CHAPTER-4 MATERIALS & METHODS

Table of Contents

4.1 Phytochemical analysis of herbal extracts	
4.1.1 Procurement of herbal extracts:	59
4.1.2 Organoleptic analysis:	
4.1.3 Proximate Investigation of Herbal Extracts:	
4.1.4 TLC Profiling of Extracts:	60
4.1.5 Microbial Analysis:	61
4.1.6 Loss on Drying (LOD):	61
4.1.7 Heavy metal Analysis:	62
4.2 Determination of Secondary metabolites:	62
4.2.1 Estimation of Total Phenolics content:	62
4.2.2 Estimation of Total tannins content:	63
4.2.3 Estimation of Total flavonoids:	64
4.3 Formulation and Development:	64
4.3.1 Dose Selection:	64
4.3.2 Optimization of excipients is done by D optimal Factorial design software	65
4.3.2.1 Variables used to check	65
4.3.2.2 The obtained design matrix after	65
4.3.2.3 Desired values of variables:	66
2	
4.3.2.4 Results of Run in software:	67
4.3.2.5 Statistical analysis for Disintegration time:	67
4.3.2.6 Statistical analysis for Hardness:	69
4.3.3 Finalize the formula by Desirability Curve	71
4.3.1 Batch Analysis by check point:	73
4.3.2 Final concentration of excipients for tablet formulation	74
4.3.3 Stability Study:	74
4.4 Analytical method development using HPLC:	75
4.4.1 Analytical method development:	75
Instrument Specification:	75
4.4.1.1 Standard solution preparation.	75

Take 10 mg Oleanolic acid and dissolve in 10 ml of methanol. (1000 μ g/ml = 1ppm) form this	
prepared stock solution 1 ml of taken and diluted to 10ml using methanol	75
4.4.1.2 Teat sample Preparation:	75
4.4.2 Method Validation parameters:	76
Linearity:	76
Limit of Detection and Limit of Quantification:	77
Accuracy:	77
4.5 Analytical method development using HPTLC:	77
Instrumental Specification:	78
4.5.1.1Standard solution preparation	78
4.5.1.2 Teat sample Preparation:	78
4.5.2. Mobile Phase optimisation	78
4.5.2.1 Method Validation parameter:	79
Limit of Detection and Limit of Quantification:	79
Accuracy:	80
4.6. Anti-obesity evaluation of markers present in selected herbs using In Silico Approach	81
4.6.1 Markers and selected class of drugs for evaluation.	81
4.6.2 Pancreatic α-Amylase (Inhibitory activity):	82
4.6.2.1 Molecular Docking Study:	82
4.6.3 Pancreatic Lipase:	83
4.6.3.1Molecular Docking Study	83
4.6.4 PPARs (peroxisome proliferator activated receptor) (PPARalpha):	84
4.6.4.1 Molecular Docking Study:	84
4.6.5 Leptin (LEP-R, LEP-Rb):	85
4.6.5.1Molecular Docking Study:	85
4.6.6 Cannabinoid receptor type 1(CB1):	86
4.6.6.1 Molecular Docking Study	86
4.6.7 HMG CoA Reductase:	87
4.6.7.1 Molecular Docking Study:	87

Figure 4.8 Rsult of run with desired value	67
Figure 4.9 Statistical analysis using ANOVA	67
Figure 4.10 Statistical analysis using ANOVA	68

Development, Standardization and Evaluation of Herbal Formulation for Obesity

Figure 4.11 Plot contour for Disintegration time6	58
Figure 4.12 3D surface graph for DT6	59
Figure 4.13 Statistical analysis for Hardness6	59
Figure 4.14 Contour plot for Hardness	0'
Figure 4.15 3D surface plot for Hardness	'1
Figure 4.16 Contour plot or final batch	'2
Figure 17 D surface) for final batch7	2'
Figure 18Overlay plot7	'3
Figure 4.19Structures of (A) Natural Products NPs and (B) Drug molecules collected from ZINC	
latabase8	32

Table 10 Herbal extract used in the tablet formulation	59
Table 4.11Chemical test used for phytochemical screening	60
Table 4.12Thin Layer Chromatography system	61
Table 4.13Limit of Heavy metal	62
Table 4.14	65
Table 4.15 variables	65
Table 4.16 Design Matrix	65
Table 4.17 Received desired responses	66
Table 4.18T-Test Analysis	73
Table 4.19 Final concentration of excipients for tablet formulation	74
Table 4.21Conc. of Gallic acid and Oleanolic acid	76
Table 4.24HPTLC Linearity table	79

4.1 Phytochemical analysis of herbal extracts

4.1.1 Procurement of herbal extracts:

Table 1 Herbal extract used in the tablet formulation			
Extracts	Type of extract	Provider Company for Gift Sample	
Aghedo extract	Hydro alcoholic	Vasu Research centre	
Garcinia extract	Hydro alcoholic	Sun Pure	
CurryLeaves Extract	Hydro alcoholic	Tulsi Amrit	
Guggul extract	Ethyl acetate	Sun Pure	

4.1.2 Organoleptic analysis:

In this analysis all herbal extract are analyse by its colour, odour and compared with standard monographs.

4.1.3 Proximate Investigation of Herbal Extracts:

All herbal extracts are exposed to different chemical test to determine presence of different plant metabolites like alkaloids, tannin, glycoside, proteins, amino acid etc.

The pharmacological action of crude drugs is determined by the nature of its constituents. Plant species may therefore be considered as a biosynthetic laboratory not only for the chemical constituents that are utilized as food, but also for a multitude of compounds including alkaloids, terpenoids, flavonoids, glycosides, etc. which exert definite physiological effects. The phytochemistry of herbal drugs embraces a thorough consideration of these chemical entities that are termed as constituents. As the plant drugs contain so many phytoconstituents, it is essential to separate and screen them to find out which constituent is responsible for the physiological effect. For the identification of different phytoconstituents chemical tests are performed. The tests that were performed are given below:

Metabolites	Test	Procedure	
Carbohydrates	Molisch's Test	To 2-3 ml of aq. extract add few drops of alpha	
		naphthol solution in alcohol, shake and add conc.	
		H_2SO_4 from sides of the test tube. A violet ring	
		formed at the junction of two liquids indicates presence of carbohydrates.	
		presence of carbohydrates.	
Protein	Biuret Test	To 3 ml of aq. extract add 4% NaOH solution and	
		few drops of 1% CuSO ₄ solution. Appearance of	
		violet or pink color indicates presence of protein.	
	Precipitation	If protein is present, the test solution gives white	
	Test	colloidal precipitates with: 5% HgCl ₂ solution, 5%	
		CuSO ₄ solution, 5% ammonium sulphate solution.	
Amino Acids	Ninhydrin Test	To 3 ml of test solution add 3 drops of 5% ninhydrin	
		solution and heat in a boiling water bath for 10 min.	
		appearance of purple or bluish colour shows	
		presence of amino acids.	
Saponins	Foam Test	Shake the extract vigorously with water. Persistent	
		foam indicates presence of saponins.	
Coumarins	Fluorescence	The extract when made alkaline shows blue or green	
	Test	fluorescence if Coumarins are present.	
Tannins and	FeCl ₃ Test	Add 5% FeCl ₃ solution to the extract. Development	
Phenolics		of deep blue-black colour shows presence of tannins	
		and phenolics.	
Alkaloids	Dragendorff's	To 2 ml of extract add few drops of Dragendorff's	
	Test	reagent. Alkaloids give orange brown precipitates.	

