [99]

Require: Training samples: {xi, yi}ni=1

Ensure: Tolerance of function value from previous iteration: ϵ1
Ensure: Tolerance on gradient value: ϵ2
Require: Initialize n × n positive definite symmetric matrix [B] as the identity
matrix

Step 1: Compute gradient vector ∇f1 = ∇f(x1) and set the iteration no. as i = 1.

Step 2: Compute f(xi) and gradient of function ∇f(xi) at point xi and set
Si = −[Bi]∇fi (Search direction).

Step 3: Find the optimal step α∗
i in the direction Si and update xi+1 = xi + α∗

iSi.

Step 4: For optimality, test the point xi+1. If ||∇fi+1|| ≤ ϵ2 or |fi+2 − fi+1| ≤ ϵ2.
Where, ϵ1 and ϵ2 is a small quantity. Take x∗ = xi+1 and stop the process otherwise
go to step 5.

Step 5: Update the Hessian matrix as,

[
Bi+1

]
=
[
Bi

]
+

(
1 +

gTi
[
Bi

]
gi

dTi gi

)
did

T
i

dTi gi
−

dig
T
i

[
B
]

dTi gi
−
[
Bi

]
gid

T
i

dTi gi

Where, di = xi+1 − xi = αi
∗ and gi = ∇fi+1 −∇fi

Step 6: Set the new iteration as i = i+ 1 and repeat the procedure from step 2.

4.3.4 Activation functions

It is used to determine whether neuron should be activated or not. It is also known

as Transfer function. Activation function regulates the results of neural network

in various ways. These activation function can be linear or non-linear. A neural

network without an activation function is just a linear regression model. The acti-

vation function applies a nonlinear transformation to the input, enabling the system

to learn and execute more complex tasks. In our study, we used following activation

functions.

1. Sigmoid (Logistic) function : f(x) = 1
1+e−x

2. Tanh: f(x) = 2
1+e−2x − 1

3. ReLU:f(x) = max(0, x)

52

4.4 Independent Component Analysis

J. Herault, C. Jutten and B. Aur., introduced an iterative real-time Independent

Component Analysis (ICA) technique in their work in 1980s [119]. The objective

of ICA is to derive meaningful information from the data. This information can

be images, data or audio files. As a result, ICA is utilized for the purpose of

extracting source signals in a wide variety of applications, including but not limited

to medical signals [129] [25], biological assays If ICA can eliminate or keep only

one source, it is considered a dimensionality reduction algorithm. ICA is often

seen as a more advanced form of PCA [118] [29]. While ICA optimize higher order

statistics like kurtosis, PCA maximize the data’s covariance matrix which represents

second-order statics. As a result, PCA identifies uncorrelated components while

ICA finds independent component [50][118]. This means that ICA can be used to

extract independent sources from mixture data when the higher-order correlations

are minimal (or) negligible or insignificant [50].

The fundamental structure of ICA is as follows. Assume that, observed signal is a

linear combination of two independent sources. The observed signal can be expressed

as: x = As; where, s is source signal, A is unknown mixing matrix consists of

constant elements or Identity matrix and x is observed values. Using ICA, unknown

mixing matrix A is calculated. The separating matrix W is calculated by W = A−1.

Aim is to find mixing matrix A and original source signal s. The mixture of sources

s can be retrieved by multiplying the observed signal x with the inverse of mixing

matrix W = A−1. i.e. The original signal can be found using: ŝ = Wx [78] [118]

[50]. Mixing and unmixing signals, centering and whiting of the data is the first

step in computing the ICs which is shown in the following figures 4.4 and 4.5.

53

Figure 4.4: Block diagram of ICA mixing steps
[119]

54

Figure 4.5: Visualization for pre-processing steps in ICA
[119]

55

4.5 Experiments and results

R-DNN with ICA is the foundation of the suggested model. The proposed model

incorporates four major steps for training R-DNN, which are depicted in fig. 4.6.

There are five parts in this process: data collection, data pre-processing, feature

reduction, separating the data into train and test sets and finally evaluating the

model’s performance by defined optimization techniques and stated activation func-

tions. After loading the WBC and WDBC data set into the network, we normalize

data set using a pre-processing technique to ensure that no attributes were missing

or that the data was consistent. The following eq. 4.6 is used to normalize the data.

