

List of Figures

Chapter-I

Fig. 1.1 Comparison of electronic and nuclear stopping at different energy range	15
Fig. 1.2 Interaction of ion beam with target material	16
Chapter-II	
Fig. 2.1 Schematic of sputtering Unit	45
Fig. 2.2 Schematic representation of Cyclotron accelerator	48
Fig. 2.3 Schematic representation of working principle of Pelletron	51
Fig. 2.4 Material Science Irradiation Chamber at IUAC, New Delhi	52
Fig. 2.5 Impedance gain/phase analyser (Solartron-1260)	59
Fig. 2.6 Polarization in dielectric material	63
Fig. 2.7 Vicker's Microhardness Indenter Future Tech. (FM-700)	65
Fig. 2.8 Shimadzu's X-ray diffractometer and diffraction phenomenon	68
Fig. 2.9 Reflection of X-rays from two planes of atoms in a solid	69
Fig. 2.10 Thermo-Nicolet NEXUS 670	72
Fig. 2.11 Instrumentation and working principle of AFM	73
Fig. 2.12 (a) SEM unit (b) coating unit (c) working principle	75
Fig. 2.13 Schematic diagram for the working principle of DSC	77
Fig. 2.14 Different phenomenon taking place during DSC measurement	78
Fig.2.15 Electronic levels in energy absorption	80
Fig. 2.16 Schematic of a dual-beam UV-Vis spectrophotometer	81
Fig. 2.17 Working principle of MFM	82
Fig. 2.18 (a) Josephson Junciton formation and (b) Principle of SQUID	84

Chapter-III

films

- of

(a)

Fig.3.1 Conductivity versus log frequency for pristine and proton irradiated films of(a) Pure PMMA, (b) PMMA+5% Fo, (c) PMMA+10% Fo, (d) PMMA+15% Fodoped films (e) conductivity versus filler concentration at 1 MHz92

Fig. 3.2 Dielectric constant vs log frequency for pristine and proton irradiated films of (a)Pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo, (d) PMMA+15%Fo (e) dielectric constant vs. filler concentration at 1 MHz. 94

Fig. 3.3 Dielectric loss (tanδ) vs log frequency for pristine and proton irradiated films of (a) Pure PMMA (b) PMMA+5%Fo (c) PMMA+10%Fo (d) PMMA+15%Fo 95

Fig. 3.4 Microhardness vs applied load for pristine and proton irradiated films of (a)Pure PMMA (b) PMMA+5%Fo (c) PMMA+10%Fo (d) PMMA+15%Fo96

Fig. 3.5 AFM image of (a) Pure PMMA (Pristine) (b) Pure PMMA (Proton irradiated)
(c) PMMA+5% Fo (Pristine) (d) PMMA+5% Fo (Proton irradiated) (e) PMMA+10%
Fo (Pristine) (f) PMMA+10% Fo (Proton irradiated) (g) PMMA+15% Fo (Pristine)
(h) PMMA+15% Fo (Proton irradiated)
98

Fig. 3.6 FTIR spectra of pristine and proton irradiated (5x10¹² ions/cm²) films of PMMA+Fo composites 99

Fig. 3.7 Conductivity versus log frequency of pristine and proton irradiated films of (a) PMMA+10%Pd(acac) (b) PMMA+20%Pd(acac) (c) PMMA+30%Pd(acac) (d) PMMA+40%Pd(acac). (e) conductivity vs. filler concentration of films at 1 MHz 102 Fig. 3.8 Dielectric constant versus log frequency of pristine and proton irradiated

(b)

PMMA+20%Pd(acac)

(c)

PMMA+10%Pd(acac)

PMMA+30%Pd(acac) (d) PMMA+40%Pd(acac). (e) dielectric constant vs. filler concentration at 1 MHz 103

Fig. 3.9 Dielectric loss versus log frequency of pristine and proton irradiated films of (a) PMMA+10%Pd(acac) (b) PMMA+20%Pd(acac) (c) PMMA+30%Pd(acac) (d) PMMA+40%Pd(acac) 104

Fig.3.10 XRD spectrums of pristine and proton irradiated (a)Pd(acac) powder (b)purePMMA (c) PMMA+10% Pd(acac) (d)PMMA+20% Pd(acac)(e)PMMA+30%Pd(acac) (f) PMMA+40% Pd(acac) films107