 Table 4.2Chemical test used for phytochemical screening

4.1.4 TLC Profiling of Extracts:

✓ Traditionally, analytical TLC has found application in the detection and monitoring of compounds through a separation process. In the case of known natural products, qualitative and quantitative information can be gathered concerning the presence or absence of a metabolite or breakdown product. Qualitative initial screening of extracts can be routinely performed to ascertain the presence of specific components with the help of TLC. All the extracts were subjected to screening for different class of compounds using the following mobile phase and detection:

Extracts	Mobile Phase	Detection
Achyranthes aspera	Toluene:EthylAcetate:Methanol:	Spray with
extract	Acetone(14:4:1:1)	Methanolic H ₂ SO ₄
		UV scan @ 3666 nm
Garcenia indica	n butanol: Formicacid: water (4:2:4)	UV scan @t 273 nm
extract		
Murraya koenigii	Pet.Ether:Chloroform(7:3)	UV scan @ 254 nm
Extract		
Commiphora	Toluene: Acetone(9:1)	UV scan @240 nm
mukul extract		
	Table 4 2Thin Louise Chasmada anon ha susta	

Table 4.3Thin Layer Chromatography system

4.1.5 Microbial Analysis:

Raw materials of animal, plant and even mineral origin are frequently carriers of numerous, possibly pathogenic, microorganisms which can be passed on to subsequent processing stages. All starting material must therefore be stored in such a way that multiplication of any bacteria originally present is impossible. Normally a large number of bacteria and moulds are present in medicinal plant materials because of the contamination from the soil and environment. The practices of harvesting, handling and production may cause further contamination. Hence it is important to check and bring the microbial state to limits that are acceptable for consumption.

4.1.6 Loss on Drying (LOD):

It determines the amount of water and other volatile content in a substance. Moisture is an inevitable component of crude drugs which must be eliminated as far as possible. Excess moisture suggests that drug has been incorrectly prepared or incorrectly stored. It can lead to

breakdown of important constituents by enzymatic activity and may also encourage growth of yeast and fungi during storage.

Procedure:

- \succ 10 g of the drug, accurately weighed, was taken in an evaporating dish.
- ➤ It was placed in an oven at 105 °C for 5 hours and weighed.
- The drying was continued until constant weight was obtained. (Constant weight is reached when two consecutive weighing after drying for 30 minutes and cooling for 30 minutes in a desiccator show no more than 0.01 g difference.)

4.1.7 Heavy metal Analysis:

The medicinal plant materials can be contaminated with heavy metals which can be attributed to many causes including environmental pollution and pesticide residues. As these components even in trace amounts are dangerous, they have to be monitored. The heavy metals which are usually found and are tested in crude materials are: Lead, Arsenic, Cadmium and Mercury. The permissible limits for each are given below:

Table 4.4Limit of Heavy metal

Heavy Metal	Permissible Limits (ppm)
Lead	10
Arsenic	3
Cadmium	0.3
Mercury	1

4.2 Determination of Secondary metabolites:

4.2.1 Estimation of Total Phenolics content:

Total phenolics were determined in all the plant extracts using spectrophotometric method. Folin-Ciocalteu Assay method was used for the determination and gallic acid was taken as the reference standard.

Procedure:

▶ In a 25 ml volumetric flask, 1 ml of extract and 9 ml of distilled water were taken.

- > 1 ml of Folin-Ciocalteu phenol reagent was added to the mixture and shaken well.
- After 5 minutes, 10 ml of 7% sodium carbonate solution was added and the volume was made upto 25 ml with distilled water.
- A set of standard solutions of gallic acid (20, 40, 60, 80, 100 ppm) were prepared in the same manner.
- > The solutions were incubated at room temperature for 90 minutes.
- The absorbance was determined against reagent blank at 550 nm with a uv-visible spectrophotometer.
- Total phenol content was expressed as %w/w and was calculated from the regression equation obtained from the calibration curve of gallic acid.

4.2.2 Estimation of Total tannins content:

The reactivity of condensed tannins with molecules of biological significance such as proteins and polysaccharides has important physiological consequences, and hence its determination in plant materials is important. Total Tannins were estimated in the water extracts of all plants by AOAC Method. It is based on a redox titration using aq. solution of potassium permanganate as the titrant.

Procedure:

- 25 ml of the test solution was taken in a conical flask, then, 25 ml of indigo solution and 750 ml of distilled water were added to it.
- ➤ 0.1 N aq. solution of KMnO₄ was used for titration until blue coloured solution changed to green colour.
- > Then few drops at time were added until solution became golden yellow.
- > The readings were taken in triplicate.
- Blank reading was also taken.
- Standard solution of indigo carmine was prepared as following: 6 g indigo carmine was dissolved in 500 ml of distilled water by heating. After cooling 50 ml of conc. H₂SO₄ was added and the solution was diluted upto 1 litre and then filtered.

Calculation: The % tannin content was calculated by the following formula:

$$T(\%) = \frac{(V - V_0) \ x \ 0.004157 \ x \ 250 \ x \ 100}{g \ x \ 25}$$

Where, V=volume of 0.1 N aq. solution of KMnO₄ required for titration of sample; V_0 =volume of 0.1 N aq. solution of KMnO₄ required for blank; g=mass of sample taken for analysis.

4.2.3 Estimation of Total flavonoids:

Flavonoids were determined in all the plant extracts using spectrophotometric method. Aluminium chloride colorimetric assay was employed for the estimation and quercetin was taken as the reference standard.

