L	ist	of	Figures
---	-----	----	---------

No.	Title	Page No.
1.1	Apoptosis – the programmed death of a cell	3
1.2	Model for caspase-8 activation	4
1.3	Extrinsic and Intrinsic pathways during apoptosis	7
1.4	Role of Mitochondria in apoptosis	8
1.5	Caspase dependent cell death via plasma membrane receptor and mitochondrial pathway	10
1.6	Autophagy and autophagic death	12
1.7	Poly(ADP-ribose) polymerase 1 (PARP-1) mediated paraptotic cell death	13
1.8	Paraptotic cell death induced by Cathepsin D release	17
1.9	MNNG induced DNA damage from PARP-1 to calpain activation	19
1.10	Cross talk between cellular organelles during programmed cell death	20
1.11	A schematic representation of the modular organization of human PARP-1	22
1.12	PARP upon activation utilizes NAD ⁺ to synthesize PAR residues	23
1.13	Target proteins are PARylated at Lysine (L) residues	23
1.14	PARP detects the presence of nicks or damage and PARylate the target proteins	25
1.15	PARP determines the fate of a cell	28
1.16	PARP activation in response to DNA damaging agents and cell death	29
1.17	The biological functions of PARP-1 signaling in response to DNA damage	30
1.18	Schematic representation of PARG	32
1.19	The biosynthesis and degradation of PAR	34
1.20	Role of AIF in caspase dependent and independent cell death	36
1.21	Life cycle of D. discoideum	39
1.22	Fate of the D. discoideum cells during development	40
1.23	A schematic description: (A) The pathway controlling the onset of <i>D. discoideum</i> development. (B) The pathway	43

	induced by cAMP during D. discoideum development.	
1.24	Signaling network functioning during aggregation in <i>D. discoideum</i> development	47
3.1	Oxidative stress (HA) induced dose dependent cell death as monitored by trypan blue exclusion method.	95
3.2	Oxidative stress (cumene H_2O_2) induces dose dependent cell death as monitored by trypan blue exclusion method.	96
3.3	Annexin V staining of HA stressed D. discoideum cells.	96
3.4	Fluorimetric estimation of ROS using DCFDA dye.	97
3.5	DNA damage induced by oxidative stress.	98
3.6	PARP activity assay by indirect immunofluorescence.	99
3.7	PARP activity assay by indirect immunofluorescence during HA stress.	100
3.8	PARP activity assay by indirect immunofluorescence during cumene H_2O_2 stress.	100
3.9	Peak PARP activity induced by HA was intercepted by benzamide.	101
3.10	Densitometric analysis of PARP activity in presence of benzamide.	101
3.11	Peak PARP activity induced by cumene H_2O_2 was intercepted by benzamide.	102
3.12	Effect of benzamide on HA induced cell death as monitored by trypan blue exclusion	102
3.13	Effect of benzamide on cumene H2O2 induced cell death	103
3.14	Effect of benzamide pretreatment on oxidative stress induced cell death	103
3.15	Oxidative stress depletes NAD^+ content of <i>D. discoideum</i> cells in a PARP dependent manner	104
3.16	Oxidative stress depletes ATP content of <i>D. discoideum</i> cells in a PARP dependent manner	105
3.17	Mitochondrial membrane potential changes induced by oxidative stress	106
3.18	Time dependent changes in mitochondrial membrane potential after treatment with HA	107
3.19	Changes in mitochondrial membrane potential after treatment with HA were partially rescued by benzamide	107
3.20	Changes in mitochondrial membrane potential after treatment with cumene H_2O_2 were partially rescued by benzamide	108
3.21	Fluorescence microscopy for the mitochondria-nuclear	109

translocation of AIF

3.22	Cytochrome c release during paraptosis by	109
	immunofluorescence	
3.23	Monitoring DNA Fragmentation by Agarose gel electrophoresis	110
3.24	DNA fragmentation was monitored under oxidative stress using TUNEL assay	110
3.25	Caspase activity during paraptotic cell death	111
3.26	MMP changes in presence of broad caspase inhibitor during paraptosis	112
3.27	Propidium iodide staining in presence of broad caspase inhibitor during paraptosis	112
3.28	Paraptotic vesicle formation as seen by DPH staining	113
3.29	Characterization of paraptotic vesicles formed during oxidative stress using membrane probe DPH by fluorimetry	113
3.30	Characterization of paraptotic vesicles formed during oxidative stress using DNA binding dye DAPI	114
3.31	Oxidative stress induced MMP changes with MEK inhibition	114
3.32	Propidium iodide staining to observe cell death upon MEK inhibition	115
 3.33	Proposed pathway for oxidative stress induced paraptosis and necrosis	122
4.1	Effect of gallotannin on D. discoideum cell death	131
4.2	Effect of gallotannin on growth of D. discoideum	131
4.3	Effect of gallotannin on development	132
4.4	PARP activity in presence of PARG inhibitor gallotannin	132- 133
4.5	PARP mediated cell death is reduced by PARG inhibitor gallotannin in <i>D. discoideum</i>	134
4.6	Effect of PARG inhibition on PS-PI staining during oxidative stress induced cell death	135
4.7	MMP changes during oxidative stress with and without 15 μ M gallotannin pretreatment	136- 137
4.8	AIF translocation in 1 mM HA induced cell death pretreated with gallotannin	137
4.8 4.9	AIF translocation in 1 mM HA induced cell death pretreated	137 138
	AIF translocation in 1 mM HA induced cell death pretreated with gallotannin	

