CHAPTER - VI ## ELASTICITY OF SUBSTITUTION # 1. Nature of the CES Production Function: The constant elasticity of substitution (CES) or SMAC production function is a definite improvement over the Douglas type of production function examined in the preceding chapter. This function allows the elasticity of substitution to take any (constant) value. Since the function is no longer bound to unit elasticity. it becomes suggestive of the direction of change in relative shares of the factors of production. The assumption of constant elasticity of substitution in the function, although, is a restriction on the form of production possibilities. we have to have the precise nature of the elasticity of substitution to arrive at certain estimates, particularly when the general formula of the elasticity of substitution does not allow for its direct calculations. The obvious advantage in using this function lies in the fact that, to explain the substitutability between different inputs, the economists need not rely on the extreme production ^{1.} K.J.Arrow; H.B.Chenery, B.Minhas and R.M.Solow: "Capital Labor Substitution and Economic Efficiency", Review of Economics and Statistics, August, 1961. For the generalisation of the production function, see V. Mukerji, "A Generalised SMAC Function with constant ratios of Elasticity of Substitution", Review of Economic Studies, October, 1963. functions like Leontief and Douglas types where the values of elasticity of substitution are tied up either with zero or unity. The CES production function in fact includes both these functions as special cases. The authors of the CES production function found different degrees of substitutability in different types of production. Because of numerous technological alternatives available in different sectors, they argue that the uniform substitutability in different industries is most unlikely. Their study is primarily based on the empirical observations that the value added per worker within a given industry varies across countries with the wage rate. "A regression of the labour productivity on the wage rate shows a highly significant correlation in all industries and also a considerable variation in the regression coefficients". 2 SMAC tested two relations : $$Y = c + dw \qquad ...(i)$$ and $$Y = Aw^{\circ}$$ or $\log Y = \log A + \epsilon \log w$...(ii) Where Y = product per worker, w = wage rate, and one is a constant equal to the elasticity of substitution, (for proof see mathematical note given in Appendix VI-2). The authors fitted these relations to international data relating to 24 three-digit industries of 19 countries. ^{2.} SMAC, Ibid, p.225. Both the relations show good fits. However, the logarithmic (second) relation, according to the authors, is found better. The logarithmic relation is also tested in the case of the U.S. manufacturing industries by Solow. 3 The CES production function (under constant returns to scale assumption) is defined as: $$V = Y \left\{ \delta b^{-\beta} + (1 - \delta) a^{-\beta} \right\}^{-\beta}$$ where V = output; a and b are labour and capital inputs respectively; and S, ρ and Y are distribution, substitution and efficiency parameters respectively. The production function defined in this way gives the value of elasticity of substitution as: $c = \frac{1}{1 + 7}$ which also happens to be the value of the exponent of the wage rate in the relation $Y = A w^{c}$ (see Appendix VI-2) ### 2. Scope of the Present Analysis: The authors of the CES production function, as noted above, have tested the relation to different industries spread over 19 countries. But, as Solow⁴ points out, the technological conditions are bound to differ from country to country due to differences in industrial ^{3.} R.M.Solow: "Capital, Labor and Income in Manufacturing" in the Behaviour of Income Shares, Studies in Income and Wealth, NBER, New York), Vol. 27, 1964. ^{4.