Procedure:

- > In a 10 ml volumetric flask, 1 ml of extract and 4 ml of distilled water were taken.
- To it, 0.3 ml of 5% sodium nitrite solution was added and after 5 minutes 0.3 ml of 10% aluminium chloride was added and mixed well.
- After 5 minutes, 2 ml of 1 M sodium hydroxide solution was added and the volume was made upto 10 ml with distilled water.
- A set of standard solutions of quercetin (20, 40, 60, 80, 100 ppm) were prepared in the same manner.
- The absorbance was determined against reagent blank at 510 nm with a uv-visible spectrophotometer.
- Flavonoid content was expressed as %w/w and was calculated from the regression equation obtained from the calibration curve of quercetin.

4.3 Formulation and Development:

Excipients used for tablet formulation: Avicel PH 102, Talc, Magnesium Stearate, SSG, Cross Carmellose sodium, Syloid silica

Equipment used: Compression machine, digital weighing balance etc.

4.3.1 Dose Selection:

Dose of herbal extract is selected on the basis of different literature and available marketed formulation

Sr.No.	Plant Extract	Dose
1	Commiphora mukul	80-200mg
2	Murraya koenigii	75-250 mg
3	Garcinia Indica	80 -500 mg
4	Achyranthus aspera	70 -300 mg

Table 4.5

4.3.2 Optimization of excipients is done by D optimal Factorial design software

4.3.2.1 Variables used to check

Sr. No.	Variables	Lower limit	Upper limit	Unit
1.	Avicel PH102	10	20	gram
2.	SSG(Sodium starch Glycolate)	0.5	10	gram
3.	Cross Carmellose sodium	0.5	5	gram
4	Syloid silica	0.25	5	gram

Table 4.6 variables

4.3.2.2 The obtained design matrix after

Table 4.7 Design Matrix

Sr. No.	Avicel PH 102	Sodium starch glycolate	Cross carmellose sodium	Syloid slilica
1.	12	0.5	0.5	4.98
2.	13	6.68	0.57	0.25
3.	10	8.86	0.5	0.25
4.	18	10	0.5	4.68

Chapter-4

5.	10	5.0	0.54	3.0
6.	20	2.86	5.05	0.25
7.	14	2.22	2.98	2.56
8.	10	0.54	0.5	0.25
9.	18	5.58	7.5	0.00
10.	20	0.5	9.5	0.25
11.	15	5.0	5	0.25
12.	20	0.5	0.5	0.50
13.	11	4.32	0.5	3.0
14.	10	5.0	10	0.50
15.	10	4.95	9.8	0.5
16.	18	5.0	10	2.88
17.	16	5.0	7.5	3.00

4.3.2.3 Desired values of variables:

Table 4.8 Received desired responses

Sr. No.	Variable	Goals
1.	Avicel PH102	Target
2.	Sodium Starch Glycocollate	Maximize
3.	Cross Carmellose sodium	Maximize
4	Syloid silica	Maximize
5	Disintegration time(Minute)	Minimize
6	Hardness	Maximize

Std	Run	Block	Factor 1 A:Avicel PH10: gm	Factor 2 B:S.S.G gm	Factor 3 C:C.C.S. gm	D:Syloid	Response 1 Disintegration t Minutes	Response 2 Hardness Kg/cm2
2	1	Block 1	10.00	0.50	0.50	5.00	16	2.9
17	2	Block 1	14.10	6.64	0.57	0.25	15	3.5
14	3	Block 1	10.00	8.93	0.50	0.25	11	2.1
3	4	Block 1	20.00	10.00	0.50	5.00	15	4.9
1	5	Block 1	10.00	0.50	5.00	3.00	14.5	2.6
10	6	Block 1	20.00	5.03	2.86	0.25	19.5	5.6
16	7	Block 1	14.05	2.91	2.19	2.00	17	3.9
5	8	Block 1	10.00	0.50	0.50	0.25	17	3.1
8	9	Block 1	16.00	7.50	5.00	0.00	13	3.5
13	10	Block 1	20.00	10.00	0.50	0.25	17	4.2
7	11	Block 1	16.00	5.01	5.00	0.25	15.5	3.8
9	12	Block 1	20.00	0.50	0.50	0.50	25	6.2
11	13	Block 1	11.00	0.50	4.32	3.00	16	5.2
6	14	Block 1	10.00	10.00	5.00	0.50	9	2
4	15	Block 1	10.00	10.00	5.00	0.50	6.5	1.8
12	16	Block 1	20.00	10.00	5.00	2.00	13	3.4
15	17	Block 1	16.00	7.50	5.00	3.00	10.5	4

4.3.2.4 Results of Run in software:

Figure 4.1 Rsult of run with desired value

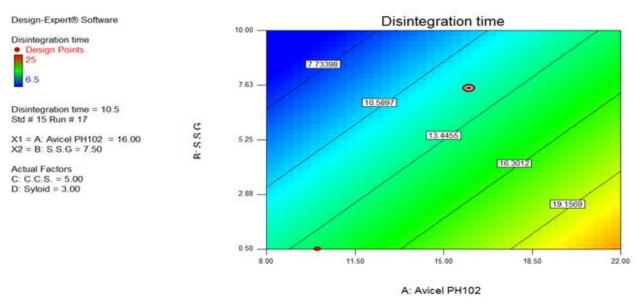
4.3.2.5 Statistical analysis for Disintegration time:

To determine the parameters ANOVA is performed.

Response	1 Di	sintegration time	e			
ANOVA fo	r Response Surfa	ace Linear Model	I			
Analysis of va	riance table [Parti	ial sum of square	es - Type III]			
	Sum of		Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Model	276.56	4	69.14	87.37	< 0.0001	significant
A-Avicel PH102	110.48	1	110.48	139.61	< 0.0001	
B-S.S.G	149.53	1	149.53	188.97	< 0.0001	
C-C.C.S.	25.43	1	25.43	32.14	0.0001	
D-Syloid	7.31	1	7.31	9.24	0.0103	
Residual	9.50	12	0.79			
Lack of Fit	6.37	11	0.58	0.19	0.9596	not significant
Pure Error	3.13	1	3.13			
Cor Total	286.06	16				

Figure 4.2 Statistical analysis using ANOVA

From the above analysis f value of 87.37 implies the model is important. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise.


Statistical analysis for Disintegration time

Std. Dev.	0.89	R-Squared	0.9668
Mean	14.74	Adj R-Squared	0.9557
C.V. %	6.04	Pred R-Squared	0.9355
PRESS	18.44	Adeq Precision	35.772

Figure 4.3 Statistical analysis using ANOVA

This above result shows that Pred R-Squared of 0.9355 is in realistic agreement with the Adj R-Squared of 0.9557. Adeq Precision shows noise to signal ratio.

Disintegration time = +14.97 +3.27* A -3.99* B -1.37* C -0.97* D

Form above analysis suggests that all excipients affect the DT.

