
CHAPTER VI

FORECASTING OF INFLATION

In this section, an investigation of better forecast model of inflation in Nepal is 

examined. It is also discussed core inflation.

1. FORECASTING OF INFLATION IN NEPAL

Forecasting is generally used to predict the future values of the economic 

phenomenon. An important reason for formulating an econometric model is to 

generate forecasts of one or more economic variables. There are two 

forecasting methodologies; first is, econometric forecasting- based on a 

regression model that relates one or more dependent variables to a number of 

independent variables; and second is, time series forecasting- based on attempts 

to predict the values of a variable from past values of the same variable. In the 

present study, both methodologies have been applied to forecast inflation in 

Nepal. The validity of the forecasting models has also been examined. 

Moreover, within one methodology, the forecastability of the model is 

examined by considering quarterly data frequency and annual data frequency.

(A) Trend Method

Under the trend method, extrapolation and interpolation of historical data is 

attempted through estimation of alternative trend equations. A trend equation 

is one in which the variable under forecast is made simply as a function of 

time. A basic characteristic of time series is its long-run growth pattern. In 

addition, the autoregressive trend model is another variant of the trend model 

that expresses the forecast variable as a function of its own lagged values. If 

we believe that this upward trend exists and will continue, we can construct a
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simple model that describes the trend, and can be used to forecast the series. 

There are various extrapolation models that characterize the time series. Some 

important extrapolation trend models for consumer price index of Nepal for 

both the annual and quarterly data frequency are examined.

Table 6.1
Inflation Forecasting by Trend Methods 

(1975-2002)

Model
Data Frequency R2 DW

Quarterly Annual Qtr Arun Qtr Anm

Linear trend model P, =-7.61 + 1.347'
(-3.87)* (43.62)*

Pt =-5.69+5.3517’ 
(-1.45)** (21.48)*

0.94 0.94 0.06 0.10

Logarithmic linear trend 
model (exp. growth)

InP, =2 66+0.027’ 
(189.81)* (106.03)*

Ini) = 2.69+0097 
(103.22)* (55.83)*

0.99 0.99 0.26 0 34

Autoregressive trend 
model

Pt =0.60+1.01P(_,
(1.33) *(176.05)*

P, = 2 27 +1 047).,
(2.36)* (82.50)*

0 99 0.99 2.30 1.19

Logarithm autoregressive 
trend model

In P, =0.03 + 1.00 In PM 
(1.65) **(205.32)*

ini) =0.13 + 0.99 In 
(3 21) * (93.92) *

0.99 0.99 2.39 1.60

Figures given below the coefficients in the parenthesis are t values. Asterisks (*) signifies coefficients 
significant at 1% level, asterisks (**) signifies coefficient significant at 5% level, and asterisks (***) 
signifies coefficients significant at 10% level.

The estimated coefficients of inflation equations, as shown in Table 6.1, give 

in-sample forecast for data ranging from 1975:1 to 2002:IV (in the case of 

quarterly data) and 1975 to 2002 (in the case of annual data). On the basis of 

in-sample estimation, ex-post forecasts for the year 2003 are estimated to 

examine the predictability of the in-sample forecast model in Table 6.2. The 

evaluation of forecasts is made by Mean Absolute Prediction Error (MAPE), 

which is considered as surrogative measure that combines all errors into one 

measure. Lesser is MAPE found, better is the forecastability of a model. An 

ex-post forecast of inflation and their corresponding MAPE for quarterly and 

annual data are presented in Table 6.2.
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Table: 6.2
Ex-post Forecast of CPI for the Year 2003

Price Indices Model

Quarterly
Actual Actual

(log)
Linear
Trend

Exponential
Growth

Auto­
regressive

Log/Auto­
regressive

(1) (2) (3) (4) (5) (6) (7)
20031 156 20 5.0511 141.94 5.2442 154.56 5.0446
200311 154 43 5 0394 143.28 5.2673 156.64 5.0617
2003 III 153 30 5.0324 144.61 5.2904 158.75 5.0788
2003 IV 15517 5.0445 145.94 5.3135 160 87 5.0985
MAPE . - 10.83 0.2369 2.9305 0.0282
Annual
2003 154.78 5.0421 144.02 5.2800 157 45 5.0732
MAPE - - 10.78 0.2378 2.6466 0.0311

The actual data in absolute and logarithmic forms are given in column (2) and 

(3) respectively. Similarly, the results of ex-post forecasts are presented in 

column (4) to (7). In both the quarterly and annual data frequency, the MAPEs 

of autoregressive model are found to be lesser than that of the linear trend 

model evaluating better forecasting ability. Similarly, the log/autoregressive 

model is seen to be possessing lesser MAPE in comparison to the exponential 

growth model, and hence found to be better forecasting performance. 

Autoregressive model is found better, in the case of annual data, whereas, 

log/augoregressive model is in the case of quarterly data.

(B) Regression Method

Under the regression method, a causal model is first formulated, and estimated 

using the historical data. It is verified on the basis of theoretical and statistical 

tests, and then used to derive ex-post forecasts. Because of the lack of 

availability of quarterly data series other than price indices and monetary 

aggregates, annual data are used to examine the forecastability of multivariate 

model, and quarterly data series are used to forecast bi-variate model. 