} R.M. Solow: Ibid. p. strategies followed by different countries. The technological conditions between the ragions within a country, however, are definitely more homogeneous than between countries for a given industry. This section, thus, attempts to estimate the relation on the basis of cross-section data of two-digit ASI manufacturing industries for the year 1962 which has been found to be relatively normal year. Incidently, it falls exactly in the middle of the period 1959-1965 for which the Annual Survey of Industries data are available. The following regions constitute the observations of the study: Andhra Pradesh, Assam, Bihar, Gujarat, Kerala, Madhya Pradesh, Madras (Tamil Nadu), Maharashtra, Mysore, Orissa, Punjab, Rajasthan, Uttar Pradesh, West Bengal, Delhi and other regions. By fitting the logarithmic relation to the above data, the elasticities of substitution and other parameters for different industries are estimated. The hypothesis that value added per worker and wages per worker are uncorrelated is being tested in section 3. The relative share of labour in relation to whether the industry is elastic (6>1) or inelastic (0 < ϵ < 1) i.e. the distributive aspect of the SMAC production function, is examined in Section 4. Value added is used as a measure of output. Labour input refers to the number of workers employed Wages to workers include all payments made in cash as compensation for work done during the year. ## 3. Estimates of Elasticity of Substitution: Table VI-1 shows the results of the regressions of value added per worker on wage rate taken in the logarithmic forms. Column 4 of the table shows the estimates of the elasticity of substitution between labour and capital in different industries. To check the goodness of the fit the standard errors of the coefficients are presented in column 5. It can be seen that there are eleven industries namely, food (including beverage), tobacco, textiles, furniture and fixtures, paper and paper products, printing and publishing, rubber products, chemicals, basic metal ^{5.} For calculations that follow we have used output net of depreciation. As long as depreciation remains a stable proportion of output over the observations for a given industry, the estimate of 6 obtained from logarithmic relationship will not be affected even if we take output gross of depreciation (as done in the preceding chapter). ^{6.} The number of workers is computed by taking the total attendance of workers in all the shifts on all working days and dividing it by the number of days worked. While the number of man-hours worked during the year is calculated by multiplying the number of workers employed in each shift by the number of hours in the shift and aggregating the products for all shifts on all the working days in the year. Thus, so long as a working day (or shift) has more or less a uniform number of hours, it makes no difference whether we consider manhours worked or total number of workers. Table VI-1 Regressions of Value Added Per Worker on Wages per Worker; and Rank Correlation Between Wage Share and Wage Rate. | I.
No. | Industry | Degrees
of
freedom | Log a | b | S.e.
of b | Rank cor-
relation | |---------------------------|--|--------------------------|----------------|--------|-----------------|-----------------------| | | 1 | 2 | 3 | | | 6 | | 20 -
2 1 | Food(including
Beverage) | 14 | 0.2537 | 1.1136 | 0.1145 | 0705 | | 22 | Tobacco | 5 | 0.9946 | 0.8027 | 0.1355 | 1785 | | 23 | Textiles | 11 | 0.8478 | 1.9705 | 0.1635 | + .2308 | | 24 -
29 | Wearing
Apparel* | 4 | 1.2084 | 0.7060 | 0.3082 | + .3715 | | 25 | Wood and Cork | 6 | 1.4579 | 0.6450 | 0 .2 892 | + .8334 | | 26 | Furniture and fixtures | 8 | -0.3620 | 1.1809 | 0.1233 | - .3696 | | 27 | Paper | 6 | -0.3713 | 1.2845 | 0.1463 | 1904 | | 28 | Printing &
Publishing | 13 | -1.4323 | 1.5392 | 0.0865 | 4071 | | 30 | Rubber
products | 6 | -0.6251 | 1.3685 | 0.0905 | 5952 | | 31 | Chemicals | 9 | 1.7286 | 0.6456 | 0.1760 | + •3546 | | 32 -
33 | Petroleum, Coal & non-metallic mineral | 12 | 3. 3862 | 0.0328 | 0.2728 | 4417 | | 34 | Basic metal industries | 9 | -0.9428 | 1.4209 | 0.0770 | 5727 | | 35 | Metal
products | 8 | 1.6259 | 0.6005 | 0.2718 | + .1031 | | 36 | Machinery | 11 | -0.1227 | 1.1509 | 0.1220 | 1373 | Table VI-1 (concluded) Regressions of Value Added Per Worker on Wages Per Worker; and Rank Correlation Between Wage Share and Wage Rate. (concluded). | I.
