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CHAPTER IV

A GENERALISED THEORY OF ONE ‘DIMENSIONAL

CONSOLIDATION OF CLAYS

[

kY

The fundamental requirements for’a realistic theory
of consolidation of clays are (i) consideration of the
deformation characteristics of the constituent phases and
(ii) application of a consistent mathematical technique.
On the basis of the physical and experimental analysis of
clays colloid water system due to various workers, it is
possible to ascribe the state changes that occur in colloid
particle, double layer and clay sgkeleton configuration
consequent upon a consolidating stress. The basic necessity
of the mathématical téchnique for analysing the deformation
of this kind of material is that it should be valid even
for large deformation.

4.1. Physical Background

4.1.1. Nature of Change in Clay Colleid

Grim (1948) argued that the properties of clays are
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difficult to account for without postulating some changes
in the physical state of adsorbed compound in the lattice
and surrounding the colloidal particle. On the basis of an
analysis of the phase relations of water, Winterkorn (1943)
showed that the change in state of water with distance
from clay mineral surface is an exponential one. Since the
interparticle spacing vary with time under pressure change,
a time deformation relationship for the clay colloid
could also be represented by an exponential function.
4.1.2. Nature of Change in Fabric Structure

A particular type of contacts forming a structure in
clay material is dependent on the net resultant potential
at the colloidal surfaces. A change in the contacts occurs
as the stress is applied altering the value of the
'resultant electrical potential. The value of the resultant
potential varies exponentially proportionai to the applied
stress which is gradually acting upon the particles. Hence,
it will be reasonable to assume an exponential law for the
change in fabric structure with time.
4.1.3. Nature of Flow of Pore Fluid

Whide considering the flow of pore fluid through an
element of soil, at least two factors must be appreciated;
one, the contiruous contraction of the pore space and two,

the drag forces. Gibson et al (1967) expressed the classical



Darcy's law in a more general form conforming to the
experimental evidence due to Schiedegger (1957).
4,1.4, Nature of Effective Stress Law

In the Terzaghi (1923) classical principle of effective
stress the compressibility of the individual grains is ignored.
Bishop (1963) examined the influence of compressibility of
water relative to the soil structure and the soil grains on
the effective stress law for consolidatien. For compressible
grains, there is an excess pore water stress over and above
the usual excess pore water stress due to distortion and
displacement of individual grains. Thus the volume changes
due to compressibility of the soil structure are controlled
not by the classical effective stress law oz oo - U
but by; O - Cl+agd v where a  denotes the grain area
per unit cross sectional area. Lambe and Whitman (1959)
suggested that the contact area of an expansive soil is a
function of water content and further argued that areas of
influence of hydrostatic pore water may overlap the adsorbed
pore water particularly when there is air present in the voids.
Skempten (1960) reported an expression of effective stress to
be used .for volume change as ¢ = o - C1-S)u where ¢
denotes the compressibility of the particle and ¢ is the
compressibility of the soil skgletgn. For the specialized case

of saturated soils of incompressible grains the equation



reduces to the classical one,

4,2, Mathematical Formulation

The basic framework adopted for the present mathematical
treatment is that of Gibson et al (1967); in fact, it
represents the extension of their work and attempts to further
generalisation based on physical consideration.
4,2.1, Governing Equations

(i) Coordinate Scheme : .

Since in this problem thé exact location in a space of
the boundary at any time will not be known; the most advantageous
choice will be that of the Lagranian scheme over the Eulerian
scheme. We shall follow the history of every particle at all
instants through coordinates o .13’%- of any particle which
are functions of the independent variables. a b ¢ and t
(Lamb,. 1932). For the case of one dimensional movement, we may
consider an element of the soil skeleton of unit cross sectional
area normal to thev direction of pore fluid which at time *=o
lies between planes embedded at distances o and (a + da> from
an embedded datum plane, (Fig. 4.la). At some subsequent time
the same planes will be located at unknown distance 3% (a,t) and
2 (a+da | t ) from this datum plane. As per Lagrang co-ordinate:
each plane of particles shall be labelled throughout its
subsequent motion by its initial distance @' from the datum
plane; for example, the upper boundary of the layer is always

at a=a, (Fig. 4.1a,b).
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(ii) Bquilibrium Equation 3

The vertical equilibrium eguations of the soill grains
and fluid are established by considering an elemental cylinder
ABCD (Fig. 4.1b). Neglecting the inertia temms (Mandel, 1953)

the equilibrium equation is 3

o0 )
—a—-c‘-l t [T}g{ + Cfﬁn)gs 5"3 =0

C41)

where s the vertical total stress
M the initial volume porosity

E%lﬁg weights per unit volume of fluid and solid phases

and are functions of awand T . ( @ has positive
sign if measured against gravity).