Figure 4.4 Plot contour for Disintegration time

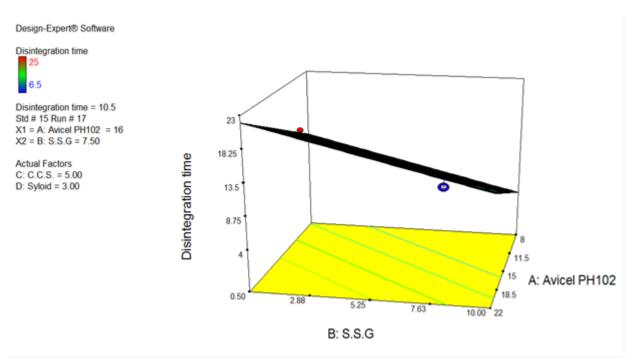


Figure 4.5 3D surface graph for DT

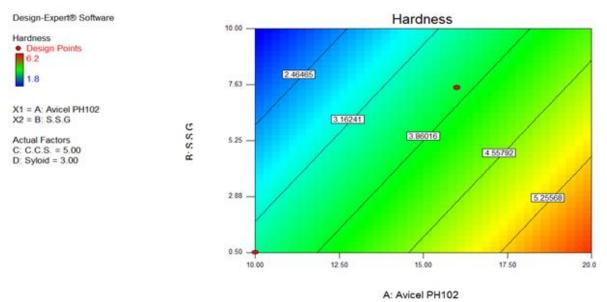
4.3.2.6 Statistical analysis for Hardness:

To find the important parameters and their interaction and analysis of variance is performed for each parameter.

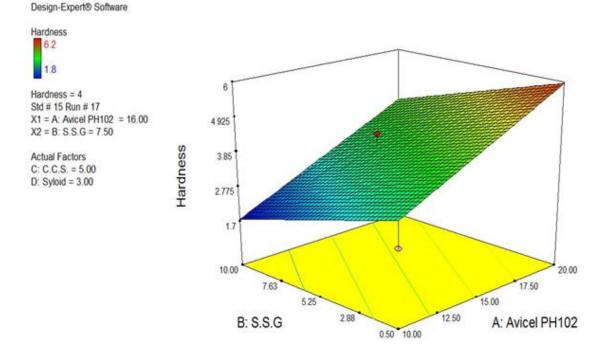
Response	2 H	ardness				
ANOVA fo	r Response Surf	ace Linear Mod	el			
Analysis of va	riance table [Part	ial sum of squa	ares - Type III]			
	Sum of		Mean	F	p-value	
Source	Squares	df	Square	Value	Prob > F	
Model	20.29	4	5.07	11.97	0.0004	significant
A-Avicel PH102	16.95	1	16.95	39.98	< 0.0001	
B-S.S.G	6.20	1	6.20	14.63	0.0024	
C-C.C.S.	0.038	1	0.038	0.091	0.7684	
D-Syloid	0.028	1	0.028	0.067	0.8006	
Residual	5.09	12	0.42			
Lack of Fit	5.07	11	0.46	23.03	0.1613	not significant
Pure Error	0.020	1	0.020			
Cor Total	25.38	16				

Figure 4.6 Statistical analysis for Hardness

Above result shows F-value of 11.97 suggested that model is significant.


Statistical analysis study Results for Hardness:

Std. Dev.	0.65	R-Squared	0.7996
Mean	3.69	Adj R-Squared	0.7328
C.V. %	17.65	Pred R-Squared	0.5706
PRESS	10.90	Adeq Precision	12.160


The above result of ANNOVA suggested that this model is use the design space.

Calculation in Terms of Coded Factors:

Hardness = +3.90 + 1.28 * A - 0.81 * B - 0.053 * C + 0.060 * D

Figure 4.7 Contour plot for Hardness

Figure 4.8 3D surface plot for Hardness

4.3.3 Finalize the formula by Desirability Curve

For Finalize the formula desirability curve is used. Based on the upper and lower limit

		Lower	Upper	Lower	Upper	
Name	Goal	Limit	Limit	Weight	Weight	Importance
Avicel PH is ta	arget = 16.00	10	16	1	1	3
S.S.G	maximize	0.5	7.5	1	1	3
C.C.S.	maximize	0.5	5	1	1	3
Syloid	maximize	1	3	1	1	3
Disintegra	minimize	6.5	15	1	1	3
Hardness	maximize	1.8	6.2	1	1	3

Final formula has maximum desirability

Number	Avicel PH102	S.S.G	C.C.S.	Syloid Dis	integration	Hardness	Desirability
1	16.00	7.50	5.00	3.00	12.2111	3.73134	0.724
2	15.89	7.50	5.00	3.00	12.1418	3.7043	0.723
3	16.00	7.44	5.00	3.00	12.2625	3.74219	0.721
4	16.00	7.50	4.95	3.00	12.2434	3.73299	0.721
5	15.90	7.50	5.00	2.93	12.1721	3.70415	0.718
6	16.00	7.35	5.00	3.00	12.3405	3.75764	0.717
7	15.37	7.50	5.00	3.00	11.7996	3.57065	0.717
8	15.15	7.50	5.00	2.99	11.6576	3.51371	0.713
9	16.00	7.50	5.00	2.85	12.2724	3.72796	0.712
10	16.00	7.50	4.74	3.00	12.3683	3.73783	0.710
11	14.87	7.50	5.00	2.98	11.4772	3.44156	0.707
12	14.80	7.49	5.00	3.00	11.4356	3.42681	0.706
13	15.42	7.19	5.00	3.00	12.0899	3.636	0.706
14	16.00	7.50	4.59	3.00	12.4621	3.74144	0.702
15	14.83	7.50	5.00	2.88	11.4912	3.42821	0.698
16	16.00	7.50	5.00	2.68	12.3417	3.72355	0.697
17	15.77	7.26	5.00	2.75	12.3637	3.70789	0.692
18	14.17	7.50	5.00	3.00	11.0141	3.26283	0.690
19	14.90	7.50	5.00	2.69	11.6201	3.44273	0.684
20	13.73	7.50	5.00	3.00	10.7274	3.15069	0.677
21	14.98	6.53	5.00	3.00	12.36	3.63709	0.673
22	13.26	7.50	5.00	3.00	10.4184	3.02967	0.659
23	14.46	7.50	5.00	2.41	11.441	3.32088	0.650
24	16.00	7.50	3.98	2.45	13.0562	3.74211	0.620
25	15.61	6.47	5.00	2.31	13.1086	3.79225	0.612

