Near IR electronic spectrum of NiCl

M B Sureshkumar, T M Patel, A B Darji & P M Shah Department of Physics, M S University of Baroda, Baroda 390 002 Received 11 March 1992, accepted 5 June 1992

Electronic transition $I^2\Delta_{5/2} \rightarrow X_1^2\Delta_{5/2}$ of nickel chloride molecule has been identified for the first time from the rotational analysis of 8395 Å band, which was excited in high frequency discharge source and recorded at an inverse dispersion of 1.41 Å/mm in a Carl-Zeiss PGS-2. Observation of rotational isotopic shifts supports the analysis Rotational constants of the upper and lower states are evaluated.

The diatomic nickel chloride molecule is known to exhibit its electronic spectrum in emission and thermal emission in the visible and near IR regions. The visible spectrum has been well studied by several workers while the work reported on the near IR spectrum is not complete and satisfactory. Survey of the work done on the spectrum of NiCl has been nicely described by Darji and Sureshkumar¹. Recently they^{2,3} have reported rotational analysis of 4598 Å band of $G_2^2 \Delta_{5/2} \rightarrow$ $X_2^2 \Delta_{3/2}$ system and 4284 Å band of $I_2^2 \Pi_{3/2} \rightarrow$ $X_1^2 \Delta_{5/2}^{5/2}$ system establishing that the ground state of NiCl is $^{2}\Delta$ state belonging to Hund's Case (a) with multiplet separation of 484 cm⁻¹. The near IR spectrum in the region 6350-8750 Å has not been satisfactorily studied and our knowledge regarding the low-lying electronic states is rather meagre. Poor intensity, high complexity due to large multiplicity of the energy states and limited number of V' and V'' progressions make the study of the spectrum particularly in near IR region more difficult. In continuation of our study, we report here the rotational analysis of 8395 Å band of NiCl for the first time.

The near IR spectrum of NiCl was excited in RF discharge and recorded in a Carl-Zeiss plane grating spectrograph by the experimental arrangements described earlier by Darji and Sureshkumar⁴. The 8395 Å band of $I \rightarrow X_1$ system is found to be so weak in intensity that a very long exposure of about 30 hrs was just enough to photograph it using a slit as wide as 80 μ and high speed Kodak IR Films 4143 and 2481 and aerographic Film 2424. The spectrum of (0,0) band of

 $I \rightarrow X_1$ system at 8395 Å exhibits the presence of two main branches, clearly identified as R and P, of which R is the head forming one. The rotational lines are quite broadened and badly overlap with each other due to large slit width. Thus the band shows poorly resolved rotational structure. The branch lines are picked up using the intensity trace of the band obtained from microdensitometer. The measurements of rotational lines are made on Abbe comparator using internal standards and the error of measurement is within the limit of ± 0.05 cm⁻¹.

As the structure clearly reveals the presence of two main branches, the electronic transition should be of the type for which $\Delta \Lambda = 0$. The lower state of this system is reported to be ${}^{2}\Delta_{5/2}$ by Rao et al.4. The ground state of NiCl molecule is established to be $X_1^2 \Delta_{5/2}$ by Darji and Sureshkumar⁵ from the rotational analyses of $L_1^2 \pi_{3/2} \rightarrow$ $X_1^2 \Delta_{5/2}$ system of NiCl. Thus it is quite reasonable to consider that the lower state of $I \rightarrow X_1$ system is $X_1^2 \Delta_{5/2}$. Further, no other band of this system is found to possess well resolved and overlapping-free rotational structure. Therefore, the authors are constrained to report the analysis of a single band by using the combination differences of the $X_1^2 \Delta_{5/2}$ state reported earlier by them. Thus rotational analysis of the 8395 Å has been carried out by following the standard methods⁵. The combination differences for the upper state are formed from the line wave numbers and J numbering is assigned to rotational lines. The