(iii) Equation of Continuity :
In consideration of the volume changes occuring in the
clay colloid and clay skeleton the equation of continuity for

the solid phase will be written as :

€ (X0 1=m (d0) = g (at) mlat) 2F . exp(-tamh

o (4-1)
where the unit weight of the clay colloid changes with time as :
8, (a,t) = & (ao0) exp (= tanht)
To determine the equation of continuity of fluid phase, the

concept of relative velecity between solid phase , V, and that



of pore fluid, Vg will be used to eliminate the limitation
imposed from continuous contraction of the pore space. Thus,
the rate of weight in flow of fluid into the element ABCD
will be equal to M ( Vg~ Yo ) €y 1if we assume equality

of area and volume porosities, while thg rate of weight

outflow of fluid will be :

5@& [“ 5§ SV "53] Sa

Since then the rate of weight outflow of fluid equals

the rate of change of fluid in the element,

- .
— € V- V =l .23 |
Je Lﬂ 3 Cv 4 S)] + b‘i’_ [ng{) é__d. =

(iv) Flow Equation s

. (4-3)

The flow of pore fluid through soil skeleton is in
accordance with Darcy's law, but it is expressed in a general
form to be consonant with the physics of the problem. Gibson

et al (1967) proposed a following expression :

k. au

& 293 L (44)
The influence of compressibility of space and drag

Y CV{)-*VS) = -

forces does not invalidate the above expression,



The excess fluid pressure gradient could be expressed

as

a% 3% - .. .. (45)

where p is the fluid pressure (above atmospheric) and the
positive sign is taken if % is measured against gravity.
Since % is a dependent variable of ‘&' , we will use the

relation s

S0, 93 da. .. .. 4

Thus, uniting equations 4.4 and 4.5 to be consistent

with our frame work, we get,

0% k P 4 13 2%
2 C_\’_&" V.S ) - - - ( _ i t e
oa fg “_aa e (47)

i

(v) Effective Stress Law :

The classical effective stress law need be rigoursly
expressed in consideration of the variations in clay colloeid
and clay skeleton. The expression due to Gibson et al (1967)
is of similar type to that of Skempton (1960) which is adopted
in this treatmeént, The effective stress law used in the present

approach is

o = o-nu . (<4-8)



in which n=! when the solid phase i of constant density
and soil is completely saturated. Otherwise, it could be a
function of a. and t .
(vi) Permeability, Porosity and Fluid Density Relationships

‘In regard to the physical considerations discussed in 4.1
the physical quantities, such as, coefficients of permeability,
porosity or void ratic and fluid density need to be defined
and given mathematical qualification.

k will be a function both of the porosity n or void
ratio e and the location of the particular portion of the
soil skeleton to account for possible non-homogendity ..

Therefore,

k = k (n,a) . . .. (4-9)

N will be a function of factors for nonhomogenity, stress

history and time effects. Thus,
N = ? Co_" a t ) . .. . C4~IO)

where 3? is a functional.

We shall consider valid the isothermal eguation of state

for the physical quantity fk ., thus,

8, = & (P>

4.2.2. Transformed Equations

. - - (4-1)

For convenience we shall now resort to transformation

to a new independent variable z to replace o« .
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z (&) = '( [ | — Qa.',o)J da . e (4412)

and therefore,
QzZ
20
This means that any point of the soil skeleton is now

= 1-mn (&,0) . .. Canno)

identified by the volume of solids z in a prism of unit
cross sectional area lying between the datum plane and the
point, Needless to mention that just as with & , i;his new
variable 2z is independent of t . Further, if we substitute
the porosity by void ratio, simplified forms of the governing
eguations are possible.

Expressed in these new variables the previeus equations

become 3
oo, e & + & 2% .,
oz 14 e Dz " .o (4) bis
? = (+e) exp ( B-et) tanht (42> bis
z

_a,]: e CV{;VSJJ 4+ 2 L ‘e_:ﬁ’% . aﬁj o
oz +e ot lve 02 o . (43) bi

] o= Vs 23 L
—2 "7 ] 22+ - DL,
k Ci1+ed oz & 9z e« (47D b
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Further simplification,

Using (4.2) bis in the transformed equations, we get,

o6
€2 4+ _
2z (& + &) exp (PB-=) {anht S (A )
(Note : % against the equation number denotes the
simplified form of the previous equation).
0 < .?,i 2 il
T — vV, -V + —jef ex B—a){anhij:o
3z +e Yy 3>] a’r}__ { P(
. P (4-3)*
°p e (vi-Ve)
— LI T
4 * m;—' - exp Cﬁ—ot) tanbt + fﬁCHe) exF (B"“) fanbht =0
&) 4