Therefore, forecastability of pure monetarists model is examined using 

quarterly data. The estimated results of the best fitted inflation function and its 

regression coefficients with test statistics are shown in Table 6.3.
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Table 6.3
Inflation Forecasting by Regression Model 

(1975:I-2002:IV)
Data Frequency R2 DW MAPE

For the Year 
2003

Quarterly Annual Qtr Aran Qtr Aran Qtr Aran

In P, =-1.63 + 0.59 In Ml, 
(-32.37X111.94)*

Ini’ =-1.67+ 0.60 In Ml,
(-21.14)*(71.73) * 0.99 0.99 0.94 0.76 00968 01084

lni)=-1.61+0.2SM, +03 M4_, 
(-33 74)* (3 36) *(3 57)*

InP, =-4.27+ 0.52 In Ml, +
(-1 40)** (5 55)*

0 28InGDP^-0.0 \RLI$
(0.86) (-2.20)**

0.90 0.99 0.69 0 50 01006 01082

In P, =-1.42+ 0.53 In M2, 
(-33.83) *(129.32)*

Ini} = -7 36+0 241nMl+
(-2.74) *(2.35)**

0.63lnGDPR+035lnIWPI+0.llEP 
(2.18)** (2.28)** (3.65)*

0 99
0.99

0 57
165

01075 0.0391

Note: Ml and M2 are narrow and broad monetaiy aggregates, GDPR is real gross domestic 
product, IWPI is Indian wholesale price index, EP is expected rate inflation.

If we compare the forecasting performance of the regression model estimated 

by using quarterly and annual data frequencies, the regression model of 

inflation on Ml using quarterly data estimation is found to be better than that 

use is made of annual data. It is confirmed by the lower value of MAPE found 

in using quarterly data as compared to annual data. Similarly, Ml has a better 

predictive capacity than M2, if it is compared within the quarterly data 

frequency. In case of the use of annual data, a regression model of inflation on 

Ml, GDPR, IWPI and EP, as shown in third equation, is found to have the 

highest predictive power as compared to the first and second equations after a 

number of trials. This model is found to be the best in terms of other test 

statistics also. The histogram of residuals of the regression model of inflation 

on Ml, GDPR, IWPI and EP is shown below. It is found to be approximately 

following normal distribution satisfying the residual term of classical Linear 

Regression Model (CLRM). Similarly, actual and forecasted value of the same 

equation is also shown in figure 2.
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Figure 1: Histogram of Residuals and the Normal Density

Figure 2: Plot of Actual and Forecast of Inflation

(C) Box Jenkins (B-J) Methodology

The Box-Jenkins method (also known as the Auto-Regressive Integrated 

Moving Average (ARDVLA) method) of forecasting involves four steps: 

identification, estimation, verification of the model, and derivation of forecasts: 

First, the identification of the model can be chosen either AR(p) or MA(q) or 

combination of ARMA(p,q) with or without integrated of different orders for 

the specification of the model. The ARIMA models of CPI can be represented 

as follows:

CPI, = a0 + axCPl,A + a2CPI,_2 +...+apCPI,_p + s, AR(p) process

CPI, =£,+ + <f>2s,_2 +...+<pq£t_q MA(q) process

CPI, = (Xq + ccxCP7,_j + a2CPI,_2 +... + cc pCPI,_p +

£, + As:-i + Aet-2 + - + 0qs,-q ASMA(p,q)

One criterion of selecting (p,d,q) terms in ARIMA is to estimate and examine 

the adequacy of the estimated model by the test of significance of the estimated 

parameters by t-tests and goodness of fit of the model representing coefficient
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of determination (R2). Thus insignificant parameters would be dropped from 

the model.

The next step is to follow a diagnostic checking for the evaluation of the model 

by examining the properties of the residuals from the estimated model. In 

particular, if the model is correctly specified then, by definition, the s, must be 

random. Autocorrelation (AC) and partial autocorrelation (PAC) coefficients of 

various orders, and testing the significance of a group of ACs on the basis of 

the Box-Pierce Q statistic are the various statistical tools to examine the 

randomness ofst. If £-,is random then we would expect all the autocorrelations 

coefficients in different lags to be insignificant. The coefficients of AC and 

PAC and Q statistics depend on the sample size. The appropriate size of the 

lags in calculating AC and PAC is to be about one fourth of total observations. 

The estimated value of Q can then be compared to the critical value of Q 

applying x1 distribution for (K-p-q) degree of freedom where ‘K’ is number of 

lags introduced in AC and PAC estimation.

If the estimated value of Q statistic is found to be unacceptably large 

(exceeding the table value of%2), then we would conclude that Q is significant, 

and hence the null hypothesis of no AC and PAC should be rejected. It implies 

that the model is found to be inadequate, and hence requires re-specification 

and re-estimation of ARIMA (p,d,q) terms. Indeed, the nature of the estimated 

AC of s, indicates the requirement of model re-specification (that is, whether

additional AR or MA parameters should be introduced in the model). This 

process is continued unless and until a good identification of model is found. 

Once a Box-Jenkins model has been satisfactorily identified and estimated, it 

can then be used for the forecasting purpose.
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The ARIMA (p,d,q) model specification and the application of the model for 

the forecasting of Consumer Price Index (CPI) of Nepal are examined in this 

study. Forecasts are based on both the annual and quarterly data from 1975 to 

2003.

In the case of annual data, only AR(p) model is initially identified for the trial. 