Tab	le 1 – Rota	ational constants of 8	395 Å band of NiCl
State	Constant	Value	Value reported by
			Darji and Sureshkumar ²
	B_0'	$0.15967(\pm 67)$ cm ⁻¹	
	D_0'	$1.28 \times 10^{-7} \text{cm}^{-1}$	
$I^2 \Delta_{5/2}$	I_0'	175.25(±74)×	
		$10^{-40}{ m gcm^2}$	
	r 0'	2.2018(±46)Å	
	B ₀ "	$0.16708(\pm 33)$ cm ⁻¹	0.16715 cm ⁻¹
	D_0''	$1.07 \times 10^{-7} \text{cm}^{-1}$	$0.75 \times 10^{-7} \text{cm}^{-1}$
$X_1^2 \Delta_{5/2}$	I ₀ "	$167.47(\pm 33) \times$	$16740(\pm 10) \times$
		$10^{-40}{ m gcm^{-2}}$	10 ⁻⁴⁰ g.cm ²
	r ₀ "	2.1524(±21)Å	2 1519 (±6) Å
	ν_0	11905.34 cm ⁻¹	

INDIAN J PURE & APPL PHYS, VOL 30, SEPTEMBER 1992

correctness of J numbering is verified by applying the criterion of Youngner and Winans⁶. From the graphical plots rotational constant B'_0, B''_0, D'_0 and D_0'' have been evaluated. B_0' and B_0'' have also been computed from the combination differences. Then the least square fit has been employed to calculate the standard deviations with a confidence level of 95%. The line frequencies are calculated using the rotational constants, which gives the differences v_{obs} - v_{cal} within the limits of experimental observations. The rotational constants obtained from the present analysis are listed in Table 1, together with the ground state constants recently reported by Darji and Sureshkumar⁴. From the analysis it is proposed that the electronic transition in all probability should be $I^2 \Delta_{5/2}$ $\rightarrow X_1^2 \Delta_{5/2}$, lower level belonging to Hund's case (a). Absence of an intense Q branch confirms this proposition. The rotational isotopic shift due to

£

 Cl^{37} has been observed for *P* branch lines, which supports the analysis.

The authors are thankful to Prof S K Shah for providing excellent facilities.

References

- 1 Darji A B & Sureshkumar M B, Pramana (Indua), 34 (1990) 165.
- 2 Darn A B, Sureshkumar M B, Shah P M & Shah N R, Opt Pura & Apl(Spain), 24 (1991) 17.
- 3 Darji A B, Sureshkumar M B, Shah P M & Shah N R, Opt Pura & Apl (Spain), 24 (1991) 161.
- 4 Rao S V K, Reddy S P & Rao P T, Z Phys, 166 (1962) 261.
- 5 Darji A B & Sureshkumar M B, Indian J Pure & Appl Phys, 28 (1990) 338.
- 6 Herzberg G, Molecular spectra and molecular structure: Spectra of diatomic molecules (Van Nostrand, New York) Vol. 1, 1950
- 7 Youngner & Winans J G, J Mol Spectrosc (USA), 4 (1960) 23.

PRAMANA _____ journal of physics C Printed in India

Vol 42, No 1, January 1994 pp 33-40

Estimation of rotational temperature of the source emitting the spectrum of PbO molecule

A B DARJI, T M PATEL, M B SURESHKUMAR, N R SHAH and P M SHAH Physics Department, M S University of Baroda, Baroda 390002, India

MS received 3 May 1993, revised 31 August 1993

Abstract. The (1,0), (0,1) and (0,2) bands of $D \rightarrow X$ system of lead monoxide have been excited in RF discharge source and photographed in the seventh order of a 2-meter PGS Intensity records of the rotational lines have been obtained Rotational constants and the intensity measurements of Q and P branch lines of the above three bands and J numbering are used to calculate the effective rotational temperature of the source emitting the spectrum of 208 Pb 16 O molecule

