CHAPTER VI

NEARLY HAUSDORFF COMPACTIFICATIONS

Mathefnaticians including Alexandroff, Urysohn, Cech, Cartan,
Wallman, Tychonoff and Lubben laid the foundation of the modern theory of
Hausdorff extensions. Once the term “COMPACTNESS” was defined, it was
a natural problem to try and extend a non-compact space to a compact
space. The first general method in this direction was the one-point
compactification in 1924 due to Alexandroff. In 1937 Cech developed a
compactification having the maximal extension property by extending
Tychonoff's idea of gmbedding a cdmpletely regular Hausdérff spaée X ina
cube. Stone developed a similar compa¢tiﬂcation independently. This
compactification is termed as Stone-Cech compactification and is denoted by

pX for a space X . In fact, fX is maximal compactification of a Tychonoff
space X . In 1938, Wallman gave a general method for constructing a T

compactification coinciding with X .

A family B of subset of a space X is called a ring of sets if it is closed
under finite intersections and finite unions. A subfamily & of non-empty
members of a ring B is called a B-filter if o is closed under finite
intersections and super sets. A B -filter « is a B-ulirafilter if‘ it is not properly
contained in any other B -filter. The filter concept was introduced in order to

study convergence. Besides for describing convergence, collections of B-
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ultrafilters have been used to construct topological spaces. Let @(B) denote

the collection of all B -ultrafilters onX . Forz e B, let % denote the members
of @(B) which contain z. Taking {z” |z e B} as a base for closed sets we
get topology on @ (B) which is useful in the formation of compactifications. In

1938, Wallman considered the case in which B is the family of all closed

sets of a 7, space X . Wallman showed that under these conditions #(B) is

not necessarily Hausdorff. We recall the definition of a Wallman base. A
Wallman base L on-a space X isa ring of subsets of X satisfying:

()p, XelL,

(i) L is a closed base for X,

(iii) if AeL and xe X -4 then thereis a Be L such that xeB, 4AnB=¢p

and

(iv)if 4,BeL such that Ac X-B ‘then there are C,De L such that ,

Ac X-CcDcX~-B.

We have observed that for a T, topological space X having more than
one point, the family, R(X) of all regular closed subsets of X, is not a ring in
general but if we consider the family Rf(X) of all finite intersections of
members of R(X) then the family Rf(X) forms a ring. In this chapter, we

attempt to construct a compactification rX for a non-Tychonoff space X by

using the family Rf(X). We observe that the resulting compactification rX is

a non-Hausdorff 7, space. A separation axiom stronger than 7, but weaker
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than 7, naturally exists on ~X which we term as nearly Hausdorifness. In the
section 1, of this chapter we define and study this separation axiom. In the
section 2, we discuss the construction of the space »X and in the last section

we discuss the natural question under what conditions X = X ?

Major results of this chapter are accepted for the publication in the

‘Applied General Topology” journal.

1. Nearly Hausdorff Spaces.

In this section, we define and study “Nearly Hausdorffness” a
separation axiom stronger than 7, but weaker than 7,. We introduce a
topological property = and note that a space with property » is a nearly
Hausdorff space if and only if it is Urysohn. A flow diagram showing various
implications about separation axioms supporied by necessary counter

examples is included in this section.

Definition 6.1.1. Distinct points x and y in a topological space X are said

to be separated by subsets 4 and B of X if xe A-B and ye B—-4.

Definition 6.1.2. A topological space X is called a nearly Hausdorff space if
for every pair of distinct points of X there exists a pair of regular closed sets

in X separating them.
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We observe that the notion of nearly Hausdorff spaces coincides with
the notion of weakly Hausdorff spaces defined by Soundararajan in [26]. A
topological space X is called weakly Hausdorff if each of its points is an
intersection of regular closed sets. That a nearly Hausdorff space is weakly
Hausdorff follows because for each pair of distinct points, there exist regular
closed sets separating them and hence each point is an intersection of
regular closed sets. Conversely, suppose X is a weakly Hausdorff space
then each point of X is an intersection of regular closed sets. Hence for
every pair of distinct points, there exists a pair of regular closed sets

separating them. Thus a weakly Hausdorff space is a nearly Hausdorff

space.
We introduce here a topological property 7 for a topological space X .