Though AR(1) and AR(2) specifications were found to be statistically 

significant in terms of t-test and goodness of fit criteria, these models were 

found to be inadequate in the diagnostic checking stage on the basis of 

visualization of AC and PAC functions and corresponding Q statistic. The 

residuals (e,) show a non-random pattern. Therefore, the re-identification, re­

estimation and re-checking of ARIMA (p,d,q) is made. Ultimately, 

ARIMA(1,0,1) data generating process of CPI of Nepal is found to be 

satisfactory. The AC and PAC function and corresponding Q statistics of the e, 

up to seven lags as a criteria of diagnostic checking of ARIMA(1,0,1) model is 

shown in Table 6.4.

Table: 6.4
AC and PAC of CPI on ARMA( 1,0,1) Specification 
___________ (1975-2003)

AC PAC La
9

AC PAC Q-Stat Prob

1 1 1 1 1 0 052 0 052 0 0850 0 771

r i r i 2 0 247 0.245 2 0623 0 357

i i i i 3 -0 024 -0 049 2 0812 0 556
p i i i 4 0 098 0 043 2 4157 0 660
i i i ■ i 5 -0 001 0.011 2 4158 0 789

i i . i i 6 0 002 -0 036 2 4159 0 878
______ M___ HI I±II 7 0135 0 151 31483 0 871

The Q statistic of s, at 7th lag is 3.15, which is less than the critical value of 

%2 dX 11.07 at (K-p-q), i.e. (7-l-l)=5 degree of freedom. The insignificant Q 

statistic signifies randomness of e, and hence adequate description of the data 

generating process CPI by ARIMA (1,0,1). The model explains as follows:

CPI, — cc0 CPI,_i + s, + <f>xs i-i ARMA(1,0,1)
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This model can be used to generate forecasts of CPI,

CPI, =1.062CPI,_t +s, +0.380s,_t 

(117.74) (2.04) R2=0.99 DW=1.74

Both the coefficients of AR and MA are statistically significant at 5 percent 

level. R2 is quite high and DW statistic is not less so. The above model was 

estimated using a sample of 29 observations of CPI. Thus for the last sample

observation the model could be written as: CPI.2003
1 a<)P^Z002 + S2003 + 01^2002

The observation of e'can be found from the estimated residual from the 

ARIMA( 1,0,1) model. Ex-ante forecast can be derived by the recursive 

method, where the forecasted value of inflation is considered to be actual value 

for the derivation of next years forecast. The ex-ante forecast was found by 

applying the above model at 157.86 for the year 2004. However, the BJ 

methodology is a better representative for the forecasting of short period of one 

or two years. The Absolute Mean Prediction Error (MAPE) which is 

summarized measure of error of ex-post model is 3.51 for the year 2003.

If we introduce integrated term T in the ARMA (p,q), the specification 

becomes ARIMA(p,d,q). Here, we are considering the difference data in order 

to derive the model before the identification and estimation of the model. If a 

series is stationary by first differencing, the resulting series is considered as 

1(1), where d=T in ‘d’ term of ARIMA(p,d,q) model. A forecasting model 

identification based on first difference CPI series has been analyzed 

subsequently.
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Figure 3: Plot of actual, logarithmic and first difference of CPI

The raw data of inflation shows a clear upward trend, as shown in panel ‘a’ of 

the above diagram. Thus, data transformation by first is will be required. The 

data could also be interpreted as being homoscedastic as shown in panel ‘b\ 

The data exhibits so much variation over time that it requires data to be taken 

into logarithm. If we take the logarithmic data into first difference, it becomes 

stationary as shown in panel ‘c’. We can now attempt to fit a B-J model to the 

data of logarithm of first difference which are represented by the rate of growth 

of original data. Re-identification and re-examination of different 

ARIMA(p,d,q) carried an adequacy of model of ARIMA( 1,1,1) with their 

corresponding coefficients and statistical values as follows.

ACPI, =0.978ACP/W +s, + (-0.942)As(_,

ARMA(1,1,I)
(37.80) (-6.43) DW=1.59

An evaluation of diagnostic checking for ARIMA(1,1,1) model can be made by

deriving AC and PAC functions of s‘ up to lags 7 and their corresponding Q 

statistics are given below:
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Table: 6.5
AC and PAC of CPI on ARMA (1,1,1) Specification 

(1975 to 2003)
AC PAC Lag AC PAC Q-Stat Prob

1* 1 r i 1 0 161 0 161 0 8101 0 368
*1 i *i i 2 -0 082 -0 111 1 0268 0 598
1 1 i i 3 -0 071 -0 040 1 1950 0 754

1 1 1 ! 4 0 003 0 014 1 1953 0 879
1“ 1 r i

5 0 258 0 255 3 6280 0 604
r i r i 6 0 289 0 223 6 8127 0 339

_____ ___ L__ ......*:i........ i______ 7 -0 167 -0 231 7 9273 0 339

Considering the properties of e' from the specified AREMA( 1,1,1), the model 

of CPI seems adequate for the forecasting purpose.

We can then go on using the above equation for forecasting; where dependent 

variable is changes in the CPI over the previous year. What it is obtained by the 

above model is forecast of CPI changes in 2004 over the 2003, or forecast of 

2005 over the 2004. In order to obtain the forecast of CPI level rather than its 

change form, first-difference transformation should be done. On the basis of 

reverse transformation, forecast can be made into log form. At last forecast of 

CPI index can be obtained by taking antilog.