Keywords. Rotational temperature, molecular spectrum, lead monoxide

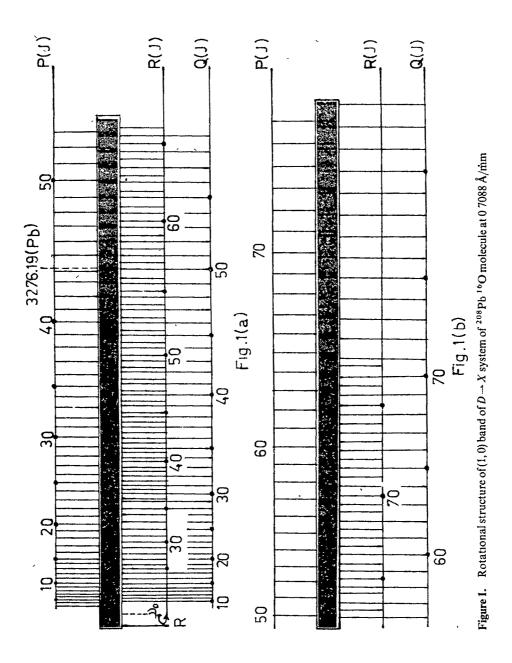
PACS No. 33-20

1. Introduction

The spectrum of lead monoxide extending from 6750 to 1700 Å has been extensively studied by earlier workers [1-14] in various degrees of details They have recorded the spectrum in absorption as well as in flame, d.c. arc, microwave discharge and high frequency discharge. The vibrational analyses of various band systems and rotational analyses of large number of bands have been reported by employing moderate to high dispersions Rotational constants of X, A, B, $C_r C' D$ and E states of the molecule are known. Ram et al [14] have reported the rotational analysis of (1,0) and (1,1) bands of $B \rightarrow X$ system and (0,1) and (0,2) bands of $D \rightarrow X$ system. They have observed several perturbations in the rotational levels associated with v' = 1 level of B state and v' = 0 level of D state. They have also calculated rotational constants using perturbing rotational levels. The work reported so far on the spectrum of PbO molecule has been well reported by Ram et al [14] Though the study of this molecule is extensive it has been found that there is no report on the intensity measurements of vibrational bands and rotational lines. No one has employed intensity measurements to study the vibrational and rotational temperatures of the. molecule This study makes first attempt to calculate the rotational temperature of PbO molecule. Rotational structure well resolved up to almost the origin of (1,0), (0,1) and (0,2) bands exhibiting sharp rotational lines have been obtained The rotational analysis of (1,0) band has also been reported here for the first time. By studying the intensity profiles of the above bands and employing the J numbering and rotational constants, the rotational temperature of the source has been calculated.

A B Darn et al

2. Experimental


The spectrum of lead monoxide has been excited in RF discharge source A pure sample of lead oxide (BDH) is taken in a quartz tube of 25 cm long and 8 mm dia The characteristic sky blue discharge was established by employing high frequency oscillator giving an output power of 125 W at 10–15 MHz External heating by a burner was necessary to maintain the stable conditions of the discharge in the tube which was continuously evacuated by a high vacuum pump $(10^{-3} \text{ mm of Hg})$ A strong emission in the blue-green region was seen to develop in intensity The (1, 0), (0, 1) and (0, 2) bands of $D \rightarrow X$ system at 3264 Å, 3401 Å and 3485 Å respectively were photographed in a 2 m plane grating spectrograph (Carl-Zeiss) providing a dispersion of about 0.7 A/mm in the seventh order of the plane grating blazed at 10500 Å, having 651 grooves per mm It offers a resolution of about 2×10^5 . A pre-disperser (Carl-Zeiss) in the order-sorter mode has been used to avoid the overlapping of orders Exposures for about 10h were found satisfactory to photograph the rotational structure with sufficient intensity using the fine slit of 20μ and Kodak T-Max and ORWO WU-3 spectral plates The plates were measured on Abbe comparator (Carl-Zeiss) The error of measurements is within ± 0.05 cm⁻¹ for unblended and sharp lines. Atomic lines of lead present in the spectrum served as internal standards. Intensity measurements were made by recording the intensity distribution amongst the rotational lines of the (1,0), (0,1) and (0,2) bands using a microdensitometer coupled with $X \rightarrow Y$ potentiometeric recorder (Carl-Zeiss) The densitometer was calibrated for a temperature of T K using a standard continuous source of light. It was also calibrated for the spectral sensitivity of emulsion of the photographic plates. It has been found that the spectral sensitivity of the emulsion remains almost constant over a small extent of the rotational structure of a particular band. Then the area under the intensity peak of a rotational line is measured by using a planimeter having an accuracy better than 10^{-4} cm². Thus the relative intensity measurements of rotational lines are made and average values for each line are employed to calculate the rotational temperature