Figure 4.6: Flowchart of proposed R-DNN with ICA

Xnormalized =
X −Xmin

Xmax −Xmin

(4.6)

In the third stage, we employed a feature reduction strategy to decrease multi-

collinearity from the model and increase its overall performance and accuracy. We

utilize ICA to minimize the number of features in the WBC data set. The number

of features was decreased to three with no loss of generality and all of the original

information from the data was kept. Following that, a 10-fold CV was applied to the

data to separate it into a train-test set. With this technique, data sets are divided

56

into 10-folds (i.e. groups), with each group serving as both a training and testing set

to determine the model’s overall effectiveness in general. Working steps of proposed

R-DNN is as follows:

1. Input data set i.e. feature vector of WBC and WDBC i.e. inputs X =

{x1, x2, ..., x9} are pass through in the first layer. Then the data are sent to

hidden layers with weights assigned. There can be as many as hidden layers.

2. All calculation is done in the hidden layer after the inputs have been passed

on. i.e. all input vectors are multiplied by weight vector W and added to the

bias b: y = WX+ b. Weights are randomly initialized in forward propagation.

3. The activation function is then applied to linear equation y in the step ii. as

shown in eq. 4.7. The activation function is a nonlinear transformation applied

to the input before it is sent to the next layer of neurons. The activation

function’s significance is that it introduces non-linearity into the model.

y == φ
(
W TX + b

)
(4.7)

Where, W is weight vectors, X is the input vectors, b is the bias and φ is the

non-linear activation function.

4. Each hidden layer goes through the entire process stated in step iii. After we

have passed through all of the hidden layers, we go to the final layer, which is

our output layer, which provides us with the final output.

5. The error is calculated after receiving the output layer’s predictions, which is

the difference between the actual and predicted output. If the error is large,

actions are taken to minimize the error using Back-propagation. The error or

loss is calculated using log loss error function as shown in eq. 4.8:

loss = − 1

N

n∑
j=1

yijln(p(yij)) + (1− yij)ln(1− p(yij)) (4.8)

; i = 1, 2, ...,m

Where, yij is the actual class and ln(p(yij)) is probability of actual class.

6. The weights are updated with different optimizers methods using equation

from algorithm 1, eq. 4.5.

57

The suggested DNN was trained and evaluated using the optimizers like SGD, Adam,

and L-BFGS algorithms, which used activation functions such as Logistic, Tanh, and

ReLU to train and test the network. We used the log-loss function, also known as

the binary cross-entropy function, to calculate the difference in error between the

network output and the desired output and to compare the two results.

We include an additional L2 Regularization term in the log-loss error function as

shown in eq. 4.9 to make it more robust. To reduce error by fitting a function

adequately on the provided training set and avoiding overfitting, the regularization

term is employed. This regularization technique helps to reduce variance in our

model by penalizing for complexity. By adding L2 regularization to our model,

we’re effectively giving over some of our model’s capacity to fit the training data

well in exchange for the ability to generalize the model to data which hasn’t been

seen before i.e. on test data. Large weights are penalized by adding L2 regularization

into log loss error function.

loss+
n∑

i=1

∥Wji∥2
λ

2m
(4.9)

Where, n be the number of layers, wj be the weight matrix for the jth layer, m is

the number of input and λ regularization parameter.

We evaluated our proposed model for various λ values such as 0.1,0.01,0.001,0.0001

and 0.00001 and achieved 100% classification accuracy for λ = 0.001.

Following the training of the Deep Neural Network, test data is collected in order

to evaluate the model’s performance in the classification of breast cancer as benign

or malignant, respectively. Model performance and efficiency are determined by the

following parameters: accuracy, sensitivity, specificity, precision, and F -score from

the confusion matrix.

In order to determine whether a cancer model is capable of appropriately classifying

cancer as malignant or benign, the Receiver Operating characteristic (ROC) curve

is utilized [18]. A True Positive Rate (TPR) is calculated by comparing the rate of

correctly classified cases (True Positive Rate) against the rate of wrongly classified

instances (False Positive Rate). The True Positive Rate (TPR) is between 0 and 1.

A different trade-off between a correctly diagnosed tumor being classified as benign

or malignant is represented by each dot on the curve.