	membrane potential changes during paraptotic cell death	
5.2	Effect of cathepsin D inhibition on MMP changes during oxidative stress	146
5.3	Effect of calpain and cathepsin D inhibition on MMP changes during 1 mM HA stress	146
5.4	Effect of calpain and cathepsin D inhibition on oxidative stress induced mitochondrial membrane potential changes during paraptosis	147
5.5	Effect of calpain and cathepsin D inhibition on Plasma membrane integrity as monitored by PS-PI dual staining	147
5.6	Effect of calpain inhibition on AIF translocation	148
5.7	Paraptotic vesicle formation as seen by DAPI staining in presence of calpain and cathepsin D inhibitor	149
5.8	Paraptotic vesicles observed by membrane probe DPH in presence of calpain and cathepsin D inhibitor	149
5.9	Paraptotic vesicles stained with membrane probe DPH	149
5.10	Calpain activity measured by using its substrate Succinyl- AMC during paraptosis at 3 hours post oxidative stress	150
5.11	Effect of Protease Inhibitor Cocktail (PIC) on mitochondrial membrane potential changes during necrosis	150
5.12	Effect of calpain and cathepsin D inhibition on mitochondrial membrane potential changes during necrosis	151
5.13	Calpain activity measured during necrosis	151
6.1	Effect of oxidative stress induced growth changes in <i>D</i> . <i>discoideum</i>	158
6.2	Development of D. discoideum cells under oxidative stress	160
6.3	Expression profile of genes during early development in D. discoideum	160
6.4	Effect of GSH on HA induced changes on <i>D. discoideum</i> growth	161
6.5	Effect of 1 mM GSH pretreatment on oxidative stress induced delay in development	162
6.6	Effect of PARP inhibition during oxidative stress-induced developmental changes in <i>D. discoideum</i>	165
6.7	Effect of PARP inhibition on the fate of spores that were developed under oxidative stress	166
6.8	DNA damage monitored in second generation <i>D. discoideum</i> cells	166
6.9	HA treated <i>D. discoideum</i> cells exhibit partial rescue in development on exogenous addition of cAMP	168

6.10	cAMP estimation in oxidative stress treated D. discoideum	168
7.1A	adprt1A gene sequence of D. discoideum	179
7.1B	Schematic representation of the strategy for antisense construction	180
7.1C	Restriction maps of the plasmid vectors used	181
7.2	D. discoideum cells transformed with pTX-GFP	182
7.3	Development of D. discoideum transformed with pTX-GFP	182
7.4	PCR amplification of PARP catalytic domain region	184
7.5	pTX-GFP digestion with KpnI and BamHI	184
7.6	Colony PCR of E. coli transformants	184
7.7	Restriction digestion pattern for pTx-GFP and pTx-PARP	185
7.8	Construction of ecmB-PARP containing PARP antisense in stage specific vector ecmB	185
7.9	(A) RNA isolated from <i>D. discoideum</i> cells (B) RT PCR of PARP down-regulated <i>D. discoideum</i>	186
7.10	PARP activation monitored in PARP down-regulated <i>D</i> . <i>discoideum</i> cells	186
7.11	Growth curve of PARP down-regulated D. discoideum cells	187
7.12	Developmental arrest in <i>D. discoideum</i> cells with constitutive down-regulation of PARP	187
7.13	Developmental arrest in <i>D. discoideum</i> cells with stage specific down-regulation of PARP	188
7.14	PARP activation in oxidative stress induced and PARP down- regulated <i>D. discoideum</i> cells	188- 189
7.15	MMP changes in oxidative stress induced and PARP down- regulated <i>D. discoideum</i> cells	189- 190
7.16	Monitoring cell death by PS-PI dual staining	190