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CHAPTER IV

A GENERALISED THEORY OF ONE -DIMENSIONAL
consolidation of clays

The fundamental requirements for a realistic theory 
of consolidation of clays are (i) consideration of the 
deformation characteristics of the constituent phases and 
(ii) application of a consistent mathematical technique.
On the basis of the physical and experimental analysis of 
clays colloid water system due to various workers, it is 
possible to ascribe the state changes that occur in colloid 
particle, double layer and clay skeleton configuration 
consequent upon a consolidating stress. The basic necessity 
of the mathematical technique for analysing the deformation 
of this kind of material is that it should be valid even 
for large deformation.
4.1. Physical Background
4.1.1. Nature of Change in Clay Colloid

Grim (1948) argued that the properties of clays are



difficult to account for without postulating some changes 
in the physical state of adsorbed compound in the lattice 
and surrounding the colloidal particle. On the basis of an 
analysis of the phase relations of water, Winterkorn (1943) 
showed that the change in state of water with distance 
from clay mineral surface is an exponential one. Since the 
interparticle spacing vary with time under pressure change, 
a time deformation relationship for the clay colloid 
could also be represented by an exponential function.
4.1.2. Nature of Change in Fabric Structure

A particular type of contacts forming a structure in 
clay material is dependent on the net resultant potential 
at the colloidal surfaces. A change in the contacts occurs 
as the stress is applied altering the value of the 
resultant electrical potential. The value of the resultant 
potential varies exponentially proportional to the applied 
stress which is gradually acting upon the particles. Hence, 
it will be reasonable to assume an exponential law for the 
change in fabric structure with time.
4.1.3. Nature of Flow of Pore Fluid

While considering the flow of pore fluid through an 
element of soil, at least two factors must be appreciated? 
one, the continuous contraction of the pore space and two, 
the drag forces. Gibson et al (1967) expressed the classical



Darcy's law in a more general form conforming to the
experimental evidence due to Schiedegger (1957).
4.1.4. Nature of Effective Stress Law

In the Terzaghi (1923) classical principle of effective
stress the compressibility of the individual grains is ignored.
Bishop (1963) examined the influence of compressibility of
water relative to the soil structure and the soil grains on
the effective stress law for consolidation. For compressible
grains, there is an excess pore water stress over and above
the usual excess pore water stress due to distortion and
displacement of individual grains. Thus the volume changes
due to compressibility of the soil structure are controlled
not by the classical effective stress law cr' = cr - u
but by; cr - Cf+as}u where denotes the grain area
per unit cross sectional area. Lambe and Whitman (1959)
suggested that the contact area of an expansive soil is a
function of water content and further argued that areas of
influence of hydrostatic pore water may overlap the adsorbed
pore water particularly when there is air present in the voids.
Skempten (1960) reported an expression of effective stress to
be used for volume change as «r' = cr - ri-^) u where c.c 5
denotes the compressibility of the particle and c is the 
compressibility of the soil skeleton. For the specialized case 
of saturated soils of incompressible grains the equation
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reduces to the classical one.

4.2. Mathematical Formulation

The basic framework adopted for the present mathematical 

treatment is that of Gibson et al (1967); in fact# it 

represents the extension of their work and attempts to further 

generalisation based on physical consideration.

4.2.1, Governing Equations

(i) Coordinate Scheme :

Since in this problem the exact location in a space of 

the boundary at any time will not be known; the most advantageous 

choice will be that of the Lagranian scheme over the Eulerian 

scheme. We shall follow the history of every particle at all 

instants through coordinates jc ^ of any particle which 

are functions of the independent variables, a b( c and t 

(Lamb#, 1932). For the case of one dimensional movement, we may 

consider an element of the soil skeleton of unit cross sectional 

area normal to the direction of pore fluid which at time t =o 

lies between planes embedded at distances a and Ca ■+ cfaj) from 

an embedded datum plane. (Fig. 4.1a). At some subsequent time 

the same planes will be located at unknown distance ^ CA.i) and 

2% (jx. + £<x t t J) from this datum plane. As per Lagrang co-ordinate; 

each plane of particles shall be labelled throughout its 

subsequent motion by its initial distance 'a' from the datum 

plane; for example, the upper boundary of the layer is always 

at a = a0 (Fig. 4.la,b).
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(ii) Equilibrium Equation s
The vertical equilibrium equations of the soil grains 

and fluid are established by considering an elemental cylinder 
ABCD (Fig. 4.1b). Neglecting the inertia terms (Mandel, 1953) 
the equilibrium equation is s

3<r
3a

+ + O-rTi^
3|
da o

CA-t )
where sr the vertical total stress

T) the initial volume porosity
§s weights per unit volume of fluid and solid phases 
and are functions of o_ and t ,. ( a. has positive 
sign if measured against gravity).