A log CPI, = 0.978A log CP/M + e, + (-0.942) A log 

AREMA(1,1,1)

log CP/2004 = (1 - 0.978) logCP/2003 -0.9781ogCP/2002 -O.9421ogff2003+O.9421og£2002+logs2004

If we substitute the known values of CPI and estimated residual terms up to the 

last observation, the forecast value for 2004 is found to be log 5.07897. If we 

take antilog, the absolute value of forecast figures becomes 160.61. In the case 

of AREMA(1,1,1) model, the AEMP for the year 2003 is 3.25 which is smaller 

than the AEMP of 3.51 of ARIMA( 1,0,1) model as examined above. Therefore, 

ARIMA(1,1,1) gives better forecasting performance than ARIMA(1,0,1).

In the case of quarterly data, the ARIMA(4,0,5) data generating process is 

found to be adequate after a re-identification and re-estimation of 

ARIMA(p,d,q). The model includes four AR terms (lag 1,4,8 and 16) and five

-1o8%03
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MA terms (lag 1,4,8,12,and 16). The data generating process of ARIMA(4,0,5) 

may show a tendency of seasonality. The estimated coefficients and their 

different test statistics as per the above specification are presented as follows:

CPI, = 1.036CP/M 
(17.20)

0.263CP/,_4 + 0.15 ICPI,_S + 0.114 CPI,_l6 + 0.113 sM + 0.928s,_4 + 
(-3.56) (3.08) (2.08) (1.88) (87.38)

1.250s,_g + 0.781s,+ 0.336s, _16 + s, ARMA(4,0,5)

(22.34) (13.70) (29.52) Adj R2=0.99 DW=2.10

Above model seems adequate in terms of significant coefficient of t-statistic

and value of R2. The model is considered as correctly specified if the £‘ is

found to be randomness. The AC and PAC functions of s' up to lags of 29 

quarters 29 show a random pattern in terms of visual expression. Hence the 

model specification of ARIMA(4,0,5) is considered adequate.

Table: 6.6
AC and PAC of CPI on ARMA(4,0,5) Specification 

(1975:1-2003:IV) ___________________________
AC PAC Lag AC PAC Q-Stat Prob

1* I r i 1 0 100 0 100 1 1690 0 280
1* 1 i* i 2 0127 0 118 3 0897 0 213
r i r i 3 0 137 0116 5 3300 0149
i i i i 4 0 062 0 027 5 7901 0 215
r i r i 5 0 125 0 093 7 7054 0 173
i i i i 6 0 048 0 008 7 9913 0 239
i i i i 7 0 054 0 018 8 3518 0 303

T 1 r i 8 0 153 0 122 11 303 0185
1 1 i i g 0 023 -0 016 11 373 0 251
1 i i i 10 -0 039 -0 091 11 570 0 315

•1 1 i i 11 -0 013 -0 043 11 590 0 395
r i r i 12 0168 0 182 15 297 0 226
|. i *i i 13 -0 036 -0 074 15 465 0 279
i i i i 14 0 043 0 019 15714 0 331
r i i* i 15 0170 0 167 19618 0187
r i r* i 16 0 217 0 205 26 005 0 054
i i i i 17 -0 044 -0170 26 275 0 070
i i i i 18 -0 009 -0 061 26 287 0 093
i i i i 19 -0 048 -0 067 26 605 0 114
r i r i 20 0 195 0 180 31 968 0 044
i i i i 21 0 017 -0 042 32 008 0 058

*i. i **i. i 22 -0154 -0 207 35 446 0 035
i* i i* i 23 0103 0 085 36 986 0 033
r i r i 24 0128 0171 39 409 0 025
i i i i 25 0 006 0 042 39 414 0 033

-r f i i 26 0 083 0 035 40 451 0 035
i* i r i 27 0105 0 095 42 141 0 032
r i r i 28 0 232 0 159 50 446 0 006

_ _ _ _ _ _ _ l_ _ _ I_ _ _ _ _ _ _ _ _ _ i_ _ _ i_ _ _ _ 29 0 055 0 007 50 915 0 007
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We can then go on forecasting CPI, applying the above model. The variable of 

the model being level form data, ex-ante forecast value is found by directly 

applying the above model without considering difference form. Substituting all 

the related values from the actual data and estimated residual terms in the 

above ARIMA(4,0,5) model, the forecast of CPI one period ahead (that is, for 

the first quarter of 2004 is found 158.3). The AEMP of ARIMA(4,0,5) model 

for the last quarter of 2003 is found 2.56.

Table 6.7
Ranking AEMP of various ARIMA Specifications

Data Frequency ARIMA Specification AEMP Rank
Annual (2003) ARMA(1,1) 3.51 m
Annual (2003) ARIMA(1,1,1) 3.25 n
Quarterly (2003 IV quarter) ARIMA(4,0,5) 2.56 I

The ARIMA (4,0,5) has least AEMP. It is most efficient in forecasting 

quarterly inflation in Nepal. In terms of annual data, ARIMA (1,1,1) model is 

found to be better in comparison to ARMA( 1,0,1) model.

The weakness of B-J methodology is that, the forecast values of the distance 

future that is obtained by using this methodology, are found to be converging 

or reverting back to the mean of the series. This phenomenon is dominant 

particularly in the case of pure MA process rather than AR process because of

the MA depending fully on s> terms, that are considered zero in the future. 

