SR.	FIGURE	FIGURE DESCRIPTION	PAGE
NO.	NO.		
1	2.1	Applications of nanoparticles	11
2	2.2	Illustration of different types of polymer layered silicates	18
		(PLS) composites.	
3	2.3	Two approaches of graft polymerization.	20
4	2.4	Schematic Representations of the Possible	22
		Nanocomposite Particle Morphologies	
5	2.5	Schematic drawing of nanosol finishing of textiles by	23
		conventional application techniques, A: padding, B:	
		casting, C: spraying.	
6	2.6	Mechanism of plasma-substrate interaction	24
7	2.7	Schematic Diagram of Scanning Electron Microscope	29
8	2.8	Elemental analysis of nanoparticles by EDX.	30
9	2.9	Schematic of a transmission electron microscope	31
10	2.10	Schematic representation of the components of an	33
		atomic force microscope	
11	2.11	A schematic view of a scanning tunneling	35
		microscope (STM).	
12	2.12	(a) Schematic illustration of FTIR; (b) Michelson	38
		interferometer, configured for FTIR	
13	2.13	A schematic of Raman spectroscopy	40
14	2.14	A schematic of Ultraviolet-Visible (UV-VIS)	41
		Spectroscopy	
15	2.15	Schematic of Wide Angle X-Ray Diffraction	44
. 16	2.16	Schematic view of X-Ray Photoelectron Spectroscopy	46
17	2.17	Schematic diagram of DSC/DTA	48
18	3.1	Polyamide chips	57
19	3.2	Polypropylene chips	57
20	3.3	Magnetic stirrer with heater	63
21	3.4	Schematic diagram of polyamide silica nanocomposite	64
		film preparation	
22	3.5	Melt spinning pilot plant	66

Investigation of structural and mechanical properties of Polymer-silica nanocomposite

23	3.6	Two bowl padding mangle with stenter	69
24	3.7	Scanning electron microscope	70
25	3.8	FTIR Spectrometer instrument	71
26	3.9	X-Ray diffractometer	72
27	3.10	Differential Scanning Calorimeter	73
28	3.11	Melt Flow Indexer	75
29	3.12	Lloyd LRX tensile strength tester	76
30	3.13	Elmendorf tearing tester	77
31	3.14	Crease recovery tester	77
32	4.1	Polyamide untreated (a) and treated (b to f) films	79
33	4.2	SEM micrographs of pure polyamide and	81
		polyamide/SiO2 nanocomposite films, a) pure	
		polyamide film, b) polyamide+0.1% nano SiO2, c)	
		polyamide+0.3% nano SiO2, d) polyamide+0.5% nano	
		SiO2, e) polyamide+0.7% nano SiO2, f) polyamide+	
		1.0% nano SiO2.	
34	4.3	IR absorption peaks of pure polyamide (a) and	82
		polyamdie/Silica nanocomposite films (b to f).	
35	4.4	XRD pattern of pure polyamide film (PA)	86
36	4.5	XRD pattern of polyamide silica nanocomposite film	87
		(NPA4)	
37	4.6	Combined XRD patterns of PA and NPA4 samples	88
38	4.7	DSC curves of pure polyamide (a) and polyamide silica	91
		nanocomposite films (b to f)	
39	4.8	Percentage change in Enthalpy (ΔH) of polyamide/silica	92
		nanocomposite film	
40	4.9	Stress strain behavior of pure polyamide (a) and	95
		polyamide/Silica nanocomposite films (b to f).	
41	4.10	Effect of nano silica on stress property of film	96
42	4.11	Effect of nano silica on young's modulus of treated and	98
		untreated polyamide films	
43	4.12	Effect of nano silica on stiffness of treated and untreated	98
		polyamide films	

Investigation of structural and mechanical properties of Polymer-silica nanocomposite

44	4.13	Effect of nano silica on work at maximum load of	99
		treated and untreated polyamide films	
45	4.14	Polypropylene pure (a) and nanocomposite (b to h)	102
		filaments	
46	4.15	SEM photographs of Pure Polypropylene filaments (PP)	103
47	4.16	SEM photographs of PP filaments with 0.1% SiO2 (NPP1)	103
48	4.17	SEM photographs of PP filaments with 0.3% SiO2 (NPP2)	104
49	4.18	SEM photographs of PP filaments with 0.5% SiO2 (NPP3)	104
50	4.19	SEM photographs of PP filaments with 0.7% SiO2 (NPP4)	104
51	4.20	SEM photographs of PP filaments with 1.0% SiO2 (NPP5)	105
52	4.21	SEM photographs of PP filaments with 1.25% SiO2 (NPP6)	105
53	4.22	SEM photographs of PP filaments with 1.5% SiO2 (NPP7)	105
54	4.23	SEM cross-sectional photographs of PP filaments with 0.7% SiO2 (NPP4)	106
55	4.24	EDX spectrum of pure polypropylene filament	107
56	4.25	EDX spectrum of polypropylene silica nanocomposite filament	108
57	4.26	IR absorption peaks of pure polypropylene (a) and polypropylene/Silica nanocomposite filaments (b to h).	112
58	4.27	XRD pattern of pure polypropylene filament (PP)	114
59	4.28	XRD pattern of polypropylene silica nanocomposite filament (NPP4)	115
60	4.29	Combined XRD patterns of PP and NPP4 samples	116
61	4.30	DSC curves of pure polypropylene (a) and polypropylene silica nanocomposite filaments (b to h)	120
62	4.31	Effect of SiO2 concentration on enthalpy of PP filament	121

.

63	4.32	Effect of SiO2 concentration on % crystallinity of PP	122
		filament	
64	4.33	Stress strain behavior of pure polypropylene (a) and	126
		polypropylene/SiO2 nanocomposite filaments (b to h)	
65	4.34	Tenacity of pure polypropylene and polypropylene silica	127
		nanocomposite filament	
66	4.35	Effect of nano silica on young's modulus of treated and	129
		untreated polypropylene filaments	
67	4.36	Effect of nano silica on work of rupture of treated and	130
		untreated polypropylene filaments	
68	4.37	SEM microphotographs of polyester fabric treated with	131
		silica nano particles	
69	4.38	IR absorption peaks of untreated polyester fabric (PT)	133
70	4.39	IR absorption peaks of treated polyester fabric (NPT3)	134
71	4.40	XRD pattern of pure polyester fabric (PT)	136
72	4.41	XRD pattern of polyester silica nanocomposite fabric	136
		(NPT3)	
73	4.42	Combined XRD patterns of PT and NPT3 samples	137
74	4.43	DSC curve of pure polyester fabric (PT)	. 138
75	4.44	DSC curve of polyester fabric treated with 5gpl nano	139
		silica (NPT3)	
76	4.45	Load elongation behavior of pure polyester fabric (warp	140
		way)	
77	4.46	Load elongation behavior of 5 gpl polyester fabric (warp	141
		way)	
78	4.47	Load elongation behavior of pure polyester fabric (weft	141
		way)	
79	4.48	Load elongation behavior of 5 gpl polyester fabric (weft	142
		way)	

.

Investigation of structural and mechanical properties of Polymer-silica nanocomposite

viii