(iii) Equation of Continuity s
In consideration of the volume changes occuring in the 

clay colloid and clay skeleton the equation of continuity for 
the solid phase will be written as s

§ 1 ~10 Ca,°) = e Ca,tj i~2>a '
•• - (4-lJ

where the unit weight of the clay colloid changes with time as s

C^.tj = Ss Ca,°) tanh tj
To determine the equation of continuity of fluid phase, the 

concept of relative velocity between solid phase , V5 and that
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of pore fluid, will be used to eliminate the limitation
imposed from continuous contraction of the pore space. Thus, 
the rate of weight in flow of fluid into the element JUBCB 

will be equal to n C v-&~ ^ if we assume equality
of area and volume porosities, while the rate of weight 
outflow of fluid will be s

3 (1 £<x

Since then the rate of weight outflow of fluid equals 
the rate of change of fluid in the element,

110 CV d+ — "V **

— _
dt 3 &

.. c4-3j>

(iv) Flow Equation s
The flow of pore fluid through soil skeleton is in 

accordance with Darcy's law, but it is expressed in a general 
form to be consonant with the physics of the problem. Gibson 
et al (1967) proposed a following expression :

^ c vt- V53 il

The influence of compressibility of space and drag 
forces does not invalidate the above

C4-43

expression.
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The excess fluid pressure gradient could he expressed
as

<4-0
where [a is the fluid pressure (above atmospheric) and the 

positive sign is taken if ^ is measured against gravity.
Since ~2% is a dependent variable of 'a' , we will use the 

relation s

Thus, uniting equations 4.4 and 4.5 to be consistent 
with our frame work, we get,

The classical effective stress lav/ need be rigoursly 
expressed in consideration of the variations in clay colloid 
and clay skeleton. The expression due to Gibson et al (1967) 
is of similar type to that of Skempton (1960) which is adopted 
in this treatment. The effective stress law used in the present 
approach is s

3J . ^ ^
3a " 3 cl HO

Sj v u- a uL (vO
(v) Effective Stress Law :

cr cr - r^U • • %)
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in which =/ when the solid phase ifi of constant density 
and soil is completely saturated. Otherwise, it could he a 
function of CL and t .

(vi) Permeability, Porosity and Fluid Density Relationships 
In regard to the physical considerations discussed in 4.1 

the physical quantities, such as, coefficients of permeability, 
porosity or void ratio and fluid density need to be defined 
and given mathematical qualification.

k will be a function both of the porosity nor void 
ratio e and the location of the particular portion of the 
soil skeleton to account for possible non-homogeneity 
Therefore,

k -- k C^,o-) .....................9J

T1 will be a function of factors for nonhomogenity, stress 
history and time effects. Thus,

^ = 4 CV, a- , t ) .. .. •• (4-ioJ

where ^ is a functional.
We daall consider valid the isothermal equation of state 

for the physical quantity , thus,

V- CC3 C^-'O
4.2.2. Transformed Equations

For convenience we shall now resort to transformation 
to a new independent variable z to replace a. .
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a.
* ca° ' j c

and therefore,
3z _
30.

This means that any point of the soil skeleton is now 
identified by the volume of solids z in a prism of unit 
cross sectional area lying between the datum plane and the 

point. Needless to mention that just as with <L , this new- 
variable z is independent of t . Further, if we substitute 
the porosity by void ratio, simplified forms of the governing 
equations are possible.

Expressed in these new variables the previous equations 
become :

3_cr ± e fj + % Qjs _ a
QZ i -+ 2>Z. - (4-1 3

I — m da

l _ -n C a,° J

= (j+*0 «*}* c ta-nht
3Z C4 Z} bis

£
3Z

-4' 3 e3
i+e

3jr
3Z r o

.. ..(4-3)b:

e c Vv.O ± 1 3% + J_ . 3f>k CJ+e3 __ d2- ^ ° “ " b

\
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Further simplification,
Using {4.2) bis in the transformed equations, we get,

d<r ± CeS{+Ss)
' ' ^ ■ (4-1) *dz.