No. | Industry | Degrees
of
freedom | _ | Ъ | S.e.
of b | Rank cor-
relation coeffe-
between
wageshare
and wage
rate | |------------|-------------------------|--------------------------|---------|--------|--------------|---| | | 1 | 2 | 3 | 4. | 5 | 6 | | 37 | Electrical machinery | 8 | 2.3700 | 0.3884 | 0.2884 | + .3697 | | 3 8 | Transport-
equipment | 14 | -3.5215 | 2.1874 | 0.0610 | 5735 | | 39 | Miscellaneous | 6 | 2.7956 | 0.1767 | 0.5123 | - •3333 | ^{*} Wearing Apparel includes foot-wear, made up textile goods, leather and Fur products. Source: Calculated on the basis of data given in Appendix VI-1. industries, machinery (excluding electrical machinery), and transport equipment which show excellent fit. Wearing apparel, wood & cork, and metal products show the coefficient to be significant at 10 per cent level. This leaves complete failure in the case of petroleum, coal & non-metallic mineral, electrical machinery and miscellaneous industries. On the whole, therefore, the results are quite satisfactory - the SMAC relation fits well to the Indian manufacturing industries. For the poor results in some of the industries it is enough to remember that "The hardy econometrician must learn to take his lickings in the conscious realisation that you can't win 'em all". 7 Out of the 17 two-digit industries examined, nine industries namely, food (including beverage), textiles, furniture and fixtures, papers and paper products, printing and publishing, rubber products, basic metal, machinery, and transport-equipment show the value of elasticity of substitution greater than one. There are six industries which give the estimates of elasticity of substitution to be statistically different from one. These industries are textiles, printing and publishing, rubber products, petroleum, coal and non-metallic mineral, basic metal, and transport equipment. The values of the elasticity of substitution has ranged from as low as 0.033 in Petroleum, ^{7.} R.M.Solow: Ibid, p.114. coal and non-metallic mineral to as high as 2.187 in transport equipment. The simple average of the values of the elasticity, however, has turned out to be 1.013. ## 4. Distributive Aspect of the Function: - Teller The estimates of the elasticity of substitution between labour and capital enable us to relate the observed labour's share with capital labour ratio and/or relative prices of factors of production, and hence to test the distributive aspect of the SMAC relation. Assuming no technical change, the increase in the price of labour relative to the cost of capital would mean an increase in marginal rate of substitution between labour and capital - the shift in inputs would lead to an increase in marginal product of labour relative to marginal product of capital. But the increase in marginal rate of substitution would make the capital/labour ratio to rise more than proportionately if the elasticity of substitution between labour and capital is greater than one. This implies that the relative share of labour would decline with a relative increase in the wage rate. Similarly, the relative share of labour will increase with the increase in wage rate if the elasticity of substitution is less than unity.8 ^{8.} c.f. C.E.Ferguson: "Cross-section Production Functions and the Elasticity of Substitution in American Manufacturing Industries", Review of Economics and Statistics, August, 1963. Assuming the cost of capital to be uniform over the regions, thus, we should find the wage rate and the relative labour share to move in the opposite directions in those industries where elasticity of substitution is greater than one, and to move in the same direction where the elasticity of substitution is less than one. Column 6 of Table VI-1 gives the estimates of coefficients of rank correlation between wage rate and the corresponding share of labour in value added in different industries. It can be easily seen that out of nine elastic industries (industries with elasticity of substitution greater than unity) eight industries show the negative signs before the coefficients. In the case of remaining (eight) inelastic industries, five show positive signs before the coefficients. Thus, out of the total of seventeen industries, thirteen industries confirm the relations; the SMAC