3. Results and discussion

(a) Rotational analysis of (1,0) band of $D \rightarrow X$ system

The (1,0) band of $D \to X$ system at 3264 Å of PbO molecule reproduced in figure 1(a) and (b) as seen on negative exhibits a fine rotational structure well resolved up to the origin comprising of R, Q and P branches of which R is head forming. The branch lines are correctly picked up using the intensity records The rotational analysis was performed using the standard method of Herzberg [15] and by plotting the graphs of $\Delta_1 F(J)/J + 1$ and $\Delta_2 F(J)/J + \frac{1}{2}$ against $(J + 1)^2$ and $(J + \frac{1}{2})^2$ respectively. The criterion for the correctness of J numbering suggested by Younger and Winans [16] was employed. Thus the rotational constants B'_1 , D'_1 and B''_0 and D''_0 were derived from the graphical plots The constants were also computed by using least squares fit up to the confidence level of 95% The accuracy of the constants was further checked by employing iterations in J numbering and B'_1 and D''_1 values so as to converge the differences of observed and calculated line frequencies ($v_{obs} - v_{cal}$) to a minimum of within $\pm 0 1$ cm⁻¹. The J numbering, vacuum wave-numbers of R, Qand P lines and combination differences are given in table 1. The rotational constants

Pramana - J. Phys., Vol. 42, No. 1, January 1994

Pramana - J. Phys., Vol. 42, No. 1, January 1994

A B Darn et al

Table 1. J assignments, vacuum wavenumbers and combination differences of $D \rightarrow X$ system of ²⁰⁸Pb¹⁶O

J	Q(J) cm ⁻¹	P(J) cm ⁻¹	R(J) cm ⁻¹	$\Delta_2 F'(J)$ cm ⁻¹	$\Delta_2 F''(J)$ cm ⁻¹
4		30620 19			
5		619 24			
6		618 20			
7		617 08			
8		615 88			
9		614 59			
10	30618 51	30613 22	30624 34 7		12 89
11	617.58	611 76	623 94	12 18	14 12
12	· 616 57	610 22	623 46	13 24	15 35
13	615 48	608 59	622 89	14 30	16 58
14	614 29	606 88	622 24	15 36	17 80
15	613 03	605 09	621 50	16 41	19 03
16	611 68	603 21	620 68	17 47	20 26
17	610 24	601 24	619 77	18 53	21 48
18	608 73	599 20	618 78	19 58	22 70
19	607 12	597 07	617 71	20 64	23 93
20	605 44	594 85	616 55	21 70	25 16
21	603 66	692 55	615 30	22 75	26 39
22	601 80	590 16	613 98	23.82	27 61
23	599 86	587 69	612 56	24 87	28 84
24	597.84	585 14	611 06	25 92	31 15
25	595 16	581 41	608 40	26 99	32 44
26	593 12	578 62	606 83	28.21	32 50
27	590 87	575 90	605 16	29 26	33 80
28	588 57	573 03	603 48	30 45	35 03
29	- 586 28	570 13	601 75	31 62	36 26
30	584 09	567 22	599 76	32 54	37 49
31	584 41	564 26	597 80	33 54	38 72
32	578 87	561 04	595 42	34 38	39 96
33	575 80	557 84	593 12	35 28	41 28
34	572-93	554 14	590 87	36 73	42 49
35	570 13	550 63	588 28	37 65	43 65
36	566 92 *	547 22	585 59	38 37 [,]	44 91
37	563 66	543 37	582 68	39 31	46 14
38	560 19	539 45	579 95	40 50	47 35
39	556 84	535 33	577 12	41 79	48 58
40	553-39	531 37	574 25	42 88	49 82
41	549 87	527 30	571 29	43 99	51 05
42	546 32	523 20	568 24	45 04	52 29
43	542 73	519 00	565 08	46 08	53 52
44	539 00	514 22	561 83	47 11	54 75
45	535 00	510 33	558 45	48 12	55 97
46	531 11	505 86	555 08	49 22	57 21
47	527 10	501 24	551 58	50 34	58 44
48	523 00	496 64	547 93	51 29	59 67
49	518 80	491 91	544 35	52 44	60 90
50	514 47	487 03	540 55	53 52	62 12

(Continued)

•

Pramana - J. Phys., Vol. 42, No. 1, January 1994

Estimation of rotational temperature

Table	1 ((Continued)
Lanc	I. (Continueu)