(Note : * against' the equation number denotes the 
simplified form of the previous equation).

a_
3z

e S,
l + e

4 C V*,)
3t

e -exp ( 8-°0 ianht o

(4-3) „

gfjCVv-Q
k exp ($>-<*3 f anhf ± ( l + ej> p £ 8~°0 fan Kt = o

(47) *

Using equations 4.8, 4.9, 4.10 and further considering 

exp £p>-°0 {ar* equal to unity, 
the various relations previously written can now be combined 
to yield the following equations s

a
k

dz Sj O+o
4a-‘ se
de az **0+0

3e
at = o



4.2.3. Pinal Differential Equation
Returning to the original space variable a by using 

eqn. 4.12a we get.

Be _ c - — + Ce —3 t ^ Ba2 < - .. 043} *

where, = Ji. ekr1 • U'^oJ2’
i5^ <=*« i+e

c. = k o,-.3 j '‘i*ra. i
L I-+e L J

in which,
e r « c**'. t J
u = U , <3- j)

Ci is a quantity similar to the familiar coefficient of 
consolidation Cy of Terzaghi theory. Prom the expression it is 
evident that it is not a constant but a function of |c e. and t

t

Whereas ce is a quantity which represents mainly void ratio 
as coefficient of permeability, |< and are dependent on e

By putting ci 
K2-

and p = h- Ef 
ci

further transformation of the differential equation {4.13)bis 
is made to a familiar form s

— - ? —3t " az ^
We shall regard P as a constant in which all the factors

causing deviation of the experimental observations from the
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classical Terzaghi theory are taken into account. The 
assumption of regarding P as a constant is purely from the 
considerations of mathematical simplicity hut it may prove 
as well to he so for most soils. Referring to publications 
of mathematical physics it may he noted that it has an 
identical form to that of a differential equation for 
nonsteady one dimensional flow of heat through moving media. 
(Bateman, 1964).
4.3. Analytical Solution

Verma (1969) published a Laplace Transform solution of 
a one dimensional groundwater recharge. This technique is 
employed in the solution of the above equation for the 
boundary conditions of standard one dimensional consolidation

i

of clays.
4.3.1. Boundary Conditions

In case of standard one dimensional consolidation test 
with top and bottom drainage, at the commencement of the 
test void ratio e0 is uniformly distributed over the depth 
of the sample and after some time void ratio will be ^ , at 
the top and bottom of the sample. Mathematically boundary 
conditions may be expressed as s

e c® ,~r Ct>o; . e C >,"0 =• CT^a)

... (4-3-0

8.'

e = e0
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4.3.2. Mathematical Treatment
On multiplying each term of equation (4.3.1) by

C.sT_)cjT and integrating the result from zero to 

infinity, and further using condition -e C_l/a) = <=> we 

obtain <.
d2e
— - -— - se a - e0cjzx 4Z -• C4-V4)

where

e r _[ { - c - e (_Z/t)dT
o

represents the Laplace transform of e C ■?, T )

The Laplace transformation of the boundary conditions 
(4.3.2.) yields, <

€ C°,i) - - 
s

e C ' , s3 e,
C4-3-5^

Since equation (4.3.4) is a linear equation with constant 
co-efficient, we may write its general solution as s

H Cosh (_z J P^ + s" 3 + M Smh (_2 ,J 4S 3 *4 {(A)*]
C«3g;>

where and m are constants of integration.
For evaluating and ^ , we apply condition 4.3.5, so 

that, after some simplification, we have
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M -
*Ve°

M
c e*s

)• K>1
e,-e0 cosh (\T^+S ^

’Iin h ( )

Substituting these values in equation (4.3.6), we have :

-e O. O - •e,-eo
s

Sirsh CJP^ + S 3
Stln K f^i+s

+

fxfa ai ) o-*)l e,-<?0
Sin K Z J P/- + 5 e 

^ - +
^ Sin W rpj^5 P

\| <4

r 1

(A -31)

-1
The inverse transform (^L J of the right hand side terms 

in equation (4.3.7) may be determined by recalling a standard 

result (Mickley et al, 1957), viz.,

L no
*lCO

oO

r\-o

till? 0r,"0
^ C 50

C^38j)

where 'J CO and (sj represents two entire transcendental 

functions such that degree of r^CsJ) is atleast one greater in



S (when expressed as power series) than that of C.-0 

Sr, is a simple pole of and f[ £Sn)denotes the value of
at s

dS

Putting
3CO = f^4 + s^ _ sm h <;;* f^Ts;
\ Cs) S Sfnh yT^tS) Smh (_! fp^JTj

... tA l$)

and noting that the roots of equation

s'"h cr^r* * 3
are given by

Sn =
pz 2. 2.
y, - n x4

We may write s

3 03 3 C°J » i sin h (_%3Z

, C_,yrp;+^v;
T. Cs„) - ___--- n 00 - 1 s,Tihi5i)

S,n (pxt)

inx
(4'M

Prom equations (4.3.8), (4.3.9) and (4.3.10), we gets



s ■s,n K {F* +$ 
1

Sfn K ^2 2 

Sin h
■n

4 2*

n*i

C-O • r% Sin C”*?)