Definition 6.1.3. A topological space X is said to have property = if for
every Fe R(X) and x¢ F there exists an H e R(X) such that x e ImtH and

HnF=¢p.
We denote a topological space X with property = by X (7).

We recall that a space X is called a Urysohn space if for every pair of
distinct points x, y in X there exist open sets G and H containing x and y
respectively such CIGNCIH = ¢ [33]. Following flow diagram expresses the

relationship of nearly Hausdorffness with other separation axioms.
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Regular = Urysohn(x) <> NearlyHausdor(f(r)

U
Urysohn= Hausdorff=> NearlyHausdorff= T,

Examples given below [27, 33] juétify that unidirectional implications in
the above flow diagrarﬁ need not be revertible. In addition, example 6.1.4.(b)

shows that nearly Hausdorffness is not a closed hereditary property.

Examples 6.1.4.(a) A 7, space need not be nearly Hausdorff for example an

infinite cofinite spaceis a 7, space but not a nearly Hausdorff space.

6.1.4.(b) The following example justifies that a nearly Hausdorff space need
not be a Hausdorff space: Consider N, the set of natural numbers with
cofinite topology and | = [0, 1] with the usual topology. Let X = NxI and
define a topology on X as follows:

() neighborhoods of the points of the form (n,y),y=0 are usual
ﬁeighborhoods {(n,é) eX|y—-e<z<y+¢g} inl, ={n}xl for small positive ¢;
(i) neighborhoods of the points of the form (»,0) are of the form
{(m,z)ye X|meU,0=<z<s,}, where U is a neighborhood of » in Nand ¢,

is a small positive number for each me U .
The resulting space X is a non-Hausdorff space as the distinct points
in X of the form (#,0) and (m,0) cannot be separated by disjoint open sets.

We now observe that it is a nearly Hausdorff space. Let (#,x) and (m,y) be

two distinct points in X . We consider the following cases:
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Case (i) Let m=n. Then choose £<i|x—y|. The regular closed sets
{(n,z)eX|x—-e<z<x+g} and {(m,z)ev)(ly-gs:zswr‘g} separates
(n,x)and (m,y).

Case (ii) Let m=n. Then the regular closed sets {(n,z)e X|0<z<x<g}
and {(m,z)e X|0< z%y <6}, where ¢ and & are small positive numbers,
separate (n,x)and (m,y).

Note. (1) The set {(n,O)eX |neN}in the previous example is a closed

subspace of X but not a nearly Hausdorff space. Thus a closed subspace of
- an nh-space need not be an nh-space.
(2) Also the space X does not possess property 7= because the set

F={(,z)e X|0<z<1} is a regular closed set and (2,0) ¢ F but there does
not exist a regular closed set H in X such that 2,0)e ImtH and HNnF=¢.

Therefore a nearly Hausdorff space need not always have the property 7.

6.1.4.(c) In the previlous example we saw that a nearly Hausdorff space need |
not have property 7. Now, we give an example showing that even a
Hausdorff space need not have the property = .

Let 4 be the linearly ordered set {1,2,3,...,0,....,—3,-2,—1} with the
interval topology and let N be the set of natural numbers with the discrete
topology. Define X to be 4x N together with two distinct points say a and
—a, which are not in 4xN. The topology 3 on X is determined by the

product topology on' 4x N together with basic neighborhoods M (a)={a} U

{G,NDli<ow,j>ny and M, (-a) = {~a} v {G,)|i>w,j>n} about a and
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—a. Resulting space X is a non Urysohn Hausdorff space without property

# . The space X is not Urysohn because there do not exist disjoint open sets

U and ¥ containing @ and —a respectively such that UV =¢. That X

does not have property = follows from the fact that a ¢ M, (—a) and there

does not exist a regular closed set F containing a such that a < ImF and

Fn M} (-a) = ¢. Thus a Hausdorff space need not possess the property 7.

6.1.4.(d) The folloWing example justifies that a Urysohn space need not

possess property 7. Let S be the set of rational lattice points in the interior of

the unit square except those whose x-coordinate is .;. Define X to be

SU{0, 0} u{(, 0}U{E, /2)reQ, 0<rv2 <1}. Topologize X as follows:
Local base for points in Sc X are same as those inherited from the
Euclidean topology and for other points follow?ng local bases are taken:

U,0,0)={(x,y)e X|0<x<i, 0<y<itu{(0, 0)},

U,,(l,O)iz{(x,y)eX|%<x <1, 0<y<i}u{(l, 0)},

U, G2 ={(x) e X i <x<3 and |y-rv2|<1}u{(0, 0}.
The resulting space X is a Urysohn space without property z. That space
X does not have property » follows since (0,0)¢ H={(x,»)eS|+<x<3}
and there does not exist regular closed set F such that (0,0)e IntFF and
IntFAH=g¢.