58

4.5.1 Experiments and results of WBC data set

A data set of WBC has been used as an input in this experiment, with the desired

result being either benign or malignant. Nine input neurons, two hidden layers,

and one output neuron are used to construct the model. It is necessary to increase

or decrease the number of neurons in hidden layers in order to attain the best

accuracy. It is trained with two hidden layers, each of which has seven pairs of

hidden neurons, such as 100-0, 100-100, 250-100, 250-250, 500-100, 500-500, and

1000-1000, respectively. We used learning rates of 0.01, 0.001, and 0.0001 to train

our network in order to accelerate the convergence of our model. DNN without ICA

and 10-fold CV were used in the tests, as were DNN with ICA and 10-fold CV in

the case of DNN with ICA.

Case 1: Results for DNN without ICA and 10-fold CV (Simple DNN

model)

In this scenario, the data set is divided into two parts: a train set and a test set. In

this case, 80% of data are taken as training set and 20% of data are taken as testing

test. There are no approaches utilized in this case because DNN is a simple model.

The log loss error is used to assess performance. It depicts error vs. epoch for the

training data set, as seen in fig. 4.7, fig. 4.8 and fig. 4.9. Although the error

decreases with additional training epochs, the error on the validation data set may

begin to climb when the network becomes over-fitted to the training data as a result

of overfitting. For e.g., in the default configuration, the training is terminated after

six consecutive increases in validation error, and the highest performance is obtained

from the epoch with the lowest validation error. In this particular instance, the error

is assessed in the cross-entropy function.

The fig. 4.7, fig. 4.8 and fig. 4.9 depicts the varied learning rates for the training

error. After training, the version of the network that performed the best on the

validation set was used.

On the basis of train-test data, Fig. 4.10 depicts the confusion matrix for DNN

without ICA and without a 10-fold CV for training data. When using a trained

network, the Fig. 6 reveals that 97.5% of samples are accurately detected. For the

first and second rows of the diagonal block, it is shown that 33.47% of the samples,

or 160 samples, are accurately classified as benign and 64.02%, or 306 samples,

are correctly classified as malignant. Both the benign and malignant instances

59

Figure 4.7: Epoch vs Error for Simple DNN model-for learning rate 0.0001

Figure 4.8: . Epoch vs Error for Simple DNN model-for learning rate 0.001

represented by the other two blocks were misdiagnosed. A total of 0.21% i.e. only

one malignant sample is mistaken as a benign sample and 2.30% i.e. 11 benign

samples is mistaken as malignant samples.

Fig. 4.11 depicts the confusion matrix for testing data. 97.1% success rate for

correctly diagnosing tumors is shown in fig. 4.11 for the network under consideration.

According to the first two diagonal blocks, 36.59%, or 75 samples, are accurately

classified as benign, whereas 60.49%, or 124 samples, are appropriately classified as

malignant.

60

Figure 4.9: Epoch vs Error for Simple DNN model-for learning rate 0.01

Figure 4.10: Confusion matrix for train data set-Case 1

Comparative analysis of different optimizers with different activation functions is

shown in table 4.2. DNN obtained the greatest accuracy of 97.1% with 97.6%

precision and 97.6% recall for Adam algorithm with logistic activation function in

1.47 seconds with 100-100 neurons at two hidden layers.

Precision-Recall curve and ROC curve for a simple model are shown in fig. 4.12

and fig. 4.13, which are used to assess the efficiency and ability of the model and to

determine if it is great, good, or awful in working with test data. Due to the fact

that it is not closer to the top left corner of the ROC curve, this curve is not the

61

Figure 4.11: Confusion matrix for test data set-Case 1

Table 4.2: DNN without ICA and 10-fold CV - Case 1

Optimization algorithm Activation function Accuracy (%) Time (seconds) Iterations

SGD
Logistic 95.61 0.87 197
Tanh 96.07 42.65 192
ReLU 96.59 35.89 191

Adam
Logistic 97.10 1.47 154
Tanh 96.09 1.309 258
ReLU 97.07 2.84 47

L-BFGS
Logistic 97.07 54.02 177
Tanh 95.61 2.26 60
ReLU 95.61 2.89 122

best for classification. The attainment of a desirable outcome of network prediction

is represented by the precision-recall curves.