However, in the case of ARMA model, the impact of the past values of AR 

terms are considered but not that of the MA terms, which are assumed equal to 

be zero after one period ahead of the last observation. Therefore, it can be 

stated that B-J methodology is useful for short-term forecasting. The manner 

in which B-J models are used in practice is that as new information on 

dependent variable is available, the reliability of the forecast values increases.
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(D) Vector Autoregression (VAR) Methodology

If simultaneity is found among a set of variables, they should all be treated on 

an equal footing; there should not be any a priori restriction between 

endogenous and exogenous variables (Sims, 1980). Using this argument, Sims 

developed the Vector Autoregression (VAR) method for data analysis. The 

term ‘Autoregessive’ is due to the appearance of the lagged value of the 

dependent variable on the right-hand side, and the term ‘Vector5 is due to the 

fact that we are dealing with a vector of two or more variables. In VAR 

analysis, all the variables are considered endogenous. VAR specification 

between CPIO and Ml monetary aggregate in Nepal is as follow:

CPIOu=a + £l/3JCPIOl_J +i>,Ml,_; + «„ (1)
/=! j=1

Mlh =S + fd/3JCPIOt_J +uu (2)
j=i j=i

Where, the u’s are the stochastic error terms, called impulses or innovations or 

shocks. In order to select the appropriate lag length, Akaike or Schwarz criteria 

are used. In the present CPIO and Ml vector autoregression estimation, only 

two lags of each variable are considered parsimonious. The result is presented 

as follows:

Table 6.8
Vector Autoregression Estimation between CPIO and Ml 

After adjustment (1975:3 2002:4)
LOG(CPIO) LOG(Ml)

c -0.224972 (-2.24501) 1.055213(5.93973)
LOG(CPIO(-iy) 0.696239 (7.14037) 0.345576(1.99913)
LOG(CPIO(-2)) 0.140256 (1.31378) 0.245885 (1.29918)
LOGCMl(-l)) -0.036958 (-0.65902) 0.592638 (5 96092)
LOGCMl(-2)) 0.133227 (2.61713) 0.048983 (0.54277)

R-squared 0.997731 0.997425
Adj. R-squared 0.997644 0.997327
Akaike AIC -3.761025 -2.615888
Schwarz SC -3.638276 -2.493138

F Statistic 11540.0
t-statistics in parentheses
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The above estimated value of VAR coefficients are used for forecasting 

inflation. Data for inflation forecasting by VAR method covers the period from 

19751 to 2003IV, but we have not used the values for 2003 in estimating the 

VAR models. The reason for not including last four quarters of 2004 in 

estimation is to compare the forecastability of the model. In-sample forecast for 

20031 can be specified as:

log(CP70)2003/ = c + \og(CPIO) 20021V + logfCP/O) 2Q03/// + log(Afl) 2002/r + log(Af 1)2003 MI 

If we substitute estimated coefficients in the above specification from Table 29,

it is found as:

log(CPIO)2mi = -0.225 + 0.6961og{CPIO)„ +0.1401og(CPIO)2602m - 0.037 Iog(Ml)2002/K 
+ 0.133 Iog(-Ml)2oo2///

In-sample forecast of inflation using the above specification is given in Table 

6.9:

Table 6.9
In-Sample Forecast of Inflation

(1 975:I-2003:IV)
Log(CPIO) Log(M1) Log (CPIO) 

Forecasted
Forecasted 

Inflation Indices
Actual

Indices
Difference

(1) (2) (3) (4) (5) (6) (7)
2002 III 217026 4 89363
2002 IV 218336 4 90475
20031 2 19368 4 90519 2 071238 1178 156 2 392
2003 II 218874 4 90652 2 081724 121 1 154 4 33 3
2003 111 218554 4 92909 2 079741 120 2 153 3 331
2003 IV 219080 4 94669 2 076169 1192 155 2 36 0

The forecast values of CPIO from 20031 to 2003JV are shown in 5th column of 

Table 6.9. In order to compare forecast values with actual values, actual indices 

are also presented in column 6. The differences between the actual and forecast 

values are shown in column 7. These are significantly large showing very poor 

forecastability of inflation adopting only two variable VAR model of inflation.
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(E) Smoothing Method

Another class of deterministic models, which is often used for forecasting, 

consists of moving average models. There are two versions of the smoothing 

method: simple smoothing (averaging) and weighted smoothing. In the simple 

smoothing method, a simple average of the specific number of observations 

(called the order) is taken, where the higher the order selection, the more the 

resulting series is smoothed at the cost of redundancy of observations. The 

smoothing formulae are-as follows:

Single smoothing Model, 7 =—(I) + 7,_, +...+7, t+l)
n

a | ^ ^

Double Smoothing Model, 7 = —(7, +7M +...+7Ht+I)
n

Where, 7 is single smoothed series, 7 is double smoothed series, ‘n’ is number 

of order, Yt number of observation in period t, and ‘k’ is number of lagged 

observation. The choice of ‘n’ depends on the time path of the time series. A 

large ‘n’ should be used when there is a lot of randomness in the data, i.e. when 

time series are relatively stable. The moving average model is useful if we 

believe that a likely value for our series next month is a simple average of its 

values over the past observations. In moving average, higher the order of 

moving average, the resulting estimated series is highly smoothed in 

comparison to less order moving average.