6.1.4.(e) The following example justifies that a Urysohn space with property
# need not be a regular space: Let X be the set of real numbers with

neighborhoods of any non-zero point as in the usual topology while
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neighborhoods of 0 will have the form U - 4, .where U is a neighborhood of
0 in the usual topology and 4={1|reN}.

The resulting‘space X is a non-regular Urysohn spacé with property
# . That the space X is not regular follows because 0¢ 4, 4 is closed in X
but there do not exist disjoint open sets U and V such that 0eU and
AcV.

The space X has property z follows form the fact that the topology
on X is finer than the usual topology on the set of real numbers.

The space X is a Urysohn space since for every pair of distinct points

x and y in X, there exist disjoint open sets (x—n,x+7) and (y—n, y+7)

having disjoint closures, where 7 <1|x—y|.

In an approéch to unify the separation axioms between 7, and
completely Hausdorff, F. G. Arenas, J. Dontchev and M. L. Puertas in [1],
have studied the relation of the separation axiom weakly Hausdorffness with
kd-space, kc-space, us-space, hI,"space. In [1], authors have observed that |
a space X is weakly Hausdorff if its semiregularization is 7, i.e., if each
singleton is & —closed. We recall the following terms. A point x in a
topological spéce X is called a & ~cluster point of a subset 4 of X if
AnU = ¢ for every regular open set U containing x. The set of all
- & —cluster points of 4 is called the §-closure of 4 and is denoted by

Cl;(A). If A=Cli;(4) then 4 is called §—closed. A topological space X is

called semiregular if regular open sets form a base for the topology of X .
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Further, for a topological space (X,7), the family of all regular open sets
forms a base for a new topology r, coarser than 7, which is called the
semiregularization of ¢. Thus a space (X,r) is semiregular if and only if

ry =7 . We observe the following result:

Lemma 6.1.5. A éemireguiar T, space is a nearly Hausdorff space.

Proof. Let X be a semiregular 7, space and let x,ye X, x# y. Since X isa
T, space, there exist open sets U and V' separating x and y respectively.
Further X isa éemireguiar space which implies there exist regular open sets
G, and G, containing x and y respectively such that G, cU and G, V.
The result noW follbws by observing that X -G, and X ~G, are regular

cioséd sets separating x and y.

Theorem 6.1.6. A non-empty product of a nearly Hausdorff space is a nearly

Hausdorff space if and only if each factor is a nearly Hausdorff space.

yeld

Proof. Let X =HX ,» Where {X,} _, is a family of nearly Hausdorif spaces,

A # ¢. Consider two distinct points x, y in X. Then x=y
= x, #y, forsome ae .
Since each X, is a nearly Hausdorff space, for x, # y, in X, there exist

regular. closed sets F and H in X, separating x, and y,. Define

U=J]u, and ¥ =][]V,. where U, =V, =X, for y#za and U, =IuF,

reld yed
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'V, =IntH . Then the regular closed sets CIU and CIV separate x and y

respectively.

Conversely, su.ppose X = HX , is a nearly Hausdorff space. Let x,,
yeld

v, be two distinct points in X,. Choose points x, y in X such that they

h

differ only in o™ co-ordinate and their o™ co-ordinates are x, and y,

respectively. Since X is a nearly Hausdorff space, there exist regular closed

sets F and H in X separating x and y respectively. Since /mtF and IntH

are open sets in X therefore IntF =HU;, and ImH =HV, , where U, and

rea yei
V, are open sets in X, foreach y and U, =X, V, = X, except for finitely
many values of y. The regular closed sets CIU, and CIV, separate x, and
v, respectively. This proves that for each a e 4, X, is a nearly Hausdorff

space.

The following result was proved in [8] for a regular Hausdorff space.

We now observe that it is true for nearly Hausdorff space also.

Theorem 6.1.7. Let X be a nearly Hausdorff space and let f:X —Y be a
density preserving epimorphism. Then

(A) for a regular closed set H of Y, we have CIf(Clf'(JmH))=H and -
hence R(Y)={CIf(F)|F € R(X)}.