Using equations 4.8, 4.9, 4.10 and further considering
ex b C?’”"(J taonht  equal to unity,
the various relations previously written can now be combined

to yield the following equations s

k o' [
° S N L'{‘”fs*% }J) L%
81 P% Cl+€) de BZ o2 S%CH’e) L g—:g—-—



4.2.3, Final Differential Equation
Returning to the original space variable a by using

eqn. 4.12a we get,
2

de - ae

fe - Cig‘ o2 T Ce ggt

It oa e (A3) ok
where, N

Cy = ket (e .

fl de j+e
e te
Ce = k C4ee)d { /2 -
— n
4

in which,

e - e C_a",a,'t)
k =k Ce,a D
C4 is a quantity similar to the familiar coefficient of
consolidation (, of Terzaghi theory. From éﬁe expression it is
evident that it is not a constant but a function of kle and t

Whereas (e is a quantity which represents mainly void ratio

as coefficient of permeability, k and n are dependent on &

By putting 7 = % T = Ctt and P = h. Ce

h ' h2 Cs
further transformation of the differential equation (4.13)bis
is made to a familiar form :
o _ e _ , 2=
97T 0z? oz s (430
We shall regard P as a constant in which all the factors

causing deviation of the experimental observations from the
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classical Terzaghi theory are taken into account, The
assumption of regarding P as a constant is purely from the
considerations of mathematical simplicity but it may prove
as well to be so for most soils. Referring to publications
of mathematical physics it may be noted that it has an
identical form to that of a differential eguation for
.nonsteady one dimensional flow of heat through moving media.
(Bateman, 1964).

4,3. Analytical Solutien

Verma (1969) published a Laplace Transform solution of
a one dimensiocnal groundwater recharge. This technique is
employed in the solution of the above equation for the
boundary conditions of  standard one dimensional consolidation
of clays. | |
4,3.1. Boundary Conditions

In case of standard one dimensional consolidation test
with top and bottom drainage, at the commencement of the
test void ratio e, is uniformly distributed over the depth
of the sample and after some time void ratio will be e, , at
the tqp and bottom of the sample. Mathematically boundary

conditions may be expressed as :

e e, T) = € (T>0) ; € C',T) = € CT>0)
(4-3-2D

e (Z,0) =€ . - (433D
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4,3.2., Mathematical Treatment

On multiplying each term of equation (4.3.1) by

exp (-— (sST) dT} and integrating the result from zero to

infinity, and further using condition e (Z,0)=o0 we

obtain !

c:lze de

-— - — - se z - &

dzl dz e - . @3'4)
where

od

e CZ,5> = gex}o{_ &3P dT} R C_Z/'f.)d'i’

(=

represents the Laplace transform of e CZ&, T)

The Laplace transformation of the boundary conditions
(433.2.) Yiélds, H

_ — €
e (e,5) = ! e 1 s = !
d S , s S e . (43D

Since equation (4.3.4) is a linear equation with constant

co-efficient, we may write its general solution as :

S = : 2
e (Z,s5) [M cosh (Z }p};ﬁs )+ N sinh (2 l P/q-fS)JexF{-Qf}z)z}
- (4-3.6)
where ™ and N are constants of integration.
For evaluating p4 and 1 , we apply condition 4.3.5, so

that, after some simplification, we have



Substituting these values in equation (4.3.6), we have 3

Simh (1-2) (,}P§q+s )§

5'7\1'\ +5

e (_Z' S_) = e)(;D{LP/a)Z} ‘e—{?a {

e- e° Sinh Z +5 €0
ﬁ*b{‘*(%)(-' Z) L Sinh [ 15 +?}
©(4-317)

- |

The inverse transform (L ) of the right hand side temms
in equation (4.3.7) may be determined by recalling a standard

result (Mickley et al, 1957), viz.,

~H g () i T(Sn) exp C3nT)
s n (Sn)
neo s - (4-3.8)

where J(S) and v|($)represents two entire transcendental

functions such that degree of v (s) is atleast one greater in



S (when expressed as power series) than that of J(Cs)

1
S, is a simple pole of ':_(_C_f_) , and n ( Sy)denotes the value of
(s)
v (S 1
TL( ) at S':Sn )
48

Putting

TC) smh(@ {euts)  sinh (iZ [ 4s)
n Cs)

S sinh L\I P}q-k-S) Sim h C} (9}4 1s )

o= (4-39)
and noting that the reots of equation

Sin h QW) -0

are given by
Sn - /A; -MN=Ax

We may write s

9 (Sn) = sm (OxZ) JCo) =1 sinb C%)z
norop +n2x)
1 - /. ,
1 C-S'n) = L'_)_._,..C_...:-—- ni(_o) = 1 S!"nhte’,_)
2nx