Fig.3.11 FTIR spectra of (a) pristine and (b) proton irradiated (5x10¹² ions/cm²) PMMA+Pd(acac) composite 109

Fig.3.12AFMimagesof(a)PMMA+10%Pd(acac)-Pristine(b)PMMA+10%Pd(acac)-Protonirradiated(c)PMMA+30%Pd(acac)-Pristine(d)PMMA+30%Pd(acac)-Protonirradiated111

Fig.3.13 SEM images of (a) Pure PMMA-pristine (b) Pure PMMA-proton irradiated (c) PMMA+10%Pd(acac)-pristine (d) PMMA+10%Pd(acac)-proton irradiated (e) PMMA+30%Pd(acac)-pristine and (f) PMMA+30%Pd(acac)-proton irradiated films 112

Fig.3.14 DSC pattern for pure PMMA (pristine) and pristine and proton irradiatedPMMA+40% Pd (acac) films113

Fig.3.15 Conductivity vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni composites, (c) conductivity vs. filler concentration at 1 MHz 115

Fig.3.16 Dielectric constant vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni composites, (c) dielectric constant vs. filler concentration at 1 MHz 117

Fig.3.17 Dielectric loss (tanδ) vs. log frequency for (a) pristine and (b) protonirradiated PMMA+Ni composites118

Fig.3.18 XRD spectrum of (a) pure PMMA and filler (Ni -powder), (b) pristine and (c) proton irradiated $(5x10^{12} \text{ ions/cm}^2)$ PMMA+Ni composites 120

Fig.3.19 FTIR Spectra of (i) pristine and (ii) proton irradiated films of (a) pure PMMA, (b) PMMA+10%Ni, (c) PMMA+20%Ni, (d) PMMA+30%Ni and (e) PMMA+40%Ni 122

Fig.3.20 AFM images of (a) pristine PMMA (b) proton irradiated PMMA (c) pristine PMMA+20% Ni (d) proton irradiated PMMA+20% Ni (e) pristine PMMA+30% Ni (f) proton irradiated PMMA+30% Ni films 124

Fig.3.21 SEM images of (a) PMMA+10% Ni (pristine) (b) PMMA+10%Ni (proton irradiated) (c) PMMA+20% Ni(Pristine) (d) PMMA+20% Ni(Proton irradiated) films 125

Fig.3.22 Conductivity vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites (c) conductivity vs. filler concentration at 1 MHz 126

Fig.3.23 Dielectric constant vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites, (c) dielectric constant vs. filler concentration at 1 MHz 128

Fig.3.24 Dielectric loss vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites 129

Fig.3.25 XRD pattern of (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites 130

Fig. 3.26 AFM image of (a) PMMA+5%Ni-DMG(pristine), (b) PMMA+5%Ni-DMG(proton irradiated), (c)PMMA+10%Ni-DMG(pristine), (d) PMMA+10%Ni-DMG(proton irradiated), (e) PMMA+15%Ni-DMG(pristine), (f)PMMA+15%Ni-DMG(proton irradiated) 132

Fig. 3.27 Comparison of conductivity of pristine and proton irradiated $(5 \times 10^{12} \text{ ions/cm}^2)$ composites at 10 MHz frequency for different filler in PMMA 135

Fig. 3.28 Comparison of dielectric constant of pristine and proton irradiated (5x10¹² ions/cm²) composites at 10 MHz frequency for different filler in PMMA 135

Chapter-IV

Fig. 4.1 AC conductivity versus log frequency of pristine and Ni irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo (e) Variation of AC conductivity with filler concentration at 1 MHz 143

Fig. 4.2 Dielectric constant versus log frequency for pristine and Ni irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo composite (e) Dielectric constant versus filler concentration at 1 MHz 145

Fig. 4.3 Dielectric loss versus log frequency for pristine and Ni irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo composite 146 Fig. 4.4 Vickers microhardness versus applied load for pristine and Ni irradiated films of (a) Pure PMMA, (b) PMMA+5% Fo, (c) PMMA+10% Fo and (d) PMMA+15% Fo 148