(B)CIf (F)e R(Y) whenever F € R(X).
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Proof. (A)‘ Clearly, 'CIf (Clf '(IntH)) c H . For the reverse containment, let
x € H . Then we consider the following cases:
Case (i) Let xeImtH. Then we have x e CIf (CIf ' (IntH)) which implies
IntH < CIf (CIf " (IntH)) gnd therefore H ¢ CIf (Clf "' (IntH)) .
Case (ii) Let x be a limit point of H. Then every open set U, containing x
has a non-empty intersection with ntH . But this implies
FrUINCY (ntH) # @
= flrrtwo)n rleyr )= ¢
= U, nflcr )z e.
Tﬁerefore x € CIf (CIf "' (IntH)) and hence H c CIf (Clf "' (IntH)) .
(B) If F =g then the result follows trivially. Let F e R(X)~{p}. Then
Clint(Clf (F)) c CIf (F). | (1)
For the reverse containment, we shall show that
Clf (F)N(Y -ClIntCIf (F))=¢. Let G =Y -ClntCIf (F). Suppose
GNCIf(F)#¢. Thénv G being open and f being a density preserving
epimorphism, we héve
GNfF)=¢e
=  [fG)NFzo
= UGN IntF # ¢
Let H=CI(f ' (G) m IntF). Then
@ # IntClf (H) = IntCIf (Clf " (G) " IntF)

cGnlntClf (F)=9p,
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which is a contradiction. Therefore our assumption that G f(F)=¢ is
wrong. Hence
CIf (F) c ClInt(CIf (F)). )

From (1) and (2), we have Clnt(Clf (F)) = CIf (F), whenever F e R(X).

Note. (1) Observe that the first projection of thé spaée Nxl in Example
6.1.4 (b) shows that a continuous image of a nearly Hausdorff need not be a
nearly Hausdorff space.

(2) In the same exémple if we consider the second projection of NxI onto
[0, 1] with the cofinite topology then we get that even a continuous density
preserving image of a nearly Hausdorff space need not be a nearly Hausdorff

space.

2. The space rX.

In this section we obtain ” X like” compactification for a nearly
Hausdorff space X with property . Consider the family Rf(X) of finite
intersections of meﬁ‘sbers of R(X), where R(X)is the family of all regular
closed subsets of X. For a topological space X, an ac Rf(X)—{p} is

called an r—filter if it is closed under finite intersections and supersets. A
maximal » —filter is called an » — ultrafilter. A filter & is said to be fixed (free)
depending upon whether N« is non-empty (empty).

Lemma 6.2.1. Let X be a nearly Hausdorff space. Then,

79



(i) for each xe X, there exists a unique r-ultrafilter o, such that
Nna, ={x},where a, ={F e Rf(X)|xe F}.

(i) X is a compact space if and only if each r — ultrafilfer in X is fixed.

Proof. (i) Follows from the fact that for each pair of distinct points of X there
exist regular closed sets sepafating them. |

(i) If X is a compact space, then each r — ultrafilter being a family of closed
sets with finite intersection property, has arbitrary intersectioh non-empty.
Converse follows from the fact that for each r—ultrafilter o, the family of

open sets C, ={X ~F|F ea} is such that if no finite sub collection of C,

covers X then C, does not cover X .

For a nearly Hausdorff space X with property =, denote by rX , the
set of all r-—ultrafiters in X. Further for FeR(X) define
F ={a erX |F e a}. Topologize the set 7X by taking B = {F|F e R(X)} as a
base for closed sets in rX . We use the following result from [3] to show that
B is a base for closed sets in »X . |

A collection B of subsets of a set X is a closed base for a topological
space X if and only if the following conditions are satisfied:

(i) The intersection of members of B is empty.

(i) For each F, and F, in B and x¢ F, UF,, there exists an F in B such

that xg F o F,UF,.
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Lemha 6.2.2. Let X be a nearly Hausdorff space with property =. Then the
set B= {}7[1? € R(X )} forms a base for closed sets in rX .

Proof. Observé that for F,,F, e B, W=F,u§. Let ¢ € F,UF,. Then
F,UF, ea and « is an r—ultrafilter implies that either F, e or F, e, i.e.

either acF, or ackF,. Hence aecF UF,. This proves that

F,UF, c F,UF, . The reverse containment can be proved similarly. Since

X is a nearly Hausdorff space it follows that intersection of members of B is

empty. Hence B is a base for closed sets in X .