production function fits well to the Indian manufacturing industries so far as the distributive aspect is concerned. ### 5. Conclusion: The index of substitutability of the factors of production is the elasticity of substitution between factors of production. The formula of the elasticity of substitution, however, does not allow for its direct calculation. It is the SMAC production function that comes to our rescue. The function, although restricted to the constant value of elasticity of substitution, does provide a method of its estimation in different industries. From the estimates of elasticity of substitution, we are in a position to test the distributive aspect of the function. The estimated values of the elasticity of substitution in different industries has ranged from as low as 0.03 to as high as 2.19. There are nine industries which show the values of elasticity of substitution more than unity. The unweighted arithmetic mean of the values of the elasticity turns out to be 1.013, slightly more than unity. There is, thus, an indication of wage share being inversely related with the variables like capital/labour ratio and wage rate - the hypothesis to be tested in the following Chapter. Value Added Fer Worker, Wages Per Worker and Wages Share, By Industry and Region, 1962. APECHDIX VI-1 | Ŋ | y [*] ({ | 27
28 | 26 | | 25 | 24&
29 | r) | <i>N</i> | 208 | Indu-
stry | |---------------------------------------|--------------------------------------|----------------------------|------------------------------------|-----------------------|---------------|---------------------|-------------------------------------|----------------------------------|---------------------------------|--------------------| | сн | > a # ; | 4 H D 4 | 4 d D · | с ы | Þ Q | ₩ > | СВР | a ₩ Þ a | В | 1 1 | | 1 1 1 | 1229 | 1708 | 94
189
2.0103 | i l | 1 1 | 1 I | 1523
1063
.6981 | .2529
817
453 | 3641
921 | Andhra-
Pradesh | | † [[| 1 1 1 |) | 1 1 1 | 866
.2253 | 3844 | ; t | t t 1 | 1 1 649 | 4434
731 | Assam | | 1 1 1 | 1757 | 3 t l l | 768
1067
1-3850 | i i | i i | 1 1 | 1 1 1 | .3499 | 3099
1084 | Bihar | | 3470
1380
•3978 | 1536
.4553 | 2602
1065
.4064 | 2014
970
•4812 | 1 1 | i t | l t | 3032
1786
•5892 | . 3505 | 3133
1098 | Gujarat | | 4474
1123
• 2509 | 1465
1465
•4557 | 5
5
1 1 1 | 1 1 1 | 757
•3606 | .5337
2100 | 1 739
928 | 2110
1209
•5729 | .4378 | 906
397 | Ke'ala | | † 1 t | 1770
1379
.7791 | | 1 1 1 | 1 1 | i i | 1 1 | 2384
1504
.6309 | .3722
1100
655
.5951 | 2040 | Madhya
Pradesh | | 9108
2107
•2313 | 4283
1759
.4106 | | 717
205
-2853 | 414 | .3371 | 3367
1135 | 3537
1723
•4873 | .1251
.3206
.795 | 8492 | Wadras | | 5123
1553
•3031 | 3842
1597
.4417 | 5608
1524
• 2717 | 5055
2771
•4691 | 1117 | ,585 4 | 3276
1386 | 3428
2085 | .2172
2112
863 | 718º0
1562 | Mahara-
shtra | | 1 1 1 | 3711
1110
.2990 | 5500
1386
• 2520 | 1 1 1 | 704 | 1901 | 1 1 | 2232 | . 25.78
682
159 | 2595
663 | | | 1 } { | 1322
1140
•8622 | 4916
1204
•2449 | 1 1 1 | | ;
;
; | l i | f i i | . 2202 | 2146 | ore Orissa | | 9911
2155
. 2174 | 2600
1632
.6275 | 7132
1570
• 2200 | 913
761
•8320 | 1011 | 014 | 1 | 3120
1152 | . 2944 | .3994.
1173 | н | | I I 1 | 2025
1614
.7971 | t t t | 1 1 1 | ; ; ; | i † 1 | 1 | 1876
1028 | 2400 | . 2715 | Ra | | 1 1 1 | 2211
1315
•5946 | 4009
1551
•3868 | . 770
668
.8658 | 1 1 1 | .6550 | 1806 | 2494
1397
5602 | - 4394 | 3085
135 5 | Uttar
Pradesh | | 9275
2643
• 2849 | 3808
1733
.4551 | | | 2269
993
• 4376 | .5178 | 2014 | 2579
1255
. 4866 | .2276
1385
723 | 3529
826 | B | | 2739 11388
951 2341
•3467 •2055 | 6046 2973
2219 1398
.3670 4702 | - 4572
- 1458
- 3335 | 3480 887
1804 754
•5186 8502 | - 2506 | .4092 | 2615 | 3977 2369
2107 1091
5297 4606 | . 2214 .1897
- 8216
- 2010 | 16 17
5231 6439
1191 1222 | Delhi | APPENDIX VI-1 (concluded) Value Added Per Worker, Wages Per Worker end Wages Share, By Industry and Region, 1962 (00702) Walladd). | | | | 39 | | | 38 | | | 37 | | | 36 | | | 35 | | | 34 | | ,)) | 325 | | | 31 | - | Indu-
stry
No. | |-------------|---------|-------|------|--------|--------------|-------|--------|--------|------|---------------|------|------|--------|--------------|------|---------|------|------|-------------------|------|-------------------|--------|----------|-------|----|----------------------| | A.