Fig. 4.5 FTIR spectra of (a) pristine and (b) Ni irradiated $(5x10^{12} \text{ ions/cm}^2)$ PMMA+Fo composite 150

Fig. 4.6 AFM images of (a) pure PMMA(pristine) (b) Pure PMMA(Ni irradiated) (c) PMMA+5% Fo (pristine) (d) PMMA+5% Fo (Ni irradiated) (e) PMMA+10% Fo (pristine) (f)PMMA+10% Fo (Ni irradiated) (g) PMMA+15% Fo (pristine) (h) PMMA+15% Fo (Ni irradiated) films 151

Fig. 4.7 SEM micrographs of (a) pure PMMA(pristine), (b) pure PMMA (Ni irradiated), (c) PMMA+5%Fo (pristine), (d) PMMA+5%Fo (Ni irradiated), (e) PMMA+10%Fo (pristine), (f) PMMA+10%Fo (Ni irradiated), (g) PMMA+15%Fo (pristine) and (h) PMMA+15%Fo (Ni irradiated) films 153

Fig. 4.8 DSC thermogram of (A) pure PMMA(pristine), (B) PMMA+15%Fo (pristine) and (C) PMMA+15%Fo (Ni irradiated) films 154

Fig. 4.9 AC conductivity versus log frequency for pristine and Ni irradiated (a) Pure PMMA, (b) PMMA+10% Pd(acac) (c) PMMA+30% Pd(acac) (d) PMMA+40% Pd(acac) films (e) AC conductivity at different filler concentration at 1 MHz 157

Fig. 4.10 Dielectric constant versus log frequency of (a) Pure PMMA, (b)PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac), (d) PMMA+40% Pd(acac) films(e) Dielectric constant at different filler concentration at 1 MHz159

Fig. 4.11 Dielectric loss (tanδ) versus log frequency of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac), (d) PMMA+40% Pd(acac) films 160

Fig. 4.12 XRD spectrum of (a) Pd(acac) powder, Pristine and Ni irradiated composites of (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) 162

Fig. 4.13 FTIR spectrum for (a) pristine and (b) Ni irradiated PMMA+Pd(acac) composite 165

Fig. 4.14 SEM images of (a) pure PMMA (pristine), (b) pure PMMA (Ni irradiated), (c) PMMA+10% Pd(acac) (pristine), (d)PMMA+10% Pd(acac) (e) PMMA+30%Pd(acac) (pristine) and (f) PMMA+30%Pd(acac)(Ni irradiated) films 166

Fig. 4.15 Optical images of pristine films (a)pure PMMA (b) PMMA+10% Pd(acac) and (c) PMMA+30% Pd(acac) 167

Fig. 4.16 DSC pattern of (a) pure PMMA (pristine) and (b) PMMA+40% Pd (acac)(pristine) and (c) PMMA+40% Pd (acac) (Ni irradiated) 168

Fig. 4.17 AC conductivity versus log frequency for (a) Pristine and (b) Ni irradiated (PMMA+Ni) composite (c) AC conductivity versus filler concentration at 1 MHz 170

Fig. 4.18 Dielectric constant versus log frequency for (a) pristine and (b) Ni irradiated (PMMA+Ni) samples (c) dielectric constant versus concentration of filler at 1 MHz

171

Fig. 4.19 Dielectric loss versus log frequency for (a) pristine and (b) Ni irradiated (PMMA+Ni) films 173

Fig. 4.20 XRD spectrum of (a) pure PMMA and filler (Ni -powder) (b) pristine and (c) Ni irradiated (PMMA+Ni) composites 175

Fig. 4.21 FTIR spectrum of (a) pristine and (b) Ni irradiated (PMMA+Ni) composites 177

Fig. 4.22 AFM images for (a) PMMA+10% Ni (pristine), (b) PMMA+10% Ni (5x10¹² ions/cm²) (c) PMMA+40% Ni (Pristine), (d) PMMA+40% Ni (5x10¹² ions/cm²) films

Fig. 4.23 SEM micrographs of (a) PMMA+10%Ni (pristine), (b) PMMA+10%Ni (Ni irradiated), (c) PMMA+40% Ni (pristine) and (d) PMMA+40% Ni (Ni irradiated) films 180