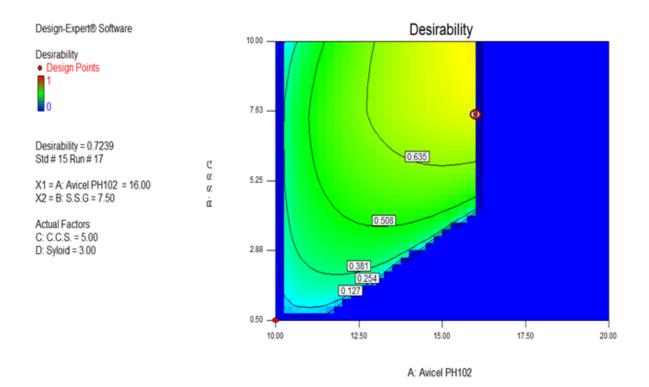


Figure 4.9 Contour plot or final batch

Design-Expert® Software

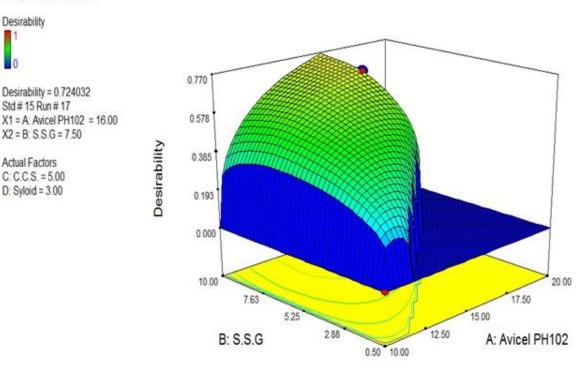


Figure 10 D surface) for final batch

Overlay Plot

Overlay plot is used for making a design space. Design space is formed in such a mode that the response would be between a specific limit.

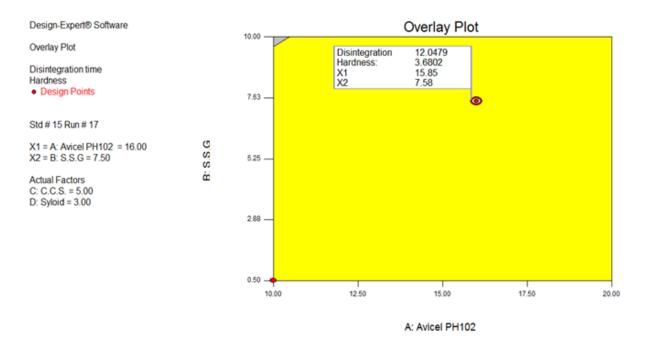


Figure 11Overlay plot

4.3.1 Batch Analysis by check point:

Table 4.9T-Test Analysis

Sr. No.	DT (Minutes)		Hardness(Kg/cm2)		
	Projected value	Practical value	Projected value	Practical value	
1.	10.50	9.50	3.50	3.80	
2.	10.50	10	3.50	3.50	
3.	10.50	9.80	3.50	3.40	
T-TEST	0.2276	•	0.6347		
value					

The result of T-Test analysis, we observed complies within the standard value showed in the above table. Hence we can predict that model ss validated.

Point Prediction and Confirmation:

Factor	Name	Level	Low Level	High Level	Std. Dev.	Coding	
A	Avicel PH102	15.00	10.00	20.00	0.000	Actual	
в	S.S.G	5.25	0.50	10.00	0.000	Actual	
с	C.C.S.	2.75	0.50	5.00	0.000	Actual	
D	Syloid	2.63	0.25	5.00	0.000	Actual	
Response	Prediction	SE Mean	95% CI low	95% CI high	SE Pred	95% PI low	95% PI high
Disintegration f	14.9683	0.26	14.40	15.54	0.93	12.95	16.99
Hardness	3.90396	0.19	3.49	4.32	0.68	2.43	5.38

From above table we can predict that we can achieve the disintegration in the range of 12.95 - 16.99 minutes and hardness 2.43 - 5.38 kg/cm².

4.3.2 Final concentration of excipients for tablet formulation.

Excipients	Range	Final selected concentration
Avicel PH 102	10-20%	16.66%
Syloid silica	0.25-5%	2.66%
Sodium starch glycolate	0.5-10%	7.5%
Cross carmellose sodium	0.5-5%	5%
Talc	1%	1%
Methyl paraben	1%	1%

Table 4.10 Final concentration of excipients for tablet formulation

4.3.3 Stability Study:

Stability study is used for the prediction of the shelf life of the herbal formulation. It is more important for the herbal formulation because it is very sensitive to moisture and microbial contamination. Tablet formulation was kept in sealed container and put in desiccators for 3 months. At the end of three month, the tablets were analysed.

4.4 Analytical method development using HPLC:

4.4.1 Analytical method development:

Chemical and reagents:

Oleanolic acid is purchased from Sigma Aldrich. Gallic acid is purchased from Sulab. Other reagents and chemical are purchased from Rankem and all are HPLC grade.

Instrument Specification:

Equipment	HPLC SHIMADZU LC-20AD
Column	Hyperchrom 5µ C18
Detector	SHIMADZU SPD-20A with UV/VIS Detector
Injector	Rheodyne 7725 injector
Software	LC solution

4.4.1.1 Standard solution preparation.

Standard solution Preparation (Gallic Acid)

Take 10 mg Gallic acid and dissolve in 10 ml of methanol. (1000 μ g/ml = 1ppm) form this prepared stock solution 1 ml of taken and diluted to 10ml using methanol.

Standard solution Preparation (Oleanolic acid)

Take 10 mg Oleanolic acid and dissolve in 10 ml of methanol. (1000 μ g/ml = 1ppm) form this prepared stock solution 1 ml of taken and diluted to 10ml using methanol.

4.4.1.2 Teat sample Preparation:

About 10 prepared herbal tablets are crushed and dissolve in 50 ml of methanol and then solution is filtered. From this solution 1 ml is taken and diluted up to 10 ml with methanol.

Lambda Max Selection for UV scanner

Both the selected markers are subjected to full UV scan at between 200-400nm. Form the scan data intercept is selected as a final scan wavelength for the detection.

Mobile Phase optimisation:

Mobile phase is optimizing by traditional trial and error techniques. Different solvents, like Methanol, Water, Acetonitrile and Orthophosphoric acid in different ratio. To finalize the mobile phase different parameter are observed like retention time, shape of the peak and tailing.

4.4.2 Method Validation parameters:

Developed Method is validated according to the ICH Guidelines and data complying with the standards were obtained. All validation parameters were check for developed method. Validation parameter includes Accuracy, Precision, Specificity, Selectivity, Linearity, LOD, LOQ, and Robustness.

Linearity:

Physical mixture with known concentration is prepared and injected in increasing concentration. From the above run the peak area is recorded. Graph is plotted peak area Vs concentration of markers.