11 | Q | tt | Ħ. | a | ы | A | G | ਖ਼ | F | Q | ಟ | A | Ω | ಓರ | ħ | Ω | ಹ | ₽ | Q | ы | ₽ | α | À | ₽ | | i | | Value added | t | 1 | ı | .7351 | 1539 | 2093 | . 2569 | 795 | 3090 | 1 | ı | 1 | 1 | ı | 1 | 1 | ı | i | . 3057 | 1533 | 5014 | .2259 | 1 = 28 | 6763 | 2 | Andhra-
Pradesh | | ner | 1 | t | t | .4703 | 1372 | 2921 | .0391 | 1826 | 2176 | . 3538 | 1819 | 5143 | 1 | ì | 1 | ı | 1 | t | ı | ı | 1 | ì | j | ı | 3 | Assam | | worker. | 1 | t | 1 | .6583 | 1160 | 1762 | 1 | 1 | ł | .5517 | 1693 | 3069 | .2021 | 620 | 3066 | .3252 | 3213 | 9879 | .3652 | 1229 | 3364 _. | .4655 | 2021 : | 4340 | 4 | Bihar | | | .3422 | 427 | 1248 | .7655 | 1408 | 1839 | ŀ | ł | ŧ | . 3492 | 1095 | 3137 | .5370 | 977 | 1820 | . 5428 | 1156 | 2130 | . 2908 | 950 | 3266 | .1710 | 1740 | 10175 | S | Guja-
rat | | B = We mad | .6693 | 535 | 799 | .8414 | 1424 | 1693 | .3752 | 1597 | 4256 | .3119 | 983 | 3169 | .4321 | 1950 | 4516 | ŧ | 1 | ı | .4913 | 850 | 1730 | .2733 | 2619 | 9581 | 6 | Kerala | | 5 | 1 | ı | 1 | .9433 | 1215 | 1288 | t | ı | 1 | ı | • | 1 | aut.* | 1 | ţ | í | 1 | ı | . 2791 | 1306 | 4679 | i | 1 | i | 7 | Madhya-
Pradesh | | | .5632 | 1009 | 1791 | . 3543 | 1939 | 5473 | .3801 | 1459 | 3759 | .4316 | 1497 | 3469 | .3782 | 148 1 | 3916 | .3671 | 1091 | 2971 | .2277 | 1378 | 6048 | . 2527 | 1 098 | 4345 | 8 | Madras | | ţ | .3785 | 134.5 | 3552 | .4240 | 2212 | 5217 | . 2944 | 1851 | 6285 | . 3865 | 1902 | 4915 | .4002 | 1547 | 4615 | . 4 259 | 2044 | 4798 | .1561 | 1435 | 9191 | .1734 | 2517 | 14514 | 9 | Mahara-
shtra | | W | 1 | ŧ | 1 | .1497 | 1569 | 10475 | ţ | , | 1 | .2348 | 1725 | 7344 | ţ | ŧ | ŧ | .4258 | 1162 | 2730 | .4780 | 898 | 1879 | .0929 | 829 | 8916 | 10 | Mysore | | | ı | 1 | t | .7121 | 1418 | 1987 | ı | 1 | 1 | .8402 | 1417 | 1687 | ŧ | i | ı | : 6983 | 763 | 1093 | ı | ı | ı | i | 1
8 | ι, | 11 | Orissa
> | | | 3209 | 1499 | 4675 | .6216 | 1373 | 2217 | · 255d | 1077 | 4211 | .4923 | 1378 | 2799 | .5727 | 1741 | 5041 | .4971 | 1245 | 2504 | .8547 | 1057 | 1236 | .5201 | 1146 | 2204 | 12 | Fun jab | | , , | ı | 1 | į | .70se | 14/5 | 2081 | ı | ı | ı | 1 | 1 | 1 | ı | 1 | ţ | ı | 1 | 1 | • Sh. 2 | 734 | 4426 | 1 | l,g | i | 13 | Raja-