J	Q(J) cm ⁻¹	P(J) cm ⁻¹	R(J) cm ⁻¹	$\Delta_2 F'(J)$ cm ⁻¹	$\frac{\Delta_2 F''(J)}{\mathrm{cm}^{-1}}$
51	510 33	482 23	536 88	54 65	63 29
52	505 86	477.26	532 99	55 73	64 57
53	501 54	472.31	529 13	56.82	65 78
54	496 99	467-21	525 15	57-94	67 04
55	492 33	462 09	521 12	59·03	68 27
56	487 53	456.88	516 85	59-97	69 52
57	482 98	451 60	512 54	60 94	70 77
58	478 04	446 13	508 24	62 11	71 90
59	473 20	440 64	503 78	63 14	72 99
60	468 06	435 25	499 18	63 93	74 14
61	463 22	429 64	494 75	65 11	75 41
62 *	457.95	423.77	490 12	66 35	76 72
63	` 452·61	418 03	485 15	67 12	77 89
64.	447 28	412·23	480 52	68·29	79.04
65	441 78	406.11	475 55	69 44	80.30
66	436.40	400 22	470 56	70 34	81 56
67	430 77	393.99	465 58	71 59	82 78
68	425 26	387.78	460 35	72.57	84.00
69	419 45	381 58	455 25	73 67	85.17
70	413-58	375 18	450 02	74.84	86-32
71	407 68	368 93	444 48	75 55	87 70
72	401 56	362 32	438.90	76 58	88·73
73	395 46	355.75	433 22	77 47	90 01
74	389 32	348 89	427 35	78.46	91·26
75	382 98	341.96	421 56	79 60	92 36
76	, 376-45	334 99	415 89	80 90	93 56
77	370 20	328.00	410 12	82 12	94 74
78	363 70	321 15			
79	357 08	314.13			411-11-11-1
80	350 32				
81	343 53				
82	336 66		-	-	
83	329 57				

obtained from the present analysis of (1,0) band are given in table 2 The electronic transition giving rise to the emission of $D \rightarrow X$ system is considered to be $1 \rightarrow 0^+$ both belonging to Hund's case (c) as rightly ascribed by Ram *et al* [14]. However, well resolved extremely sharp lines do not show perturbation of any rotational levels as observed in (0, 2) and (0, 1) band structures The exposures were so adjusted that the rotational isotopic shifts due to ²⁰⁶Pb and ²⁰⁷Pb are not observed. Thus the constants are evaluated for the molecule ²⁰⁸Pb ¹⁶O.

(b) Estimation of rotational temperature of PbO molecule

Intensity distribution in the rotational structure of (1, 0), (0, 1) and (0, 2) bands together with rotational constants and J numbering has been employed to calculate the rotational temperature of the molecule. The area under the intensity profile of a

Pramana – J. Phys., Vol. 42, No. 1, January 1994

A B Darn et al

(1) Rotational	constants of	$f D \rightarrow X$ system of ²⁰⁸ Pb ¹⁶ O m	
State	Constant	Values	Values reported by Ram et al [14]
D1	$\substack{B'_1\\D'_1}$	$= 0.26487 \mathrm{cm}^{-1}$ = 2.81 × 10 ⁻⁷ cm ⁻¹	
<i>D</i> 1	$r'_{1} I'_{1} B''_{0} D''_{0}$	= 2069 Å = $105 64 \times 10^{-40} \text{ g cm}^2$ = 0.30703 cm^{-1}	$0.3063 \mathrm{cm}^{-1}$
<i>X</i> 0 ⁺		$= 234 \times 10^{-7} \text{ cm}^{-1}$ $= 1922 \text{ Å}$	$227 \times 10^{-7} \mathrm{cm}^{-1}$
Band Origin	r" I" v ₀	$= 9113 \times 10^{-40} \mathrm{g} \mathrm{cm}^2$ = 30623 15 cm ⁻¹	
(11) Effective emitting the s		temperature of the source PbO molecule	
Band	Branch	Rotational temperature (K)	
(1,0)	Q P	4897 v 4605	۸
(0, 1)	$\substack{Q\\P}$	5085 4591	
(0, 2)	Q P	4668 4585	

rotational line is measured by taking the base line corresponding to the background intensity of the emulsion. A standard source of continuous emission spectrum is used for a calibration of temperature T K as well as emulsion. It is assumed that these two parameters remain constant over the small extent of the rotational structure.