In weighted smoothing method, weights of observations are taken into 

consideration. It is often more reasonable to have more recent values of 

observation playing a greater role than earlier observations. In this case it is 

assumed to follow geometrical progression, i.e. like a,a(l-a),a(l-a)2..., 

where a is the weight attached to the most current observation, a(l - a) to the 

one period back observation, a(l-a)2to the two period back observation and 

so on. The sum of all these weights equals unit, and the values of a lie
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between zero and unit A recursive formula for the computation of weighted 

moving average is as follows:

Yt =aYl+(l-a)Y,_1

The equation shows that the estimated value of Y at time ‘t’ i.e. #, is a sum 

function of current value of the series i.e. Yt plus estimated value of Y at time 

t-1 i.e. Y,_x with respective weights. The closer la ’is to 1, the more heavily the 

current value of Y,is weighted in generating#,. Thus smaller values of ‘a’ 

imply a more heavily smoothed series. The first value of Y,_x has to be 

computed through some approximate method in order to generate^. Generally, 

first Y,_x value is chosen either first actual value of the series i.e. 7, or the 

simple average of the fist two actual value of the series i.e.yM = i(y( + y(1). In

exponential weighted moving average, the higher the estimated series is 

smoothed, the lesser the weighted value of current observation is selected, so 

that, past observations are given weight to generate the estimated series. The 

procedure to choose their values is to simulate the historical data set using 

alternative values for ‘ a ’. The value of ‘ a ’ is chosen in such a way that the 

Mean-Square-Error (MSE) of the simulated series is minimized i.e.

MSE = -fj[Y,-Ytf 
« m

Where, Yt is actual series and # is estimated series. Two period ex-ante 

forecast using simple moving average and exponential moving average in case 

of quarterly data of price index are presented in Table 6.10. Considering the 

presence of seasonality in the price indices, both the actual series and 

deseasonalized series are used to forecast the Consumer Price Index (CPI) in 

Nepal.
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Table: 6.10
Simple Moving Average and Exponential Moving Average Forecast of CPI

(19751-2003IV)

Forecast from Actual Index Forecast from Deseasonalized Index

Moving Average
Exponential 

Moving Average Moving Average
Exponential 

Moving Average

Quarters
Actual
Indices

3
Denods

7
penods

02
(heavy)

08
(Light)

Deseas
onalized

Index

3
penod
sMA

7
penods

MA
Exp 0 2 
(heavy)

Exp
08

(Light)
1 2 3 4 5 6 7 8 9 10 11 13
2003! 156 2 t-3 152 2 147 7 147 3 155 3 159 3 151 7 147 5 147 3 1571
2003 II 1544 t-2 1544 149 9 148 7 154 6 156 0 154 5 149 9 1491 156 2
2003 III 153 3 t-1 1546 151 3 149 6 153 6 152 8 156 0 151 9 149 8 153 5
2003IV 155 2 T 154 3 152 3 150 7 154 8 150 7 153 2 151 8 150 0 151 2
20041 Forecast t+1 154 3 1531 150 7 154 8 Forecast 152 2 152 3 150 0 151 2
2004 II T+2 1546 153 9 150 7 154 8 152 0 1530 150 0 151 2

The forecast value for the two period ex-ante forecast taking 3 and 7 period 

moving average and exponential moving average with 0.2 as a heavy 

smoothing and 0.8 as a light smoothing parameters are presented in this study. 

The forecast is made using smoothed series by adaptive forecast technique. By 

‘adaptive’ we mean that they automatically adjust themselves to the most 

recently available data. The last estimated value of in-sample observation is 

considered actual observation while deriving next period estimated value. If we 

forecast for a number of periods ahead, the estimated series converges into 

mean value. However, additional information in the actual series modifies the 

forecast in the future. Therefore, the shorter the forecast period, the higher will 

be the reliability of the forecasted value. Only two periods ahead forecasts have 

been presented here.

As depicted by the results, the forecast values of both the moving average and 

exponential moving average using actual index show an overestimation as 

compared to deseasonalized index (comparing column 4-7 with 9-13). The 

forecast based on deseasonalized index can be considered as superior for the 

long-run forecast. The choice between exponential moving average and simple 

moving average depends on the variability and the magnitude of smoothing 

parameters, for both actual and deseasonalized index, which are somehow 

considered as discretionary.
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In the case of failure to find heavily smoothed series with the small value of 

* a ’ without giving much weight to the past data point, a double exponential 

smoothing will come into operation. In this case ‘ a ’ can be used, and the 

resulting series will be heavily smoothed. In this case double as well as triple 

exponential smoothing formula can be used to find heavily smoothed series 

applying the following formula:

Double Exponential Smoothing Formula: Yt = aft + (1 - a)Yt^
A A

Triple Exponential Smoothing Formula: Yt = aft + (1 - a)frA

The alternative specification of the double and triple exponential smoothing 

specification can be shown as follows:

FU„(DE) = (2SE,-DEI) + ~~~(SE,-DEI) U)

Fl+. (TE) = (3SE, -3DE, + TE,) + - -[(6 - 5a)SE, - (lO.Sa)DE, + (4 - 3a)TE,] +
2(1 - a)

...——~(SE, - 2DE. + TE.)2(1 -a)1 '

Where, DE and TE stand for double and triple exponential smoothing series. 

Using the above formula, four period ahead forecast value of CPI have been 

presented in table 6.11.

Table: 6.11

Ex-ante Forecast Using Single and Double Exponential Moving Average
(19751-2003IV)

Quarterly
Forecasts

Simple
Double Smoothing Method

Double Exponential 
Smoothinq Method

Tnple Exponential 
Smoothing Method

20041 158 2 156 6 155 7
200411 159 9 157 6 156 3 .
2004 HI 161 6 158 7 156 8
20041V 163 3 159 8 157 4

Where, DE and TE stand for double and triple exponential smoothing series. 

