List of Figures

No.	Title	Page No.
1.1	PCD network- A simplified model of the two cell death signaling pathways converging to a common execution phase	3
1.2	Schematic representation of proposed models for the release of apoptogenic proteins from the mitochondrial intermembrane space	10
1.3	A schematic representation of the modular organization of human PARP	13
1.4	Self-association of the third Zn-binding domain of PARP-1 provides a structural scaffold for assembling the three-dimensional arrangement of PARP-1 domains.	15
1.5	PARylation of substrate proteins	16
1.6	Regulation of PARP activity	17
1.7	PAR metabolism	17
1.8	The ying-yang model for PARP activation after DNA damage	20
1.9	Intensity of DNA damaging stimuli determines the fate of cell	22
1.10	Subcellular localization of AIF and its release during paraptosis	24
1.11	Possible mechanism for mitochondrial AIF acting as a redox sensor	25
1.12	AIF processing is sequentially regulated by Ca ²⁺ and ROS	26
1.13	Speculative model of large scale DNA fragmentation caused by AIF	27
1.14	Overview of the AIF story within a cell before and after release from mitochondria	28
1.15	Caspase-independent cell death in poly(ADP-ribose) polymerase PARP mediated cell death	29
1.16	Life cycle of D. discoideum	33
1.17	A schematic description: a) The pathway controlling the onset of <i>D. discoideum</i> development. b) The pathway induced by cAMP during <i>D. discoideum</i> development	37
1.18	Overview of gene regulation by extracellular signals during <i>D</i> . <i>discoideum</i> development	39

3.1	UV-C induced dose dependent cell death as monitored by trypan blue exclusion method.	87
3.2	Annexin V staining of UV-C irradiated D. discoideum cells	88
3.3a	a) PARP activity assay by indirect immunofluorescence	89
	b) Densitometric analysis of PARP activity	89
	c) Peak PARP activity induced by UV-C irradiation was intercepted by benzamide.	90
3.4	UV-C irradiation depletes NAD^+ content of <i>D. discoideum</i> cells in an hour in a PARP dependent manner.	91
3.5	Exposure to UV-C radiation depletes ATP content of <i>D</i> . <i>discoideum</i> cells in a PARP dependent manner within 1 hour.	91
3.6a	a) Mitochondrial membrane potential changes induced by UV-C irradiation.	92
	b) Densitometric analysis of time dependent changes in mitochondrial membrane potential after UV-C irradiation.	93
	c) Mitochondrial membrane potential changes induced by UV- C irradiation were partially rescued by benzamide.	93
3.7	Fluorescence microscopy for the mitochondria-nuclear translocation of AIF after exposure to different doses of UV-C at different time points in the presence and absence of benzamide.	94
3.8	Cytochrome c release during paraptosis by immunofluorescence.	95
3.9	Monitoring DNA Fragmentation by agarose gel electrophoresis.	96
3.10	a) DNA fragmentation was monitored under UV-C stress using TUNEL assay.	96
	b) Densitometric analysis of DNA fragmentation as monitored using TUNEL assay.	96
3.11	a) Characterization of paraptotic vesicles formed during UV-C stress using membrane probe DPH by fluorimetry.	97
	b) Characterization of paraptotic vesicles formed during UV-C stress using DNA binding dye DAPI.	97
3.12	Caspase activity during paraptotic cell death.	98
3.13	Propidium iodide staining to observe cell death upon MEK inhibition.	98
3.14	Proposed pathway for UV-C induced cell death in D. discoideum	102

4.1	Starvation induced time dependent cell death as monitored by trypan blue exclusion method.	108
4.2	Annexin V staining of starving D. discoideum cells.	108
4.3	Starvation does not affect NAD^+ content of <i>D. discoideum</i> cells in an hour.	109
4.4	Starvation depletes ATP content of D. discoideum cells.	110
4.5	Densitometric analysis of time dependent changes in mitochondrial membrane potential during starvation.	110
4.6	ROS is generated during starvation.	111
4.7	Time dependent effect of glutathione on starvation induced cell death as monitored by trypan blue exclusion method.	111
4.8	DNA damage during starvation.	112
4.9	Time dependent effect of PARP inhibition by benzamide on starvation induced cell death by trypan blue exclusion method.	113
4.10	Annexin V staining of starving D. discoideum cells.	113
4.11	Starvation depletes NAD^+ content of <i>D. discoideum</i> cells by 4 hours in a PARP dependent manner.	114
4.12	a) Benzamide partially restores starvation induced MMP changes	114
	b) Starvation induced mitochondrial membrane potential changes were partially restored by benzamide.	115
4.13	Time dependent effect of protease inhibitors on starvation induced cell death as monitored by trypan blue exclusion method.	116
4.14	a) Starvation induced MMP changes were partially restored by protease inhibitors.	116
	b) Starvation induced MMP changes were partially restored by protease inhibitors.	117
4.15	Time dependent effect of cathepsin D inhibition by Pepstatin A on starvation induced cell death as monitored by trypan blue exclusion method.	118
4.16	Annexin V-PI staining of starving <i>D. discoideum</i> cells in the presence of pepstatin A.	118
4.17	Starvation induced mitochondrial membrane potential changes were partially restored by cathepsin D inhibition.	119
4.18	Time dependent effect of calpain inhibition by ALLN on starvation induced cell death as monitored by trypan blue exclusion method.	119

.