Sr. No	Conc. Of Gallic acid in µg/ml	Conc. Of oleanolic acid in µg/ml
1.	1	50
2.	2	60
3.	3	70
4.	4	80
5.	5	90
6.	6	100

Table 4.11Conc. of Gallic acid and Oleanolic acid

Precision

The precision is determined by replicate analysis. For intraday precision, each Marker is analyzed at three time intervals in a single day for three different concentrations. For interday precision, each Marker is analyzed at three consecutive days for three different concentrations. The variation in the data is represented as %RSD.

Robustness

In this parameter the method is explored under different conditions like changes in the composition ratio of mobile phase, temperature, and flow rate of mobile phase.

Limit of Detection and Limit of Quantification:

The LOD and LOQ represent sensitivity of the method and were determined using the following equation:

LOD= $3.3\sigma/S$ and LOQ= $10\sigma/S$

Where, σ = average standard deviation; S= slope of the response

Accuracy:

The accuracy of the method was determined by the Standard Addition Method. Known amount of Markers were added to the sample at three different levels (80, 100 and 120 %) and the mixture was analysed. Percent Recovery was calculated as the mean of three determinations at each standard addition level.

4.5 Analytical method development using HPTLC:

Chemical and reagents:

Oleanolic acid and E-Guggulsterone is purchased from Sigma Aldrich. Gallic acid is purchased from Sulab. Other reagents and chemical are purchased from Rankem and all are HPLC grade.

Instrumental Specification:

HPTLC aluminium plates pre-coated with silica gel 60 F254 were used as the stationary phase in this study. Sample application was done using Camag Linomat V Sample Applicator. The linear ascending development was carried out in a Camag twin trough glass chamber saturated with mobile phase. Scanning was done using Camag Linomat Scanner 3. Data acquisition and integration was performed using winCATS software version 1.2.3

4.5.1.1Standard solution preparation

Standard solution Preparation (Gallic Acid)

Take 10 mg Gallic acid and dissolve in 10 ml of methanol. (1000 μ g/ml = 1ppm) form this prepared stock solution 1 ml of taken and diluted to 10ml using methanol.

Standard solution Preparation (Oleanolic acid)

Take 10 mg Oleanolic acid and dissolve in 10 ml of methanol. (1000 μ g/ml = 1ppm) form this prepared stock solution 1 ml of taken and diluted to 10ml using methanol.

Standard solution Preparation (E-Guggulsterone)

Take 10 mg E-Guggulsterone dissolved in 10 ml Methanol to prepare 1000 μ g/ml solution. Dilute 2 ml of this solution up to 10 ml methanol to prepare 200 μ g/ml

4.5.1.2 Teat sample Preparation:

About 10 prepared herbal tablets are crushed and dissolve in 50 ml of methanol and then solution is filtered. From this solution 1 ml is taken and diluted up to 10 ml with methanol. Sample application is done by using Linomat applicator.

4.5.2. Mobile Phase optimisation

Mobile phase is optimizing by traditional trial and error techniques. Different solvents, like Methanol, Water, Toluene and ethyl acetate in different ratio. Final mobile phase is selected based on the good resolution and separation of spot and retention factor is considered.

4.5.2.1 Method Validation parameter:

Developed Method is validated according to the ICH Guidelines and data complying with the standards were obtained. All validation parameters were check for developed method. Validation parameter includes Accuracy, Precision, Specificity, Selectivity, Linearity, LOD, LOQ, and Robustness.

Linearity:

Linearity of the method is performed by analysing three markers in increasing concentration spotted on plate and then scan and area is calculated. The calibration curve is plotted by using the peak area v/s concentration of compound.

Sr.No	Injection volume (µl)
1.	5
2.	10
3.	15
4.	20
5.	25
6.	30

Table 4.12HPTLC Linearity tabl

Precision

The precision is determined by replicate analysis. For intraday precision, each Marker is analyzed at three time intervals in a single day for three different concentrations. For interday precision, each Marker is analyzed at three consecutive days for three different concentrations. The variation in the data is represented as %RSD.

Robustness

In this parameter the method is explored under different conditions like changes in the composition ratio of mobile phase, temperature, and flow rate of mobile phase.

Limit of Detection and Limit of Quantification:

The LOD and LOQ represent sensitivity of the method and were determined using the following equation:

LOD= $3.3\sigma/S$ and LOQ= $10\sigma/S$

Where, σ = average standard deviation; S= slope of the response

Accuracy:

The accuracy of the method was determined by the Standard Addition Method. Known amount of Markers were added to the sample at three different levels (80, 100 and 120 %) and the mixture was analysed. Percent Recovery was calculated as the mean of three determinations at each standard addition level.

HPTLC method is used for developed formulation:

Above Method is used for the quantification of marker compounds in the developed herbal tablets. Finally quantification is done by following quation.

% Assay = $\frac{Area \ of \ sample \ x \ Std \ wt \ taken \ x \ Sample \ dilution \ x \ 100}{Area \ of \ std \ x \ Std \ dilution \ x \ Sample \ wt \ taken}$

HPTLC of Mahanimbine:

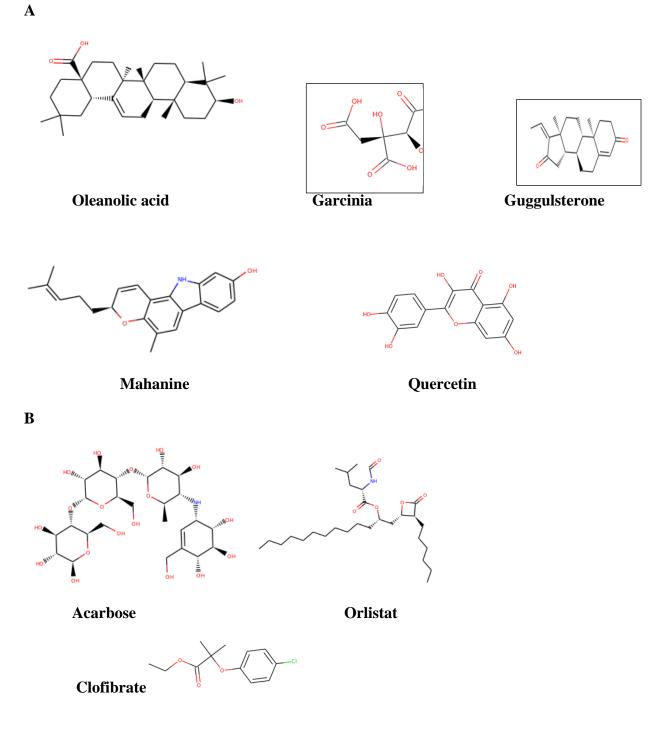
Sample preparation:

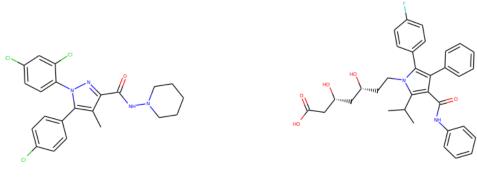
Standard stock solution $(1\mu g/ml)$ was prepared in HPLC grade methanol. Sample solution was also prepared in HPLC grade methanol.