Fig. 4.24 AFM images of (a) Pure PI(pristine) (b) Pure PI (Ni irradiated) (c) PI+0.5% Fe(pristine) (d) PI+0.5% Fe (Ni irradiated) (e) PI+1% Fe (pristine) (f) PI+1% Fe (Ni irradiated) (g) PI+5% Fe (pristine) (h) PI+5% Fe (Ni irradiated) films 183

Fig. 4.25 (a,c,e,g,i,k) diagonal profile section magnetic force gradient and (b,d,f,h,j,l)Magnetic force gradient topographic images of pristine and Ni irradiated PI+0.5%Fe,PI+1%Fe and PI+5%Fe composites respectively185

Fig. 4.26 SQUID analysis of pristine and Ni irradiated PI+5% Fe films186

Fig. 4.27 Variation in band gap energy with filler (Fe) concentration 187

Fig. 4.28 Comparison of conductivity of pristine and Ni irradiated (5x1012 ions/cm2)composites at 10 MHz for different filler in PMMA189

Fig. 4.29 Comparison of dielectric constant of pristine and Ni irradiated (5x1012ions/cm2) composites at 10 MHz for different filler in PMMA189

Chapter-V

Fig. 5.1 AC conductivity versus log frequency of pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo (e) Variation of AC conductivity with filler concentration at 1 MHz 196

Fig. 5.2 Dielectric constant versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo films (e) Variation of AC conductivity with filler concentration at 1 MHz 198

Fig. 5.3 Dielectric loss versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo films 199

Fig. 5.4 FTIR spectra of (a) pristine and (b) Ag irradiated (5x10¹² ions/cm²) films 200 Fig. 5.5 AFM images of (a) PMMA+5% Fo (pristine) (b) PMMA+5% Fo (Ag irradiated) (c) PMMA+10% Fo (pristine) (d) PMMA+10% Fo (Ag irradiated) (e) PMMA+15% Fo (pristine) (f) PMMA+15% Fo (Ag irradiated) 202

Fig. 5.6 AC conductivity versus log frequency of pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) films (e) Variation of AC conductivity with filler concentration at 1 MHz 205 Fig. 5.7 Dielectric constant versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) films (e) Variation of AC conductivity with filler concentration at 1 MHz 206

Fig. 5.8 Dielectric loss versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) films 208

Fig. 5.9 XRD spectrum of Pristine and Ag irradiated composites of (a) PMMA+10%Pd(acac), (b) PMMA+30% Pd(acac) and (c) PMMA+40% Pd(acac)209

Fig. 5.10 FTIR spectrum for (a) pristine and (b) Ag irradiated composite films 211

Fig. 5.11 AFM images of 140 MeV Ag¹¹⁺ Ag irradiated (a) PMMA+10% Pd(acac) and (b) PMMA+30% Pd(acac) 213

Fig. 5.12 Comparison of conductivity of pristine and Ag irradiated (5x10¹² ions/cm²)composites at 10 MHz for different filler in PMMA214

Fig. 5.13 Comparison of dielectric constant of pristine and Ag irradiated $(5 \times 10^{12} \text{ ions/cm}^2)$ composites at 10 MHz for different filler in PMMA 215

Chapter-VI

Fig. 6.1 Variation in conductivity with respect to (a) filler concentration (b) ion species and (c) ion fluence at 10 MHz for PMMA+Pd composite 219

Fig. 6.2 Variation in dielectric constant with respect to (a) filler concentration (b) ion species and (c) ion fluence at 100 kHz for PMMA+Pd composite 221

Fig. 6.3 Variation in dielectric loss with respect to (a) filler concentration (b) ion species and (c) ion fluence at 1 MHz for PMMA+Pd composite 222

Fig. 6.4 Vicker's microhardness as a function of (a) filler concentration and (b) ion specie and (c) ion fluence at load of 600 mN 223

Fig. 6.5 Crystalline size and % crystallinity by XRD as a function of (a) filler concentration and (b) ion specie and (c) ion fluence for PMMA+Pd(acac) composites

224

Fig. 6.6 FTIR spectra for pristine and (proton/Ni/Ag) irradiated films of PMMA+10%Pd(acac) 225