Case 2: Results for R-DNN with ICA and 10-fold CV (Proposed R-DNN

model)

In this scenario, data is separated into 10 folds for the purposes of training and

testing the model. Each fold is treated as a training and testing set. The fig. 4.14,

fig. 4.15 and fig. 4.16 demonstrates the varied learning rates for the training error.

After training, the version of the network that performed the best on the validation

set was used.

This is the case in which the 10-fold CV and ICA are applied on WBC data. Ta-

62

Figure 4.12: 2-class Precision-Recall Curve - Case 1

Figure 4.13: ROC Curve - Case 1

ble 4.3 compares the performance of various optimization algorithms with varying

activation functions. With Logistic, Tanh and ReLU. L-BFGS optimizers fluctuate

a lot and also didn’t reach to optimal solution and leads to divergence. Such that

L-BFGS mislead to the solution. As it can be observed in fig. 4.14, fig. 4.15 and

fig. 4.16. With Logistic, Tanh, and ReLU activation functions, SGD and Adam op-

timizer provide 100% accurate predication. Adam optimizer with ReLU activation

function provides the maximum accuracy for 100-100 neurons at each hidden layers,

0.001 learning rate with reduced training time, and 163 numbers of iterations, which

is superior to the accuracy produced by other optimizers. Out of all other trials with

63

Figure 4.14: Epoch vs Error for Proposed R-DNN model-for learning rate 0.0001

Figure 4.15: Epoch vs Error for Proposed R-DNN model-for learning rate 0.001

varied hidden neurons, regularisation parameter, and learning rate, we received the

best results when the regularization value was set to 0.0001 and the learning rate

was set to 0.001.

Confusion matrix for WBC train-test data is shown in fig. 4.17 and fig. 4.18. The

first diagonal block in the Fig. 13 represents the trained network’s correct benign

and malignant diagnosis rate. The first two diagonal blocks indicate that out of 699

samples, 35.40%, or 218 samples, are accurately classified as benign, while 61.30%,

or 377 samples, are correctly classified as malignant. 1.95%, or 12 instances, receive

64

Figure 4.16: Epoch vs Error for Proposed R-DNN model-for learning rate 0.01

Table 4.3: R-DNN with ICA and with 10-fold CV - Case 2

Optimization algorithm Activation function Accuracy (%) Time (seconds) Iterations

SGD
Logistic 100.00 4.17 1449
Tanh 100.00 3.38 505
ReLU 100.00 9.31 605

Adam
Logistic 100.00 2.03 149
Tanh 100.00 2.4 136
ReLU 100.00 1.81 163

L-BFGS
Logistic 98.51 1.39 120
Tanh 98.51 0.98 78
ReLU 97.06 1.79 121

an incorrect diagnosis of malignancy, while 1.30%, or 8 samples, receive an incorrect

diagnosis of benign. Similarly, the confusion matrix for the WBC test data set is

illustrated in the Fig. 14. 55 samples, or 80.88% of 699 total cases, are accurately

classified as benign, while 13 samples are appropriately classified as malignant (4).

The remainder of the block represents the number of benign and malignant tumours

misdiagnosed. No specimens are misdiagnosed in benign or malignant. Hence,

we claim that the proposed model worked exceptionally well, achieving a perfect

accuracy rate of 100%.

Overall, 100% of predictions were properly classified, and 100% of precision, recall,

and F-score were attained for the diagnosis of a cancerous tumour. The Precision-

Recall curve for a 2-class system is depicted in fig. 4.19.

65

Figure 4.17: Confusion matrix for train data set-Case 2

Figure 4.18: Confusion matrix for test data set-Case 2

Fig. 4.20 depicts a Receiver Operating Characteristic curve (ROC curve), which

indicates that the model can accurately and perfectly diagnose WBC data. In this

case, AUC = 1 indicates that all test data results in the proper classification of

benign and malignant tumours for the provided model.

A comparison of categorization approaches with the work of other authors is shown

in table 4.4. In the illustration, you can see a graphical depiction in fig. 4.21 of

table 4.4.

66

Figure 4.19: 2-class Precision-Recall Curve - Case 2

Figure 4.20: ROC Curve - Case 2

4.5.2 Experiments and results of WDBC data set

To perform the experiment on WDBC data set, we use the following architecture.