The intensities of the rotational lines of rotation-vibration bands in emission is given by

$$I_{\rm em} = \frac{C_{\rm em}v^4}{Q_r} \quad (J' + J'' + 1)\exp([-B'_v J'(J' + 1)hc]/KT), \tag{1}$$

where $C_{\rm em}$ is a constant depending upon the change of dipole moment and the total number of molecules in the initial vibrational level v and Q_r is the rotational state sum. From (1), one obtains immediately

$$\ln \frac{I_{\rm em}}{J' + J'' + 1} = A - \frac{B'_{\nu}J'(J' + 1)hc}{KT},$$
(2)

,

where

$$A = \ln \frac{C_{\rm em} v^4}{Q_{\rm r}},$$

which may be taken as a constant for a small range of v.

Pramana – J. Phys., Vol. 42, No. 1, January 1994

Estimation of rotational temperature

By ploting $\log (I_{em}/(J' + J'' + 1)$ against J'(J' + 1) a straight line is obtained whose slope is $(B'_v hc/KT)$. Thus by measuring line intensities and using rotational constants and J numbering, the temperature of the source can be determined. Strictly speaking (1) holds for emission from a purely thermal excitation. However, it has been found experimentally that the intensity distribution in emission bands in electric discharges is of the same type Further it is quite clear that the normal intensity distribution in electron discharges results under the situation that the angular momentum is not strongly altered in excitation by electron collision Considering this we have calculated the rotational temperature of the source emitting the spectrum of lead monoxide molecule.

The well resolved single lines free from any overlapping are considered from Qand P branches of (1, 0), (0, 1) and (0, 2) bands Area under the peak of each rotational line is measured using a planimeter and the average of area under the peak is used in the calculation. Considering the calibration of the standard source and spectral sensitivity of the emulsion over a small range of wavelength, it is assumed that intensity of rotational lines in emission is proportional to the area under the peak in the intensity records Thus $\log I_{em}/(J' + J'' + 1)$ is plotted against J'(J' + 1) for Q and P branch lines of (1,0) band. Using the J numbering and rotational constant B'_1 obtained from the present analysis rotational temperature is calculated. Further the rotational temperature is also calculated using P and Q branches of (0, 2) and (0, 1)bands and rotational constants reported by Ram et al [14]. The constants obtained from the present study are given in table 2. The rotational temperature so obtained is an effective one. In electric discharge sometimes rotational intensity distribution deviates from the thermal distribution. Repeated exposures give the position of intensity maxima at the same J number of the rotational lines in the Q and P branches of the above bands. Thus it is believed that the effective rotational temperature obtained from the present study is fairly constant. It is proposed that high dispersion spectrum of PbO molecule existing in the interstellar space and distant stars giving emission be carried out The band spectroscopic methods for determination of vibrational and rotational temperatures of the interstellar molecules still have interest.

Acknowledgement

Authors are thankful to Dr S H Behere, Marathwada University, Aurangabad for fruitful discussions on the rotational temperature

References

- [1] J M Eder and E Valenta, Atlas Typishher Spectrum 17, 28 (1924)
- [2] H Lamprecht, Z Wiss Phot 33, 16 (1911)
- [3] L Grebe and H Konen, Phys Zett 22, 546 (1921)
- [4] R Mecke, Naturwissenschaften 17, 122 (1929)
- [5] S Bloomenthal, Phys Rev 135, 34 (1930)
- [6] H G Howell, Proc R Soc (London) A153, 683 (1936)
- [7] E E Vago and R F Barrow, Proc Phys. Soc 59, 449 (1947)
- [8] A Christy and S Bloomental, Phys Rev 35, 46 (1930)
- [9] R F Deutsch Barrow and D N Travis, Nature (London) 191, 374 (1961)
- [10] T Torring, Z Naturforsch A19, 426 (1964)
- [11] L Gero, Z Phys 93, 669 (1936)

Pramana – J. Phys., Vol. 42, No. 1, January 1994

A B Darjı et al

- [12] R Schmid and L Gero, Z Phys 94, 386 (1935)

- [12] K Semind and D Geto, Z 1 hys 94, 500 (1955)
 [13] I Kovaes, Z Phys 106, 431 (1937)
 [14] R S Ram, J Singh and K N Upadhya, Spectrosc Lett 6, 515 (1973)
 [15] G Herzberg, Molecular spectra and molecular structure 1 spectra of diatomic molecules (Van Nostrand, New York, 1950)
 [16] P Youngner and J G Winans, J Mol. Spectrosc (USA) 4, 23 (1960)

Pramana - J. Phys., Vol. 42, No. 1, January 1994