Sample:

 5μ L of the extract was applied.

Mobile phase: n-hexane: ethyl acetate (9:1)


Stationary phase: The stationary phase was precoated plate, Aluminum oxide 150 F254, neutral


Detection:

The plate was scanned at 254 nm. The derivatization can also be done with 5 or 10 % alcoholic H2SO4

4.6. Anti-obesity evaluation of markers present in selected herbs using In Silico Approach.

4.6.1 Markers and selected class of drugs for evaluation.

Rimonabant

Atorvastatin

Figure 4.12Structures of (A) Natural Products NPs and (B) Drug molecules collected from ZINC database

4.6.2 Pancreatic α-Amylase (Inhibitory activity):

4.6.2.1 Molecular Docking Study:

Identification of Active site of α-Amylase:

The PDB structure (6GXV) of the AliC GH13 alpha-amylase from *Alicyclobacillus* sp. from www.rcsb.org has been selected for the molecular docking activity. Co Crystallized structure of alpha amylase is available in complex with alpha-glucosidase inhibitors Acarbose. A good resolution (2.07 A) X-Ray diffraction protein structure showed interactions with D-glucopyranose. Based on the interactions of glucopyranose observed with the protein structures, active site of the protein structure has been identified. The identified active site has been again confirmed with the online server 3D Ligand Site (https://www.wass-michaelislab.org/3dlig/index.html).

Molecular Docking using Autodock Vina:

To obtain details about the binding interaction as well as the relative orientation of the natural products (NPs), molecular docking was used. To obtain the comparative results, the standard drugs are also considered for the molecular docking. The protein structure of alpha-amylase was obtained from the protein data bank (PDB id: 6GXV, resolution: 2.07 Å). Autodock MGL Tool was used to modify the protein (alpha-amylase) and ligands (NPs and Drug molecules) structures. The protein (alpha-amylase) was prepared by removing water, unwanted chain and a bound ligand. Missing amino acids have been checked, and the protein structure has been added with polar hydrogen and Kollman charges. After which Grid box

was prepared according to the identified active site. Center Grid box was selected using x: 66.817, y: 24.937, z: -6.517, and the number of points in all dimensions x,y,z were considered 40x40x40 Å, and the grid spacing was selected as 0. 50 Å.

The structures of NPs and the standard drugs were downloaded from the ZINC database. Addition of Gasteiger charges, detecting root, and choosing torsions was done from the Autodock Tools panel's torsion tree for the preparation of ligands. The docking procedure was carried out using the Lamarckian genetic algorithm. Docking of natural products as well as drugs was carried out using AutoDock vina on windows platforms with machine configuration of 8 GB RAM and Intel i5 processor.

4.6.3 Pancreatic Lipase:

4.6.3.1Molecular Docking Study

Identification of Active site of human gastric lipase

The PDB structure (1HLG) of recombinant human gastric lipase with the resolution of 3.0-Å was selected which is described under mammalian acid lipase family. The Crystallized structure of human gastric lipase is available in complex with 2-acetamido-2-deoxy-beta-D-glucopyranose. Based on the interactions of glucopyranose observed with the protein structures, active site of the protein structure has been identified. The identified active site has been again confirmed with the online server 3D Ligand Site (https://www.wass-michaelislab.org/3dlig/index.html).

Molecular Docking using Autodock Vina

To obtain details about the binding interaction as well as the relative orientation of the natural products (NPs), molecular docking was used. To obtain the comparative results, the standard drugs are also considered for the molecular docking. The protein structure of human gastric lipase was obtained from the protein data bank (PDB id: 1HLG). Autodock MGL Tool was used to modify the protein (human gastric lipase) and ligands (NPs and Drug molecules) structures. The protein (human gastric lipase) was prepared by removing water, unwanted chain and a bound ligand. Missing amino acids have been checked, and the protein structure has been added with polar hydrogen and Kollman charges. After which Grid box was prepared according to the identified active site. Center Grid box was selected using x: 51.910, y: 70.449, z: 82.856, and the number of points in all dimensions x,y,z were considered 40x40x40 Å, and the grid spacing was selected as 0. 50 Å.

The structures of NPs and the standard drugs were downloaded from the ZINC database. Addition of Gasteiger charges, detecting root, and choosing torsions was done from the Autodock Tools panel's torsion tree for the preparation of ligands. The docking procedure was carried out using the Lamarckian genetic algorithm. Docking of natural products as well as drugs was carried out using AutoDock vina on windows platforms with machine configuration of 8 GB RAM and Intel i5 processor.

4.6.4 PPARs (peroxisome proliferator activated receptor) (PPARalpha):

4.6.4.1 Molecular Docking Study:

Identification of Active site of Human Peroxisome proliferator-activated receptors (PPARs) alpha

The PDB structure (3VI8) of Human Peroxisome proliferator-activated receptors (PPARs) alpha from www.rcsb.org has been selected for the molecular docking activity. The protein is Co Crystallized structure with a synthetic agonist APHM13. A good resolution (1.75 Å) X-Ray diffraction protein structure showed interactions with agonist APHM13. Based on the interactions of agonist APHM13 with the protein structures, active site of the protein structure has been identified. The identified active site has been again confirmed with the online server 3D Ligand Site (https://www.wass-michaelislab.org/3dlig/index.html).

Molecular Docking using Autodock Vina

To obtain details about the binding interaction as well as the relative orientation of the natural products (NPs), molecular docking was used. To obtain the comparative results, the standard drugs are also considered for the molecular docking. The protein structure of Human PPAR alpha was obtained from the protein data bank (PDB id: 3VI8). Autodock MGL Tool was used to modify the protein (alpha-amylase) and ligands (NPs and Drug molecules) structures. The protein (alpha-amylase) was prepared by removing water, unwanted chain and a bound ligand. Missing amino acids have been checked, and the protein structure has been added with polar hydrogen and Kollman charges. After which Grid box was prepared according to the identified active site. Center Grid box was selected using x: 12.325, y: 5.943, z: -4.419, and the number points in all dimensions x,y,z were considered 40x40x40 Å , and the grid spacing was selected as 0. 50 Å.