sthan | | 7 7 7 7 | .6234 | 884 | 1417 | .6136 | 1 353 | 2204 | .3903 | . 1312 | 5361 | .6156 | 1092 | 1774 | .4910 | 1200 | 2413 | .5417 | 1007 | 1860 | .6567 | 886 | 1349 | .1614 | 1005 | 6122 | 14 | Uttar
Pradesh | | | . 3549 | 1473 | 3929 | .4350 | 1931 | 4438 | . 2986 | 1797 | 6016 | .3609 | 1821 | 5046 | . 3934 | 1780 | 4525 | .3673 | 1788 | 4920 | .449 ⁿ | 903 | 2008 | .2330 | 1678 | 7203 | 15 | West
h Bengal | | | 1 | i | 1 | .5712 | 1467 | 2569 | ·3050 | 1003 | 3254 | .7429 | 1597 | 2150 | .5247 | 1044 | 1990 | .4039 | 982 | -431 | .4900 | 938 | 1913 | ì | • | 1 , | 16 | Delhi | | 0 (2 5.0 | . A 298 | 1576 | 3666 | .4919 | 1937 | 3938 | .4028 | 1773 | 4401 | .4087 | 1855 | 4538 | .3743 | 1139 | 3043 | .2446 | 1476 | bu32 | .2773 | 1439 | 5186 | . 2041 | 1892 | 9268 | 17 | ers | Source: Calculated on the basis of data provided in Annual Survey of Industries, 1962. vaille added per worker; B = Wages per worker; C = Wages share in value added. 4, ### APPENDIX VI-2 Derivation and Properties of the CES Production Function: Let the production function be: $$V = F(a,b)$$ where V = output, a and b inputs. Assuming constant returns to scale, $$V = a f(b/a)$$ $f_a = f(b/a) - \frac{b}{a} f'(b/a) = f(x) - x f'(x)$ (see also mathematical note of Chapter X). $$f_b = f'(b/a) = f'(x)$$ (putting b/a = x) $f_{ab} = -f''(b/a) b/a^2$ The elasticity of substitution is defined as : $$6 = \frac{f_a f_b}{f_{ab} V} \text{ (see R.G.D. Allen, Mathematical Analysis for Economists, 1960, p.343)}$$ $$= \frac{\{f(x) - x f'(x)\} f'(x)}{-f''(x) \cdot \frac{x}{a} \cdot V}$$ $$= \frac{f'(x) \{f(x) - x f'(x)\}}{-f''(x) x \cdot V}, \quad (Y = \frac{V}{a})$$ (i) Under competitive market: $$f_a = w = wage rate$$ (a= labour input) i.e. $f_a = w = f(x) - x f'(x)$... $$\frac{dw}{dw} = f'(x) \frac{dx}{dw} - x f''(x) \frac{dx}{dw} - f'(x) \frac{dx}{dw}$$... $$1 = -x f''(x) \frac{dx}{dw}$$ Now, $$\frac{dx}{dw} = \frac{dx}{dy} \cdot \frac{dy}{dw}$$ $$= -x f''(x) \frac{dx}{dw} \cdot \frac{dy}{dw}$$ Since $y = f(x)$ $$\frac{dy}{dx} = f'(x)$$... $$\frac{dy}{dw} = -\frac{f'(x)}{x f''(x)} \frac{dy}{dw}$$ $$= \frac{f'(x) \frac{f(x) - x f'(x)}{f'(x)xy}}{-f''(x)xy}$$ $$= \frac{f'(x) \frac{f(x) - x f'(x)}{f(x)xy}}{-f''(x)xy} = 6$$ i.e. $$6 = \frac{dy}{y} / \frac{dw}{w} = \frac{d \log y}{d \log w}$$ or $$d \log y = 6 \log w + \log A$$... $$y = AW$$ where $y = \text{output per worker}$ $$w = \text{wages per worker}.