The network consists of 30 input nodes at input layer, 2 hidden layers and 1 neuron

at output layer. Different pairs of neurons at hidden layers are chosen like 25-10,

50-25, 100-120, 100-100, 250-100, 250-250, 500-100, 500-500, 1000-1000 to perform

the experiments and network is trained and tested with different learning rates as

0.01, 0.001, 0.0001. The best results under each scenario are listed in the tables.

We perform the experiments using two different approaches.

67

Figure 4.21: Performance analysis of the proposed R-DNN+ICA model with others
authors

Table 4.4: Performance analysis of the proposed R-DNN+ICA model

Authors Year Methods Accuracy (%)

Murat Karabatak et. al. 2009 ANN+AR1 (Association Rule) 97.40

Gouda I. Salama et. al. 2012 Fusion of SMO+IBK+NB+J48 97.28

Chandra Praysetyo Utomo et. al. 2014 ELM+ANN 96.40

Ahmed M. AbdelZaher et. al. 2015

DBN-NN(Conjugate gradient BP) 99.59
RIW-BPNN(Conjugate gradient BP) 98.86
DBN-NN (Levenberg Marquardt) 99.68
RIW-BPNN (Levenberg Marquardt) 99.03

Htet Thazin Tike Thein et. al. 2015 ANN 99.97

Shokoufeh Aalaei et. al. 2016
ANN 96.70
PS-classifier 96.90
GA-classifier 96.60

Kalpana Kaushik et. al. 2016 ANN 97.60

Layla Abdel-Hah et. al. 2017 ANN 98.00

Ms. Gayathri et. al. 2017 Cascade-forward BP 99.00

Reem Alyami et. al. 2017
ANN 96.70
SVM 97.14

S. Karthik et. al. 2018 DNN+RFF 98.20

Bibhuprasad Sahu et. al. 2019 ANN 97.00

This study 2021 R-DNN+ICA 100.00

Case 1: Results for DNN without ICA and 10-fold CV (Simple DNN

model)

In this case, the data set is split into 80-20% train-test set. Table 4.5 shows the

comparison of accuracy with different optimizers and different activation functions.68

We see that highest accuracy of 97.10% is achieved for Adam optimizer with Tanh

activation function in just 3.78 seconds. This accuracy is obtained by choice of

both the regularization parameter as 0.01 and learning rate as 0.0001 and number

of neurons at hidden layers as 25-10.

Table 4.5: DNN without ICA and 10-fold CV - Case 1

Optimization algorithm Activation function Accuracy (%) Time (seconds) Iterations

SGD
Logistic 94.15 6.24 2150
Tanh 95.10 63.23 465
ReLU 95.91 3.72 68

Adam
Logistic 97.07 11.33 1823
Tanh 97.10 3.78 2028
ReLU 96.49 3.35 1620

L-BFGS
Logistic 95.91 36.20 11197
Tanh 95.32 23.85 3576
ReLU 69.84 0.16 4

Figure 4.22 and fig. 4.23 shows the confusion matrix for train-test data set.

Figure 4.22: Confusion matrix for train data set - Case 1

Figure 4.24 represents the ROC curve and fig. 4.25 represents 2-class Precision-

Recall curve for WDBC classifier. These tools are used to measure the efficiency

and ability of model. This ROC curve is not best for classification as it is not closer

to the top left corner of ROC. Precision-Recall curve represents the achievement of

favorable outcome of prediction of network. Adam optimizer gives best result with

97.2% of precision and 98.1% of recall.

69

Figure 4.23: Confusion matrix for test data set - Case 1

Figure 4.24: 2-class Precision-Recall Curve - Case 2

Case 2: Results for R-DNN with ICA and 10-fold CV (Proposed R-DNN

model)

In this experiment, we use ICA for feature selection and 10-fold CV to train and

test the DNN. On choosing learning rate as 0.0001, regularization term as 0.5 and

pair of two hidden layers having 500 neurons each. We obtain best accuracy under

different scenarios but time taken is very large. But on choosing 25-10 neurons

at two hidden layers, we obtain 100% accuracy with Adam optimizer and ReLU

70

Figure 4.25: ROC Curve - Case 2

activation function within 2 seconds. Table 4.6 shows the comparison of accuracy

with different optimizers and different activation functions.