Note. Let X be a nearly Hausdorff space with property 7. Then for each

FeR(X), Cl nt,F=F.Clearly Cl Int,,F c F.To observe the reverse

containment, let o € F . If possible suppose « ¢ Cl, Int, F . Then there exists
an open set U in rX containing « such that
Un(nt,F)=p
= | Unint,F=¢
= UNnF=¢p,

a contradiction since U is an open set containing ¢ and Feco.
Theorem 6.2.3. Let X be a nearly Hausdorff space with property . Then

the space rX of all r —ultrafilters in X is a compact nh-space which contains

X as a dense subspace.
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Proof. Define r: X — rX by r(x)=a, where a, ={F € Rf(X)|x e F}. We first

prove that «, is an r—ultrafilter. Clearly, p¢a. and Xea,. Also «, is

X

closed under finite intersections and supersets. We now prove that «, is a

maximal subfamily of Rf(X) with finite intersection property.

Let Ae Rf(X) be such that AnF =g, forall Fea,. Let 4=[4,

i=1
where 4, € R(X)foreach ie{l, 2,...,n}. Now,
AnF=ze forall Fea,
= AnNnFzg foral Fea,.
it is sufficient to prove that 4 e«  for each ie{l, 2,...,n}. If possible,
suppose 4, ¢ ¢, for some i. This implies x ¢ 4,. Since X has property r,
there exists H in R(X) suchthat xe ImtH and Hn A4, =¢ . Since xe H we
have H e« . But this contradicts 4, N F = ¢ for each F e «,. Therefore our
assumption that 4, ¢«, for some i, is wrong. This prove «,  is an

r — ultrafilter.

That the map r is well defined and is one-one follows by Lemma

6.2.1.(i). We now prove that »(F) = f‘mr(X) , where F e R(X). Note that
a, e FNrX)e Fea,a,er(X) e xeF,a, er(X) < a, er(F).

The identity »(F)=F ~r(X) implies ' (F)=F, i.e. inverse image of every
basic closed set in rX is closed in X . This proves r is continuous. That the

map r is a closed map onto its image follows from the fact that
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r(F) =FrX ) an(:i the fact that the family Rf(X) form a base for closed
setsin X.

We now prove that CI,»(F)=F, where FeR(X). The identity
r(F)y=Fnr(X), FeR(X), implies Cl,r(F)cF. For the reverse
containment let X be a basic closed set in #X containing 7(F). Then Ko F
since

HF) o K
= {a;erXixeF}gE
= Kea, foreach xe F

= xe K foreach xe F

= Fck

=» Fck.
Therefore every basic closed set K containing »(F) contains F. Since
- Cl,r(F) is the intersection of all closed sets in X containing »(F), it follows
that Cl,,r(F) = F.

We now establish that the space rX is compact. Let {F} re, DE @

family of basic closed sets in ~X with finite intersection property, where 1 is

a subfamily of Rf(X). Observe that the family A also has the finite -

intersection property. For if ﬂ}«} =¢, F,ed foreachie{l, 2,...,n} then

i=1

ﬁ?‘::{aer){lﬁﬁ} ea}
=l

(=]
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= pea,
which is a contradiction. An r - ultrafilter is a maximal subfamily of Rf(X)

with finite intersection property. Hence 1 is contained in some r — ultrafilter

say o . Now

ae(VFeNE

Fea Ked

proves that ﬂE # ¢ . Hence rX is compact.
kel

We note that the space rX is an nh-space. Let « and ¢ in rX be two
distinct r—ultrafiters. Then a#¢ implies there exists Fea such that

Fel . Now F ¢ implies that there exists H € ¢ such that FnH =¢. The

regular closed sets F and H separate o and ¢ respectively.

Note. If a space X with property 7 is a non-Hausdorff, nearly Hausdorff
space then »X cannot be Hausdorff. For, if »X is Hausdorff then X being
subspace of a compact Hausdorff space must be a completely regular

Hausdorff space, which is a contradiction.