$$ (ii) If $6 = 1$ (Cobb-Douglas) Then $\log y = \log A + \log w$ $A^{-1} = \frac{w}{v} = \frac{aw}{V}$ (=labour's share.) \cdot - log A = log w - log y $... \log A^{-1} = \log \left(\frac{\mathbf{w}}{\mathbf{v}} \right)$ i.e. $$\frac{1}{A} = \angle$$ (of Cobb-Douglas) and property share = $1 - \frac{1}{A} = \beta$ and $\frac{\angle}{\beta} = \frac{1}{A-1}$ (in CES) Then $$\log y = \log A + 6 \log w$$ $$= \log A + 6 \log \{f(x) - x f'(x)\}$$... $$y = A \{f(x) - x f'(x)\}^6$$ = $A \{y - x \frac{dy}{dx}\}^6$ $$y'' = \left\{ A(y-x \frac{dy}{dx})^{6} \right\}^{6}$$ $$= A^{1/6} \left(y-x \frac{dy}{dx} \right)$$... $$y^{1/6} A^{-1/6} = y - x \frac{dy}{dx}$$... $$x \frac{dy}{dx} = y - y^{1/6} A^{-1/6}$$ $$\frac{dy}{dx} = \frac{y - y^{1/6} A^{-1/6}}{x} = \frac{y(1-y^{1/6} A^{-1/6})}{x}$$ If we put $$A^{-1/6} = 4$$ and $\frac{1}{6} - 1 = 6$ Then $$\frac{dy}{dx} = \frac{y(1-xy)}{x} = \frac{y-y^{p+1}x}{x}$$ Put $$u = \frac{1}{y^{p}} = y^{-p}$$ i.e. $y = u^{-1/p}$ $$\therefore \frac{dy}{du} = -\frac{1}{p} u^{-1/p^{-1}} = -\frac{1}{p} u^{-(p+1)}$$ $$\frac{dy}{dx} = \frac{u - u}{u} \cdot \frac{-1/\rho (\rho+1)}{x} \cdot \frac{-1/\rho - \frac{-$$ = \$ b-P + < a-P ... $$V = (\beta b^{-p} + \langle a^{-p} \rangle)^{-1/p}$$ (CES prod. $f^{\underline{n}}$ in its simple form) (iv) Putting $$\angle + \beta = \gamma^{-}$$, $\beta \gamma^{\prime} = \delta$ i.e. $\beta = \delta \gamma^{-}$? and $\Delta = \gamma^{-}$. $\beta \gamma^{\prime} = \delta \gamma^{-}$? $= \gamma^{-} - \delta \gamma^{-}$? $= \gamma^{-} - \delta \gamma^{-}$? Then $$V = \{ \delta x^{-1}b^{-1} + x^{-1}(1-\delta) a^{-1} \}^{-1/p}$$ $$= \{ x^{-1}(\delta b^{-1} + (1-\delta) a^{-1}) \}^{-1/p}$$ $$= (x^{-1})^{-1/p} \{ \delta b^{-1} + (1-\delta) a^{-1} \}^{-1/p}$$ $$= Y \{ \delta b^{-1} + (1-\delta) a^{-1} \}^{-1/p}$$ where Υ = efficiency parameter δ = distribution parameter and ρ = substitution parameter. (v) To introduce the degree of scale: $$V = \gamma \left\{ \lambda^{-\rho} (8b^{-\rho} + (1-8)a^{-\rho}) \right\}^{-\rho} \left\{ \gamma (\lambda^{-\rho})^{-\nu\rho} = \gamma \lambda^{\nu} \right\}$$ where $v = \text{degree of scale.