List of Figures and Tables

Figures	Pa	ige No.
	General Introduction	
Fig. 1	Schematic representation of circadian rhythm operating in the	4
	biological system.	
Fig. 2	Core and peripheral circadian clocks of the body and factors	6
	manifesting alterations.	
Fig. 3	Pathological implications of chronodisruption.	13
Fig. 4	The diagram depicts cardiovascular disorders and the potential	15
	risk factors.	
Fig.5	The global burden of cardiovascular diseases marked in national	16
	and sub-national locations.	
Fig. 6	Prevalence of cardiovascular diseases in India.	17
Fig. 7	Schematic representation of arterial status at different stages of	19
	atherogenic progression.	
Fig. 8	Diagrammatic representation of arterial positioning and related	19
	acute or chronic pathological conditions.	
Fig. 9	Physiological composition of Low-Density Lipoprotein (LDL)	22
	particle.	
Fig. 10	Physiological status of oxidized LDL (ox-LDL) and its positioning	22
	in atheromatous plaque.	
Fig. 11	physiological composition of High-Density Lipoprotein (LDL)	24
	particle.	

- Fig. 12a Schematic diagram of the physiological functions of carbon 38 monoxide.
- Fig. 12b Schematic diagram of the effects of carbon monoxide on the 41 cardiovascular system.
- Fig. 13 Pictorial representation of canonical and non-canonical miRNA 46 biogenesis pathways operating in biological systems.
- Fig. 14 Schematic representation of various miRNAs functional in 49 different cells in atherogenic milieu.

Material and Methods

- Fig. M1 Photoperiodic regimen followed for instilling chronodisruption in 55 male C57BL/6J mice.
- Fig. M2 Microscopic images of THP-1 cells differentiated to MDMs at 62 different concentrations of PMA.
- Fig. M3 Assessing methylation pattern in the promoter of miR34a-5p using 68 MSP Assay.

Chapter 1

- Fig. 1.1 miRNA complementary to 3'UTR seed sequence of *Clock* gene in 93 human and mice.
- Fig. 1.2Venn diagram representing number of unique and common Clock94associated miRNAs shared between human and mice.
- Fig. 1.3 Potential gene targets and evolutionary conservation of miR34a- 96 5p.
- Fig. 1.4Pathological association of miR34a-5p.97

Chapter 2

Fig. 2.1	Altered <i>Clock</i> gene expression in thoracic aorta of C57BL/6J mice.	113
Fig. 2.2	Expression and epigenetic modification in the promoter region of	114
	miR34a-5p.	
Fig. 2.3	Circadian rhythm of miR34a-5p and its target genes in thoracic	116
	aorta of C57BL/6J mice.	
Fig. 2.4	Physiological traits of C57BL/6J mice.	117
Fig. 2.5	Food and water intake of C57BL/6J mice.	118
Fig. 2.6	Serum Lipid profile of C57BL/6J mice.	119
Fig. 2.7	Histomorphological analysis of thoracic aortae of C57BL/6J mice.	120
Fig. 2.8	Assessment of fibrillar content of the thoracic aortae of C57BL/6J	121
	mice.	
Fig. 2.9	Quantification of pro-atherogenic genes in thoracic aortae.	122
Fig. 2.10	Circadian rhythm of miR34a-5p and its target genes in HUVECs.	124
Fig. 2.11	Assessing Clock gene interaction in HUVECs with elevated	125
	miR34a-5p.	
Fig. 2.12	Immunocytochemical analysis for CLOCK gene expression	126
Fig. 2.13	Clock – miR34a-5p interaction	127

Chapter 3

Fig. 3.1	Network diagram of carbon monoxide (CO) association and	146
	regulation of circadian clock genes.	
Fig. 3.2	En face assay of thoracic aortae of Sprague Dawley (SD) rats.	147
Fig. 3.3.1	Assessing pro-atherogenic changes in thoracic aortae of SD rats.	148