Example 6.2.4. Following example justifies that a one point compactification
of a non-Urysohn Hausdorff space without property 7= can be a nearly

Hausdorff. Consider the subspace Y={(,HneN,

Im{eN} U {(L, 0)|n e N} of the usual Euclidean space R% Set X =Y U {p,q},

n?*

where p, g¢Y and topologize X by taking sets open in Y as open in X

and a set U containing p (respectively ¢) is open in X if for some r eN,

84



{(t,Lyinzr,meN}cU (respectively {(,L)nzr,-meN}cU). The
resulting space X is a non-Urysohn Hausdorff space without property ~ and
its one point compactification is a nearly Hausdorff space.

The space X is not a Urysohn space follows from the fact that distinct

points p and ¢ cannot be separated by open sets such that their closures
are disjoint.

Let Z=XU{(0,0)}. Topologize Z by declaring sets open in X as
open in Z and the open sets about (0,0) are those inherited from the
subspace of Euclidean space R?. Resulting space Z is a compact nh-space.

Let 1 be an open cover of Z. Then choose open sets U,V, W
containing p, g and (0,0) respectively. Let » be the largest natural number

such that (1, 0)g U uV UW . Choose basic open sets U, about each (+,0),

1<r<n. Then the open set U UV UW U[UU,) covers all but finitely many

re=l
points of Z . The remaining finitely many points of Z are isolated points. This
proves that Z is compact.

We now show that Z is a nearly Hausdorff space. Let x, ye Z, x# y.

Then we consider the following cases:

Case (i) Let x,y e Y U{(0,0)}. Then x and y be separated by regular closed
sets as Y U {(0,0)} inherits the usual Euclidean space R
Case (ii) Let x = p and y = (0,0). Then the regular closed sets
F={(t DHlism<r,neN} U{p}
and
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H= {G,0|neN}U{(,DIneN, —meN}u{g
separate x and y.
Case (iii) Let x =¢ and y =(0,0). Then the regular closed sets
F={¢ Dl-r<-m<-L,neN} U{g
and
H= {&,0neN}u{t,L)neN, meN}u{p}
separate x and y.
Case (iv) Let x=p and y=g¢. Then the regular closéd sets
F={& Hlism<r,neN}u{p}
and
H={},H]|-r<-m<-1,neN}uiq}

separate x and y.

Theorem 6.2.5. Let the spaces X and rX be as in Theorem 6.2.3. Then X

is C* embedded in rX .

Proof. Let f «C*(X). Suppose image of f<[0,1] =I. For « in X, define
fH@)={ HVH,eR|Cl,f'(Int,H wiInt,H,)eax }. Observe that f*(a)
satisfies finite intersection property. In fact for ¥, H in f*(a), Cl, ™' (IntH),
Cl, f'(ImF) € « and therefore
ClL,f(ImtH) N CL, f ' (ItF) # @
= p= f{(ClLf UntH ) (Cly £ (IntFY))

< f(Cly ™ ntH N f(Cly f 7 (IntF))
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< CLf(f~ UntH))  Cl, f(f ™ (IntF))

cHNF.
Hence HnF=¢. We now prove that if HUFe f*(«), then either
He f*(@) or Fe f*(@). Suppose He f*(a). If possible, suppose
Fe f¥(a). Then
He fY(o)= Clyf (IntH) ¢ o
=  there exists K, e« such that CI, 7' (IntH) K, =¢.
Also,
Fe ffla)y=Cl,f(nF)e¢a
=  there exists K, e« such that CI X [ InF)y K, =¢.
Now K|, K, e @ and « an r - ultrafilter imply that X, nK, € « . Moreover,
HUF e f¥ (@)
=  Cl,f ' (mH o ImtF)=Cl, f ' (ImH) UCL, " (IntF) €
but Cl, £ (IntH v IntK) N (K, nK,)=¢ - a contradiction. Therefore if
HUF e f*(a) then either H e f*(a) or Fe f*(a). Since f*(a) is a family
of closed sets in 1 with finite intersection property thérefore N fHa)#¢. We
assert that ~ f*(a)={t}, for some tel. Define rf:rX =1 by rf(x)=

N f*(). Clearly, rf restrictedto X is f. We show rf is continuous.
Let € rX . Then choose an open set G of | such that rf(@)eG. If

rf(a) =t then using regularity of | successively we obtain open setsG,, G,

satisfying
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teG,cG,cG,cG,cG.
Set F, =Cl\ G, and H, =Cl, (1-Cl | G,). Since ;l'nt v F, v Inty H, =1, we
have F,uH,ef*@ and as teH, Fef'(@) and H ¢f*@). If
K,=Cl, f'(Int\ F)and L, = Cl, f"'(Int y H,) then o ¢ L, and the open
| set rX -f,' contains {¢}. Finally the containment rf(rX —-f,)g G establisﬁes

the continuity of »f . For the assertion, one may use the above technique to

note that {F e R()|t € Int\F} < f* (o).