.« e C4.3.|o‘:

From equations (4.3.8), (4.3.9) and (4.3,10), we get:



'l-_l . sin hz ! P/:-f—s

S sin h

1S
Sinh 922 = 1) M Sin (nxE) 2
2
+ 2% - exp - { (G}
sinh 0, P/q + 'z
n=l
-Cz(. 30(‘)

Similarly, we have :

sinh % (-2)

/4 + 8 S'n h LP/Z.)
“ . v
n sSin(NxZ
, ax - C J ' exP{ C +hxz)}.‘.
34 + n?x?

n | (4-3-12)
The inverse transformation of equation 4.3.7 with the help
of equation (4.3.11) and (4.3.12) yields

sim h(8yz = . P

Sm b (6’1‘) P"fq + ntx*

n=|

 exp {_, ( ’}i+n"x”)f} + (€,-€,) ex]a{ - ) ("'t')}

o
s‘“h( ) (%) n sin Nk} 2 5.
- 2% ML exk{-(f.;nx)} .
Smh CPy) PE +n*a A
hel\3,s'

. (.4. 3.:3)‘
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f
as L (-P) = |
€-&
U, - S
e,"eg
od
sinh & z - m .
P 1) n sinnxZ 7 .
e (5) 2T, : exp - (Lenix)T
Sinh 3 % +mn?x?
n=13¢
. P p, eo :
+ exp(-£y SMhz ) n Sin nxZ o g o
P T 2% 2 2 exp-{(;'-rnz}T
sin h 3 F}q-{- n*x
n=i3§
...C4.5.‘4)
when P:-o
. p
Livn Sinh 3 Z
— L,z
P"'P‘O S!"ﬂ"\'g
2
and
Lt';ﬂ") Sin h ‘E C"E)
-+ I-Z
P—ro Sim h Pé_
oo
nmMA
= odnax ] DEMTAE L Lt
il
n:1,3,5 ' - (4a-3a8)
4.3.3. Theoretical Relationships

To obtain theoretical relationships for the process of



consolidation a Fortran programme for the expression (4.3.14)
of the previous section was run on IBM-1402 Computer.
isochrones for various values of parameter P has been
portrayed in Volume II from Figures G.l1 to G.33. Figures 4.2
to 4.6 represents the degree of consolidation at various
depthé against the time factor from which the pore pressure
dissipation at various depths is possible to deduce by the
Uz

expression ¢ U_ = |
4 Wi

pressure at any depth z and W is the initial value of pore

where W, denotes the pore

pressure while in experimental studies will be the value of
increment of pressure applied. Fig. 4.7 shows the theoretical
relationship betwéen the average degree of consolidation and
Time factor generally used for comparing the experimental
results. The value of average degree of consolidation is
compadied using Simpson's rule as explained in Taylor (1948)
and Lambe - Whitman (1969).

Experimental data obtained from the laboratory studies
to investigate the influence of various factors affecting the
consolidation characteristics of clays are analysed using

these theoretical relationships.
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NOTATIONS
Svmbol Meaning Dimensions

T Total Stress Fr~2
c' Bffective stress FL=2

Pore water pressure FL~ 2
G Contgct area per unit cress- LZ»

section

Independent variable L
a, Initial height of the soil

element L

Unknown distance from datum plane
, at any time L
t Time ‘ T
Cy Compressibility of particle Fi2
c Compressibility of soil skeleton Fi,2
n Initial volume porosity L3
8 Weight per unit volume of fluid FL=3
s Weight per unit volume of solid FL=3
o Constant -
Vg Velocity of soil solid LT~ 2
\7 Velocity of pore fluid LT
k Coefficient of permeability LT+
P iig?d pressure (above atmosphe- L2

Pore water coefficient -

Lh\
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Symbol Meaning Dimensions
3
Volume of solids L
p Constant -
-2 Initial void ratio -
e Void ratio at any time -
zZ Depth dimension Non-dimensional
<p Coefficient of consolidation ~2
as per generalised theory LT
Cy Coefficient of consolidatien -2
as per Terzaghi theory LT
Ce Lumped coefficient of compre-
ssibility
F:hgﬁ Lumped parameter Non-dimensional
' ,
T Time factor _ Non-dimensioenal
h Thickness L
™ Constant of Integration -
N Constant of Integration -
j(s) Entire transcendental
function -
q(s) Entire transcendental
function -
Sy Simple pole of
U Average degree of consolida-
tion
U% Percentage consolidation at
depth dimension
W Initial pore water pressure FL™2
U, Pore water pressure at depth

at any time FL™2