The structures of NPs and the standard drugs were downloaded from the ZINC database. Addition of Gasteiger charges, detecting root, and choosing torsions was done from the Autodock Tools panel's torsion tree for the preparation of ligands. The docking procedure was carried out using the Lamarckian genetic algorithm. Docking of natural products as well as drugs was carried out using AutoDock vina on windows platforms with machine configuration of 8 GB RAM and Intel i5 processor.

4.6.5 Leptin (LEP-R, LEP-Rb):

4.6.5.1Molecular Docking Study: Identification of Active site of human obesity protein, leptin

The PDB structure (1AX8 and 3V6O) of human obesity protein, leptin and leptin receptorantibody complex from www.rcsb.org has been selected for the molecular docking activity. The aim was to consider Leptin receptor and its antibody complex using cocrystallized structure. The selected good resolution (2.40 Å and 1.95 Å) X-Ray diffraction protein structure showed interactions with monoclonal antibody 9F8 fab fragment Heavy chain and 2-acetamido-2-deoxy-beta-D-glucopyranose. Based on the interactions, active site of the protein structure has been identified and the identified active site has been again confirmed with the online server 3D Ligand Site (https://www.wass-michaelislab.org/3dlig/index.html).

Molecular Docking using Autodock Vina

To obtain details about the binding interaction as well as the relative orientation of the natural products (NPs), molecular docking was used. To obtain the comparative results, the standard drugs are also considered for the molecular docking. The protein structure of human obesity protein, leptin and leptin receptor-antibody complex were obtained from the protein data bank (PDB id: 1AX8 and 3V6O). Autodock MGL Tool was used to modify the protein (human obesity protein, leptin and leptin receptor-antibody complex) and ligands (NPs and Drug molecules) structures. The proteins were prepared by removing water, unwanted chain and a bound ligand. Missing amino acids have been checked, and the protein structure has been added with polar hydrogen and Kollman charges. After which Grid box was prepared according to the identified active site. Center Grid box was selected using x: 57.983, y: - 31.125, z: 4.499 for 1AX8 & x: 38.665, y: 34.386, z: 15.606 for 3V6O and the number of

points in all dimensions x,y,z were considered 40x40x40 Å, and the grid spacing was selected as 0. 50 Å.

The structures of NPs and the standard drugs were downloaded from the ZINC database. Addition of Gasteiger charges, detecting root, and choosing torsions was done from the Autodock Tools panel's torsion tree for the preparation of ligands. The docking procedure was carried out using the Lamarckian genetic algorithm. Docking of natural products as well as drugs was carried out using AutoDock vina on windows platforms with machine configuration of 8 GB RAM and Intel i5 processor.

4.6.6 Cannabinoid receptor type 1(CB1):

4.6.6.1 Molecular Docking Study Identification of Active site of Cannabinoid receptor type 1(CB1)

The PDB structure (7V3Z) of Cannabinoid receptor type 1(CB1) from www.rcsb.org has been selected for the molecular docking activity. The structure of cannabinoid receptor type 1 is available in complex with small molecules like flavin mononucleotide, cholesterol and 2-[(1r,2r,5r)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol. Based on the interactions of small molecules with the protein structure, active site of the protein structure has been identified. The identified active site has been again confirmed with the online server 3D Ligand Site (https://www.wass-michaelislab.org/3dlig/index.html).

Molecular Docking using Autodock Vina

To obtain details about the binding interaction as well as the relative orientation of the natural products (NPs) and selected drug molecules, molecular docking was used. To obtain the comparative results, the standard drugs are also considered for the molecular docking. The protein structure of cannabinoid receptor type 1 was obtained from the protein data bank (PDB id: 7V3Z). Autodock MGL Tool was used to modify the protein (cannabinoid receptor type 1) and ligands (NPs and Drug molecules) structures. The protein (cannabinoid receptor type 1) was prepared by removing water, unwanted chain and a bound ligand. Missing amino acids have been checked, and the protein structure has been added with polar hydrogen and Kollman charges. After which Grid box was prepared according to the identified active site. Center Grid box was selected using x: -40.487, y: -111.762, z: 247.410, and the number of

points in all dimensions x,y,z were considered 40x40x40 Å , and the grid spacing was selected as 0. 50 Å.

The structures of NPs and the standard drugs were downloaded from the ZINC database. Addition of Gasteiger charges, detecting root, and choosing torsions was done from the Autodock Tools panel's torsion tree for the preparation of ligands. The docking procedure was carried out using the Lamarckian genetic algorithm. Docking of natural products as well as drugs was carried out using AutoDock vina on windows platforms with machine configuration of 8 GB RAM and Intel i5 processor.

4.6.7 HMG CoA Reductase:

4.6.7.1 Molecular Docking Study:

Identification of Active site of human HMG-CoA reductase

The PDB structure (1DQA) of the human HMG-CoA reductase from www.rcsb.org has been selected for the molecular docking activity. Co Crystallized structure of human HMG-CoA reductase is available in complex with HMG, CoA, and NADP+. A good resolution (2.00 Å) X-Ray diffraction protein structure showed interactions with HMG, CoA, and NADP+. Based on the interactions observed with the protein structures, active site of the protein structure has been identified. The identified active site has been again confirmed with the online server 3D Ligand Site (https://www.wass-michaelislab.org/3dlig/index.html).

Molecular Docking using Autodock Vina

To obtain details about the binding interaction as well as the relative orientation of the natural products (NPs), molecular docking was used. To obtain the comparative results, the standard drugs are also considered for the molecular docking. The protein structure of human HMG-CoA reductase was obtained from the protein data bank (PDB id: 1DQA). Autodock MGL Tool was used to modify the protein (human HMG-CoA reductase) and ligands (NPs and Drug molecules) structures. The protein (human HMG-CoA reductase) was prepared by removing water, unwanted chain and a bound ligand. Missing amino acids have been checked, and the protein structure has been added with polar hydrogen and Kollman charges. After which Grid box was prepared according to the identified active site. Center Grid box was selected using x: -17.851, y: 15.494, z: 25.000, and the numberof points in all dimensions x,y,z were considered 60x60x60 Å, and the grid spacing was selected as 0. 50 Å.

The structures of NPs and the standard drugs were downloaded from the ZINC database. Addition of Gasteiger charges, detecting root, and choosing torsions was done from the Autodock Tools panel's torsion tree for the preparation of ligands. The docking procedure was carried out using the Lamarckian genetic algorithm. Docking of natural products as well as drugs was carried out using AutoDock vina on windows platforms with machine configuration of 8 GB RAM and Intel i5 processor.