Table 4.6: R-DNN with ICA and with 10-fold CV - Case 2

Optimization algorithm Activation function Accuracy (%) Time (seconds) Iterations

SGD
Logistic 92.86 3.32 580
Tanh 94.64 3.05 779
ReLU 98.21 2.70 707

Adam
Logistic 98.25 3.32 580
Tanh 94.64 3.04 779
ReLU 100.00 1.80 643

L-BFGS
Logistic 100.00 305.75 3001
Tanh 100.00 249.69 3001
ReLU 23.21 1.19 3

Figure 4.26 and fig. 4.27 shows the confusion matrix of train-test data set for this

experiment. In both trained network and tested network, we achieved 100% accuracy

with 100% precision, recall and F1-score.

Figure 4.28 shows the ROC curve for WDBC classifier. This plot represents area

under the ROC curve which is 1 and it proves the perfect test of classifier.

Figure 4.29 represents the 2-class Precision-Recall curve which shows that diagnosis

of tumor is 100% correct.

We have also compared our results with the classification accuracy obtained by other

71

Figure 4.26: Confusion matrix for train data set - Case 2

Figure 4.27: Confusion matrix for test data set - Case 2

authors who worked for the same WDBC data set in their research using different

tools. These results are listed in table 4.7.

The detailed information of the both data set are given in the Appendix. Also,

above all computation is carried out using Python programming and it is given in

the Appendix.

72

Figure 4.28: 2-class Precision-Recall Curve - Case 2

Figure 4.29: ROC Curve - Case 2

73

Table 4.7: Performance analysis of the proposed R-DNN+ICA model

Authors Year Methods Accuracy (%)

I. Maglogiannis, et al. 2007 ANN 97.90

G. I. Salama, et al. 2012 Fusion of SMO + IBK + NB + J48 97.01

G. Zorluoglu, et al. 2015

ANN 97.54
SVM 98.07
Ensemble 98.77
C5.0 98.07

A. Mart, et al. 2015
RBFNN+ICA 69.63
SVM 97.47

S. Aalael, et al. 2016
ANN 97.30
PS-classifier 97.20
GA-classifier 96.60

A. F. M. Agarap, et al. 2018 MLP 99.04

D. A. Omondiagbe, et al. 2019
ANN+LDA 98.82
ANN+PCA 97.65

M. Tiwari, et al. 2020
ANN 99.30
CNN(DL) 97.30

This study 2020 DNN+ICA 100.00

74

4.6 Conclusion

In this study, we investigated and observed the influence of ICA and 10-fold CV in

the diagnosis of breast cancer. We compared the results to a simple model with pro-

posed hybrid R-DNN model. Using the WBC data set, we discovered that R-DNN

with ICA and 10-fold CV provide the best accuracy rate, as well as 100% precision

and recall. We observed DNN with ICA and 10-fold CV for WDBC data set gives

highest accuracy rate with 100% of precision and recall. With ICA, dimension is

significantly reduced without loss of generality and which made the faster classifi-

cation. The tools of ROC curve and 2-class Precision-Recall curve are also used to

measure the efficiency and ability of the model. By introducing additional term L2

regularization, the error is controlled so that the coefficients do not take on extreme

values when the function is excessively fluctuating. By modifying the weights of the

penalty term, the hyper parameter λ = 0.001 adjusts the trade-off between how well

the data fits and how complex the model is. If λ is increased, the model complexity

will contribute more to the cost. Because the minimal cost hypothesis has been cho-

sen. This means that a higher λ will favour the model with the lowest complexity.

Dimensions were decreased to only three features without sacrificing generality and

classification accuracy attained to 100%. In proposed model, the sensitivity and

specificity are 100%, resulting in the ROC curve of 1, indicating that there is no

erroneous prediction in either the benign or malignant cases studied. The results

obtained in this study are compared with the results of other researchers working

in the same area and we observed that our model is the best one which gives 100%

accuracy.

75

	Regularized Deep Neural Network with hybrid approach of Independent Component Analysis
	Introduction
	Learning using DNN and ANN
	Methodology

	Optimization algorithm
	Stochastic Gradient Descent
	Adaptive Moment Estimation
	L-BFGS
	Activation functions

	Independent Component Analysis
	Experiments and results
	Experiments and results of WBC data set
	Experiments and results of WDBC data set

	Conclusion