}$ Thus, $$V = Y \{ \delta b^{\rho} + (1-\delta) a^{\rho} \}^{-\nu/\rho}$$ $$\lambda V = V (\lambda a, \lambda b) = Y \{ \delta (\lambda b)^{-\rho} + (1-\delta) (\lambda a)^{-\rho} \}^{-\nu/\rho}$$ $$= Y \{ \delta \lambda^{-\rho} b^{-\rho} + (1-\delta) \lambda^{-\rho} a^{-\rho} \}^{-\nu/\rho}$$ $$= Y [\lambda^{-\rho} \{ \delta b^{-\rho} + (1-\delta) a^{-\rho} \}]^{-\nu/\rho}$$ $$= Y (\lambda^{-\rho})^{-\nu/\rho} \{ \delta b^{-\rho} + (1-\delta) a^{-\rho} \}^{-\nu/\rho}$$ $$= \lambda^{\nu} Y \{ \delta b^{-\rho} + (1-\delta) a^{-\rho} \}^{-\nu/\rho}$$ It is homogeneous of order v: v=1 indicates constant returns to scale; v>1, increasing returns to scale; and v<1, decreasing returns to scale. (vi) Derivation of $$\delta$$ given the CES production function: $$V = Y \left\{ \delta b^{-l} + (1-\delta) a^{-l} \right\}^{-1/l}$$ $$= Y \left(\delta_1 b^{-l} + \delta_2 a^{-l} \right)^{-1/l} \qquad \text{(putting } \delta = \delta_1 \text{ and } 1 - \delta = \delta_2 \text{)}$$ $$\therefore \log V = \log Y - \frac{v}{l} \log \left(\delta_1 b^{-l} + \delta_2 a^{-l} \right)$$ $$\therefore \frac{1}{V} \frac{\partial V}{\partial b} = -\frac{v}{l} \cdot \frac{-l \delta_1 b^{-l-1}}{\delta_1 b^{-l} + \delta_2 a^{-l}}$$ $$= \frac{v \delta_1 b^{-(l+1)}}{\left(\frac{V}{Y} \right)^{-l/v}} \qquad \left(V = Y \left(\delta_1 b^{-l} + \delta_2 a^{-l} \right)^{-1/l} \right)$$ $$= v \delta_1 b^{-(l+1)} \left(\frac{V}{Y} \right)^{-l/v}$$ $$f_{b} = \frac{3b}{3b} = v \, \delta_{1} \, V^{-6} b^{-(P+1)} \, v^{6} v \, .$$ $$= v \, \delta_{1} \, V^{-6} v \, . \, \bar{b}^{(P+1)} \, . \, v^{(1+6)} v > 0$$ Similarly $f_a = v \delta_2 \gamma^{-\rho/\nu} a^{-(\rho+1)} \cdot v^{(1+\rho/\nu)} > 0$ and $$R = \frac{f_a}{f_b} = \frac{\delta_2}{S_1} (b/a)^{p+1}$$ { $R = \text{marginal rate of substitution}}.$ Now $$6 = \frac{a/b \ d(b/a)}{\frac{1}{R} \ dR} = \frac{d(b/a)}{dR} \cdot \frac{R}{b/a}$$ $$= \frac{d(b/a)}{\frac{\delta_{2}(\rho+1)(b/a)^{2} \cdot d(b/a)}{\delta_{1}}} \cdot \frac{\frac{\delta_{2}(b/a)^{\rho+1}}{\delta_{1}}}{\frac{\delta_{2}(b/a)^{\rho+1}}{\delta_{1}}} \begin{cases} \mathbb{R} = \frac{\delta_{2}(b/a)^{\rho+1}}{\delta_{1}} \\ \cdot \cdot d\mathbb{R} = \frac{\delta_{2}(b/a)^{\rho+1}}{\delta_{1}} \end{cases}$$ $$= \frac{1}{\rho+1}$$