Theorem 6.2.6. Let X be a nean'y Hausdorff .épace with property n. Then
there exists a compact nearly Hausdorff space rX in which X is densely
C*-embedded.

Proof. Follows from Theorem 6.2.3 and Theorem 6.2.5.

Corollary 6.2.7. If Xis a regular Hausdorff space, then it is densely

C*-embedded )’n rX .

3. When rX=gX?

In this section we answer the natural question when »X = X ? We
observe that if Rf(X) forms a Wallman base for a néarly Hausdorff space X
then rX = gX. As a consequence we have that if X is normal or zero-

dimensional then rX = gX .
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Lemma 6.3.1. Let X be a normal space and let Rf(X) be the collection of
all finite intersections of members of R(X). Then Rf(X) is a Wallman base.
Proof. Clearly Rf(X) is closed under finite intersections and finite unions. We ‘
observe the following: -
(i) ¢, X e Rf (X).
(il) Note that Rf(X) forms a closed base for X : Since X is a normal space,
NRf(X)=¢. Further for each F, H e Rf(X) such that x¢ FUH implies |
that there exist disjoint open sets U and ¥ suchthat xeU, FOH cV and
UnV=¢.Clearly, Ve Rf(X) and x¢V 2 FUH.
(i) Let AeRf(X) and xe X - 4. Then X being a normal space, there
exists an open set ¥ such that xeV < X — 4.
(iv) Let 4, Be Rf(X) be suchthat 4c X - B. Since X is a normal space,
the closed set 4 ¢ X — B implies that there exists an open set U such that
AcUcUcX-B (1)
Further,
AcU=X-UcX-4.
Since X ?s a normal space there exists open set W such that
X-UcWcW c X~ A4 which implies X -U ¢ W X - 4 which in turn gives
Ac X -W cUcU (2)
From (1) and (2), it follows that 4c X ~W cU < X —B. Therefore for

Ac X - B, there exist U, W e Rf(X) suchthat Ac X-W cU cU.
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Lemma 6.3.2. Let X be a nearly Hausdorff space such that Rf(X) is a
Wallman base. Then X is a regular space.

Proof. Let x e X and let F be a closed subset of X such that x ¢ F. Since

Rf(X) forms a base for closed sets in X, F= ﬂH, where J is some
Hef

subfamily of Rf(X). Now, x ¢ F implies that x ¢ H for some H < . Since
Rf(X) forms a Wallman base,
x¢ H, HeRf(X)
=  there exists K € Rf(X) éuéh that xe K and KnH=¢
Further, KnH =¢ implies that H ¢ X — K. Again using the fact that Rf (X)
is a Wallman base, tfhere exist C,D e Rf(X) such that
HcX-CcDcX-K |
The open sets X :"C and X-D are disjoint and contain F and x,

respectively.

Theorem 6.3.3. Let X be a nearly Hausdorff space such that Rf(X) is a

Wallman base. Then rX =fX .

Proof. It is sufficiént to show ﬁhat' rX is Hausdorff. Let x, ye _rX ,x#y. Then
.'there exist r—ultrafiters «, and a, in rX with limit points x and y,
respectively. Since o, and «, ére distinct r-ultrafilters, there exist F e «, |
such thaf FNnK = ¢ for some K € «,. Therefore F < X-K. Since

Rf(X) is a Wallman base therefore there exist £ and H in Rf(X) such that
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Fc X-H ¢ E ¢ X~-K.

Then rX-H and rX-E are disjoint open sets containing x and y,

respectively. Hence rX is a Hausdorff space.

Corollary 6.3.4. A nearly Hausdorff space X for which Rf(X) forms a

Wallman base is a Tychonoff space.

Proof. Follows from Theorem 6.3.3 since X is a subspace of gX.

Corollary 6.3.5. If X is a normal Aspace or zero-dimensional space then

X =p0X.

Proof. Foliow from Lemma 6.3.1 and Theorem 6.3.3.
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