Using above formula, four period ahead forecast value of CPI have been
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presented in Table 6,11. The forecast values are found to be decreasing when 

the sizes of the exponential parameters are increasing.

The smoothing method of forecast is considered as somehow arbitrary in the 

sense that the choice of smoothing and exponential parameters is considered as 

discretionary in nature. These parameters depend on the extent of variability of 

the data series and effect of seasonal variation in the data frequency. This 

method lacks theoretical justification and hence can not be considered as handy 

tool of forecasting. The forecast values, derived using this method, are found to 

be mean reverting as a result of an increase in the magnitude of smoothing and 

exponential parameters.

To sum up the forecasting models of inflation in Nepal, time series forecasting 

method is found to be better than econometric forecasting particularly for the 

short-term forecast. Time series forecasting method is based on an attempt to 

predict the values of a variable from past values of the same variable. Among 

the several methods of time series forecasting, B-J methodology is useful for 

short-term forecasting. This study found that the ARIMA(4,0,5) data 

generating process fits better forecasting of inflation in Nepal. However, for the 

long-term forecast, regression method (a variant of econometric forecasting) 

would be a better tool of forecast.

2. CORE INFLATION

In an inflation-targeting regime, future inflation is the final target, but current 

inflation is a determinant of future inflation, and thus can be used as one of a 

set of indicators to suggest whether policy should be tightened or loosened 

immediately in order to achieve the final target in the future (Hogan, 2000). 

Such considerations raise the question of what measure of inflation would be 

the best to use as this indicator. Most inflation-targeting countries employ a
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definition of ‘core’ or ‘underlying’ inflation that seeks to capture the 

underlying trend in inflation.

Core inflation is generally associated with expectations and demand pressure 

components of measured inflation and excludes supply shocks (Roger, 1998). 

Core inflation includes a persistent or steady element of inflation which will 

tend to be incorporated into expectation and, consequently, will be 

comparatively benign. Intermittent or transient inflation, however, will be 

much less benign, precisely because it will be less readily anticipated. 

Therefore, core inflation and trend inflation are essentially synonymous. 

Eckstein (1981) defined core inflation as ...the trend increase of the cost of the 

factors of production. He decomposed measured inflation into (a) core 

contributed by factor prices, (b) a portion attributable to aggregate demand and 

(c) a portion which could be attributed to supply shocks. Core Inflation is that 

component of measured inflation which is output neutral over the medium to 

long term, it must be the component of inflation that feeds or reflects inflation 

expectations (Quah and Vahey (1995). In summing up, the core inflation rate 

should exhibit more persistence or less variability than the aggregate measured 

inflation rate. Supply shocks are the most important source of relative price 

changes. Therefore, supply-driven relative price changes affecting the 

aggregate inflation rate should only have a transient impact on the aggregate 

inflation rate. Bryan and Cecchetti (1994), Cecehetti (1997) agreed on the 

concept of core inflation as one that it should capture just the component of 

price change that is common to all items and exclude changes in the relative 

prices of goods and services.

Core inflation should track the component of overall price change that is 

expected to persist for several years and therefore be useful for short-term and 

medium-term inflation forecasting (Blinder, 1997, Bryan and Cecchetti, 1994). 

Folkertsam and Hubrich (2001) have given the following reasons for not using 

CPI as an ideal measure of inflation for monetary policy purpose: (a) CPI is a
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noisy signal of the inflation pressures in an economy, such as seasonal 

influences, changes in the indirect tax rate, purely relative price changes, etc. 

(b) Monetary policy operates on inflation with a long and variable time lag. 

Therefore, from the perspective of policymakers, a measure of inflation (like 

core inflation) would be useful for a leading indicator of future CPI. (c) 

Credibility is crucial to central bank performance, an operational inflation 

concept which only reflects price level movements for which the monetary 

authority is accountable.

(A) Measurement of Core Inflation

A host of methods have been developed to estimate core inflation. The methods 

suggested are either based on cross-sectional information, i.e. the distribution 

of individual price changes with respect to some reference period, on univariate 

or multivariate time series, or on pooled cross-sectional and time-series data 

(Wynne, 1999). Cross-sectional methods attempt to refine the CPI, aiming to 

eliminate its transitory movements and to increase the signal-to-noise ratio. 

Three different types of inflation measures rely on purely cross-sectional 

information. The most well-known type encompasses price indices that simply 

exclude allegedly volatile components, such as food or energy prices. A more 

sophisticated class of measures contains the various trimmed mean estimators. 

These measures do not a priori exclude specific commodities from the price 

index once and for all, but remove those commodities of which the observed 

price change relative to the previous period is an ‘outlier’ (Bryan, Cecchetti 

and Wiggins, 1997). The weighted median belongs to this class of inflation 

measures.

Finally, there are price indices which use the full cross-sectional information 

but aggregate the price changes with weights which are inversely related to 

their volatility. Clearly, since the weights of these price indices are not derived 

from budget shares, the scope of these inflation measures is not restricted to
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consumer prices. Univariate time-series methods remove high-frequency noise 

from the CPI in- inflation series by smoothing or filtering with, for example, 

moving averages or Kalman filters. The smoothed series are estimates of the 

core inflation process. Methods combining cross-sectional and time-series 

information apply the dynamic factor model to price data. The common 

component in all price changes is interpreted as core inflation.