P2 . j 2.4, + 11 31
•ev. f>

* - • £4* V‘i^)

Similarly, v/e have : 

Sin KCI'ZJ pt fsi y4 T

5 Stn,n h I
fifs

Sim h \ (j‘2)
5,Vl h Cp/z)

2X ] " S,‘" C^XZJ

n= I % +»v
• (A- 3 12 J

The inverse transformation of equation 4.3.7 with the help 
of equation (4.3,11) and (4.3.12) yields s

eoeu, T) . (e,-eo) s^ii* +a, 7e_„«
S.-n h (^1 p4 ♦ »V

n = i

&(• [ - C Sj + ^Vj-rl + (e,-e«) «l> {- &> o-*J]

S.-n h {% ) C '-23
k cp/0

- n -n sin nX?dm *1 a/; . j irJT?:-'4



as »■ CiJ -»

u. = e~e°

e,-e0
p Sin h - 2' e«|= C-i) --- 2-

S.'T) h £
2

-t 2*
oO

i C'O -n Sin-n^z ,«4-(!*"“>

"='.v
p2 a a 1} +

+ exK'l) s,n hl OZJ 0O

K ■£
Jl

xdien P--o

- 27!
■O -Si'n nXEFT** ^-{^+"viT

rj*i,3,s

(-•'tri
p-r-o

Slrrh £ Z

S/r, K |

and

Ltm 
p -+■ o

Stn K Ci- ?J) 
Si'-n K %

-*• j-£

oO
I" 4 7C S i*n Tl 5* 2

.. z"1
ns/,3,s

4.3.3. Theoretical Relationships

Zn Sin 7
ria

e*|* | - oVt J }

... (4-3-10

To obtain theoretical relationships for the process of



consolidation a Fortran programme for the expression (4.3.14) 
of the previous section was run on IBM-1402 Computer. 
Isochrones for various values of parameter p has been 
portrayed in Volume II from Figures G.l to G.33. Figures 4.2 
to 4.6 represents the degree of consolidation at various 
depths against the time factor from which the pore pressure 
dissipation at various depths is possible to deduce by the 
expression : U s l - where U.^ denotes the pore

* (it
pressure at any depth 2 and U-i is the initial value of pore 
pressure while in .experimental studies will be the value of 
increment of pressure applied. Fig. 4.7 shows the theoretical 
relationship between the average degree of consolidation and 
Time factor generally used for comparing the experimental 
results. The value of average degree of consolidation is 
compcU.ied using Simpson's rule as explained in Taylor (1948) 
and Lambe - Miitman (1969).

Experimental data obtained from the laboratory studies 
to investigate the influence of various factors affecting the 
consolidation characteristics of clays are analysed using 
these theoretical relationships.
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NOTATIONS

Symbol Meaning Dimensions

<r Total Stress FIT2
1<5* —2Sffectxve stress PL

UL — 2Pore water pressure FL
Contact area per unit cross- L2-
section

a , Independent variable L
Initial height of the soil
element l

h
i

Unknown distance from datura plane 
at any time l

t Time - t

cs Compressibility of particle f-1l2
c Compressibility of soil skeleton F^l2
n Initial volume porosity l3

Weight per unit volume of fluid FL"*3
h Weight per unit volume of solid FL*”3

C< Constant
Velocity of soil solid LT“2

Vf Velocity of pore fluid LT“2
k Coefficient of permeability lt*”1

Fluid pressure (above atmosphe- _,T-2
ric) iIj

K Pore water coefficient



Symbol Meaning Dimensions

z
p
«©
e

l

cf
T
h
M
N
ICS)

T]CO
Sn
u

lit
u,

Volume of solids 
Constant
Initial void ratio
Void ratio at any time
Depth dimension
Coefficient of consolidation 
as per generalised theory
Coefficient of consolidation 
as per Terzaghi theory
Lumped coefficient of compre­
ssibility
Lumped parameter
Time factor
Thickness
Constant of Integration
Constant of Integration
Entire transcendental 
function
Entire transcendental 
function
Simple pole of
Average degree, of consolida­
tion
Percentage consolidation at 
depth dimension
Initial pore water pressure
Pore water pressure at depth 
at any time

Non-dimen sional

LT,-2

-2LT

Non-dimensional 
Non-dimen sional 

L

FL

PL'

-2