4.19	Starvation induced mitochondrial membrane potential changes were partially restored by calpain inhibition.	120
4.20	Development in <i>D. discoideum</i> cells in the presence of benzamide.	121
4.21	Proposed pathway for starvation induced cell death.	124
5.1	Dose and time dependent cell death induced by STS in <i>D</i> . <i>discoideum</i> cells as monitored by trypan blue exclusion method.	129
5.2	Annexin V staining of STS treated D. discoideum cells.	129
5.3	a)Mitochondrial membrane potential changes induced by STS.	130
	b) Densitometric analysis of time dependent changes in mitochondrial membrane potential after STS.	130
	c) Mitochondrial membrane potential changes induced by STS were not rescued by benzamide.	131
5.4	Fluorescence microscopy for the mitochondria-nuclear translocation of AIF at different time points after STS treatment.	131
5.5	a) PARP activity assay by indirect immunofluorescence.	132
	b) Densitometric analysis of PARP activity.	132
5.6	STS treatment does not affect NAD ⁺ content of <i>D. discoideum</i> cells.	133
5.7	DNA fragmentation was monitored under STS stress using TUNEL assay.	133
5.8	DNA fragmentation was monitored under STS stress by agarose gel electrophoresis.	134
5.9	Annexin V staining of STS treated D. discoideum cells.	134
5.10	a) Mitochondrial membrane potential changes induced by STS.	135
	b) Mitochondrial membrane potential changes induced by STS were partially rescued by pepstatin A.	135
5.11	Fluorescence microscopy for the mitochondria-nuclear translocation of AIF at different time points after STS treatment.	136
5.12	D. discoideum development affected by STS	136
5.13	Mechanism of Staurosporine induced cell death in D. discoideum.	139
6.1	UV-C induced dose dependent cell death as monitored by trypan blue exclusion method.	143
6.2	a) Densitometric analysis of PARP activity.	143

.

	b) Peak PARP activity induced by UV-C irradiation was intercepted by benzamide.	144
6.3	Effect of UV-C induced growth changes in D. discoideum.	144
6.4	Effect of PARP inhibition on UV-C induced growth changes in <i>D. discoideum</i> . Benzamide could rescue the UV-C induced changes in growth curve.	145
6.5	Development of D. discoideum cells under UV-C stress.	146
6.6	Irradiation with UV-C affects the mRNA expression of various genes involved in <i>D. discoideum</i> development.	147
6.7	Effect of PARP inhibition on the fate of spores that were developed under UV-C stress.	148
6.8	DNA damage monitored in second generation <i>D. discoideum</i> cells.	148
7.1	UV-C irradiated GFP tagged cells synergistically develop with healthy cells.	157
7.2	Exogenous cAMP resumes development of UV-C exposed <i>D</i> . <i>discoideum</i> cells.	158
7.3	cAMP levels in UV-C irradiated <i>D. discoideum</i> were found to be reduced in NO dependent manner.	159
7.4	UV-C exposed <i>D. discoideum</i> cells failed to chemotax towards cAMP well.	160
7.5	Irradiation with UV-C affects the mRNA expression of various genes involved in <i>D. discoideum</i> development.	161
7.6	Development of UV-C irradiated cells pretreated with iNOS inhibitor.	162
7.7	Nitric oxide generation increases in UV-C treated <i>D. discoideum</i> cells.	162
7.8	Mechanism of UV-C induced defects in <i>D. discoideum</i> development <i>via</i> cAMP signaling.	165
8.1	Three dimensional structure of AIF	169
8.2	The characteristic domains of human AIF, AMID and AIFL.	169
8.3	aif gene sequence of D. discoideum.	171
8.4	Schematic representation of the target for antisense construction.	172
8.5	Restriction maps of pTX-GFP vectors used.	172
8.6	PCR amplification of 5' region of <i>aif</i> .	173
8.7	Confirmation of the orientation of inserts in intermediate	174

8.8	clones: A1 and A30. Confirmation of insert orientation in pTX-AIF As clone.	174
8.9	RT-PCR of <i>aif</i> and constitutive gene <i>rnl</i> A from <i>D</i> . <i>discoideum</i> .	174
8.11	Developmental arrest in <i>D. discoideum</i> cells with constitutive down-regulation of PARP.	175
8.11	Vital functions of AIF.	177

.

.

.