(i) Stochastic Measures of Core Inflation

Based on the premise that extreme price changes are not indicative of the 

persistent component of inflation Bryan and Cecchetti (1993), Roger (1998) 

studied the measure of core inflation by removing or reducing the weight of the 

components with extreme price changes. Under this assumption “trimmed 

mean” is used which excludes a proportion of each tail of the cross-section 

distribution of price changes (i.e. extremely low and extremely high change) 

and takes the weighted average of price changes of the rest of the commodities 

to estimate the central tendency or underlying core of distribution.

A robust measure of core inflation is devised through the statistical measures of 

trimmed mean or weighted median. The use of such a measure reflects the 

intuition that the type of shocks that may cause problems with price 

measurement is infrequent and agents do not instantly adjust prices to every 

change in circumstances as there are ‘menu costs’ of price adjustment (Ball, 

1991). If the distribution of shocks is skewed the aggregate price level will 

temporarily deviate resulting in transitory movement of headline inflation from 

its long-run trend (Alvarez and Matea 1997).

The stochastic measure of core inflation presupposes the individual price 

changes that involve a common, generalized inflation component plus 

idiosyncratic relative price shocks. Therefore, the distribution of consumer 

price changes is almost always found to be highly kurtotic. In such
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circumstances, a variety of measures such as the median or trimmed-mean will 

be far more efficient as estimators of the general tendency of price changes 

than the CPI mean-based estimator.

(ii) Exclusion-Based Measures

By this measure, core inflation is calculated by excluding certain 

commodities/components from the basket. Such commodities are believed to 

be unrepresentative of market-induced inflation trend over a short horizon. 

Such excluded commodities are assumed to be either seasonal and relatively 

more volatile leading to quick reversal, or else as infrequent and sudden 

changes due to administrative control (Brayn and Cecchetti 1993, Kearns, 

1998).

(B) Core Inflation as Generalized Price Movement

Under this concept, core inflation measurement is made through some specific 

adjustment on measured inflation for some supply shocks or re-weighting all 

individual components of measured inflation, according to their contributions 

to the common price trend with a view to eliminating or diminishing the effect 

of supply shocks. Some shocks like international trade prices (New Zealand), 

Changes in exchange rate (Sweden), indirect taxes etc., are having temporary 

effects inflationary effect.

(C) Estimation of Core Inflation in Nepal

This section attempts to find out the components of Consumer Price Index 

(CPI) that are to be excluded before calculating core inflation in Nepal. The 

necessary condition for the calculation of core inflation is to find out the noisy 

components of CPI that are independent of effect of any aggregate demand 

management policies adopted by the government. In this study, core inflation is
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not calculated because it is outside the scope of this study. However, one of the 

preliminary jobs for calculation of core inflation using exclusion method is 

discussed.

The standard approach to estimation of core inflation by exclusion is to remove 

the noisy elements from the headline rate of inflation. The noise, measured by 

the Coefficient of Variation (CV) reveals that four out of 22 components are 

found to be excluded.

Table 6.12
Measures of Dispersion of Major Commodity Groups of CPI in Nepal

S.N Commodity Name Weight Mean S.D. Med
ian

Coefficient of 
Variation (CV)

Proportion of 
CV of Commdt. 
out of total CV

1 Cleaning Supplies 1.26 2 05 10 75 -0 06 524 39 157.76
2 Cloths 2.28 1 90 903 064 475 26 142.98
3 Vegetables 7.89 3 82 17 73 077 46414 139.63
4 Milk and Milk Products 4.05 2 65 11 86 0 85 447 55 : 134.64
5 Sugar 1.21 1 77 7 30 0 87 412 43 124 08
6 Oil and Clarified Butter 3.07 2 48 10 04 1 18 404 84 12179
7 Rice 14.16 1 94 6 94 0 99 357 73 107 62
8 Transport and Communication 4.03 2 20 7 75 022 352 27 105 98
9 Spices 1.85 244 8 39 263 343 85 ’ 103 44

10 House Rent 4.19 277 9 51 0 00 343 32 103 29
11 Beverages 2.28 214 719 0 20 335 98 101 08
12 Grains and cereal product 3.8 1 90 6 26 0 63 329 47 9912
13 Foot-ware 2.2 1 52 4 82 023 31711 9540
14 Pulse 2.73 2 50 7 63 0 66 305 2 91 82
15 Meat, Fish and Eggs 5.21 2 41 715 0 18 296 68 89 25
16 House Furnishing and H. goods 

Household goods 3.5 204 5 70 032 279 41 84 06
17 Restaurant Meals 6.91 263 694 0 66 263 88 79 39
18 Fuel, Light and Water 5.92 2 82 6 70 046 237 59 71 48
19 Cigarettes 1.66 165 3 72 054 225 45 67 82
20 Clothing and Sewing Services 6.64 1 82 4 08 046 22418 67 44
21 Medical and Personal Care 8.03 1 80 3 74 0 80 207 78 ■ 62 51
22 Education, Reading Materials 

and Recreation 7.09 222 364 0 89 163 96 49 33

The commodities which have CV over the 125 percent are practiced to be 

excluded. On the basis of this criterion, cleaning supplies, clothes, vegetables 

and milk and milk products are the noisiest components of the CPI of Nepal. 

Measurement of inflation, after excluding these noisy components, gives the 

core inflation rate which is considered to be controlled aggregate demand
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management, such as controlling money supply can control the rate of 

inflation.

Summing up, the basic objective of this section is to introduce various methods 

applicable for the calculation of core inflation rather than applying it in the 

Nepalese context. Measurement of core inflation and examining its implication 

would be an important area of further research.
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