- Fig. 3.1.2 Assessing pro-atherogenic changes in thoracic aortae of SD rats 149 treated with iCORM-A1 (inactive CORM-A1).
- Fig. 3.4 Serum profile of Sprague Dawley rats fed on atherogenic diet 150 only/or treated with CORM-A1.
- Fig. 3.5 Cytotoxicity of CORM-A1 evaluated at different doses in HUVEC 151 and MDMs.
- Fig. 3.6 Physiological assessment of CORM-A1 on expression of miR34a- 1525p and its gene target SIRT1.
- Fig. 3.7Atherogenic model development in HUVEC and MDMs153
- Fig. 3.8 Assessing levels of miR34a-5p in all the experimental models 154 (HUVEC, MDMs and aorate of SD rats).
- Fig. 3.9 miR34a-5p transcription inhibitors Zeb-1, Snai1 and Stat3 were 155 quantified in HUVEC, MDMs and thoracic aortae.
- Fig. 3.10 Assessment of epigenetic modification in disease condition and 156 CORM-A1 treated HUVEC and MDMs by MSP assay.
- Fig. 3.11 Association of carbon monoxide molecule with miR34a-5p 159 transcription factors P53 and NF-κB.

Chapter 4a

Fig. 4a.1	mRNA quantification of KLF4 gene.	171
Fig. 4a.2	KLF4 interaction with miR34a-5p.	173
Fig. 4a.3	Transcriptomal quantification of NF - κB gene.	174
Fig. 4a.4	Thoracic aortae harvested from Sprague Dawley rats assessed for	175
	atherogenic changes by Immunohistochemical (IHC) analysis	

- Fig. 4a.5 Endothelial cell activation and monocyte adhesion assessed with 176 adhesion assay.
- **Fig. 4a.6** Transcriptomal quantification of *ICAM1, VCAM1* and *MCP-1* **177** genes in thoracic aortae of SD rats, HUVEC and MDMs.
- Fig. 4a.7 Transcriptomal quantification of $TNF\alpha$, iNOS and Arg1 genes in 178 thoracic aortae of SD rats, HUVEC and MDMs.

Chapter 4b

- Fig. 4b.1 Mitochondrial DNA was quantification in all the experimental 192 models.
- Fig. 4b.2 MitoTracker Red staining for mitochondrial mass assessment in 193 HUVEC and MDMs.
- Fig. 4b.3 miR34a-5p antagomiR in atherogenic model system, comparison 196 with CORM-A1.
- Fig. 4b.4 Transcriptional quantification of mitochondrial biogenesis genes 197HUVEC, MDMs and thoracic aorta.
- Fig. 4b.5 Mitochondrial membrane potential assessed with JC1 staining in 198 HUVEC and MDMs.
- Fig. 4b.6Immunohistochemical analysis for HSP60.199
- Fig. 4b.7 Assessment of mitochondrial antioxidant genes TrxR2 and SOD2. 200
- Fig. 4b.8 Cellular redox status assessed by DCFDA staining in HUVEC and 201 MDMs.
- Fig. 4b.9 ATP quantification in HUVEC and MDMs and thoracic aortae of 202 SD rats.

- Fig. 4b.10 Assessing mitochondrial function with OCR and ECAR value 204 analysis analyzed with Seahorse assay in HUVEC.
- Fig. 4b.11 Assessing mitochondrial function with OCR and ECAR value 206 analysis analyzed with Seahorse assay in MDMs.

Concise Summary

- Fig. S1 Diagrammatic representation of miR34a-5p Clock interaction 216 and circadian rhythms.
- Fig. S2 Diagrammatic representation of miR34a-5p status in 223 atherosclerosis and CORM-A1 mediated miRNA lowering.

Tables

Page No.

General Introduction

Table 1	Metabolic	phenoty	pes	ob	served	after	clock	gene	9
	disruption.								
Table 2	Diagnostic tests for atherosclerosis.							29	
Table 3	miRNAs	reported	to	be	function	nal in	a ather	ogenic	50
	pathophysiology.								

Materials and Methods

Table M1	List of mice primers for qPCR.	76
Table M2	List of human primers for qPCR.	77
Table M3	List of rat primers for qPCR.	79
Table M4	List of primers used for Methylation Specific PCR Assay.	80
Table M5	List of primers for mtDNA Assay.	81

Chapter 1

Table 1.1Information on miR34a-5p – CLOCK docking, studied96using computational algorithms in human, mice, and rats.

Chapter 3

- Table 3.1Docking score and interactions of CO with target proteins160NF-κB and P53.
- Table 3.2Free energy calculations (MM-GBSA) of CO bound to 160NF-kb and p53.

Chapter 4a

Table 4a.1Information of miR34a-5p – KLF4 docking, studied using172computational algorithms in human, mice, and rats.