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SUMMARY

In [10], Porter and Woods have extensively studied the poset IP(X) of 

covering maps on a fixed domain X. They are able to relate the sub-poset 

IP(fiX,X) of IP(/iX) with the well known poset K(X) of all compactifications 

of a locally compact Hausdorff space X. The poset 1P(X) turns out to be a 

complete upper semilattice with the partial order defined by g < f, if there 

exists a continuous map h-.Rf -» Rg such that ho f = g . In [10], Porter and 

Woods have partially answered the question: When IP(X) is a complete 

lattice? In an attempt to obtain further results we study the poset DP(X) of 

density preserving maps on a fixed domain X.

Mathematicians like Alexandroff, Uryshon, Cech, Cartan, Wallman, 

Tychonoff and Lubben laid the foundation of the modern theory of Hausdorff 

extensions. Once compactness was defined, it was a natural problem to try 

and extend a non-compact space to a compact space. The first general 

method in this direction was the one-point compactification in 1924 due to 

Alexandroff. In 1937 Cech developed a compactification having the maximal 

extension property by extending Tychonoffs idea of embedding a completely 

regular Hausdorff space X in a cube [1], In [14], Stone developed a similar 

compactification independently. This compactification is termed as Stone- 

Cech compactification and is denoted by fiX for a Tychonoff space X. In 

fact, (IX is a maximal compactification for a Tychonoff space X. In the
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present thesis we obtain “ /3X like” compactification for a non-Tychonoff space

X.

In [5], S. II iadis constructed for a Hausdorff space X an extremally 

disconnected regular Hausdorff space EX such that X is the image of EX 

under a perfect e -continuous map. The space EX is unique upto 

homeomorphism. EX is called the lliadis absolute of X. We construct here 

similar space for a non-Hausdorff space.

The material of the present thesis entitled ‘Lattices of density 

preserving maps, extensions and absolutes of topological spaces1 is the out 

come of researches carried out by the author mainly along these lines. There 

are seven chapters in the thesis.

Chapter 1 aims at providing the introduction to the subject matter of the 

thesis. In Chapter 2, we define and study the poset DP(X) of density 

preserving continuous maps on a space X. A continuous map / from a 

topological space X into a topological space Y is called a density preserving 

map if IntClf(A) * q>, whenever/^ * <p, where A is a subset ofX [3]. Two 

density preserving maps / and g defined over a topological space X with 

range Rf and Rg respectively are said to be equivalent if there exists a 

homeomorphism h-.Rf-± Rg satisfying h ° / = g . We identify equivalent 

density preserving maps on a fixed domain X and denote by DP(X), the set
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of all such equivalence classes of density preserving maps. Further, a partial 

order '<’ is defined on DP(X) such that (DP(X),<) becomes a partially 

ordered set (poset). Having observed that the poset IP{X) is naturally 

contained in the poset DP(X), we study the poset DP(X) to obtain further 

results in the direction of [10]. We prove the following theorem in this chapter.

Theorem 1. Let X be a compact Hausdorff space without isolated points. 

Then DP(X) is a complete lattice.

Topology of a space X always determines order structure of the poset 

DP(X), i.e. if spaces X and Y are homeomorphic then the posets DP{X) 

and DP{Y) are order isomorphic.

In Chapter 3, we study the converse problem: When order structure of 

the poset DP{X) determines the topology of X ? We introduce here the term 

cln-bijection for a bijective map. A bijection /: V )' from a topological 

space A' to a topological space Y is called a cln-bijection if the family {f(A) j 

A is a closed nowhere dense subset of X} is precisely the family of all closed 

nowhere dense subsets of Y.

Theorem 2. Let X and Y be Hausdorff spaces without isolated points and 

let <p: DP(X) -» DP(Y) be an order isomorphism. Then there exists a cln-
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bijection F:X~>Y such that for each f e DP(X) we have

p(<p(f)) = {F(A) | A g p(f)}, where p(f) = {f~l (y) \ y e Rf).

We recall that topology of a countably compact T3 space without

isolated points is determined by closed nowhere dense sets [10], Using these 

results we prove the following theorem:

Theorem 3. Let X and Y be countably compact I\ spaces without isolated 

points. Then DP(X) and DP(Y) are order isomorphic if and only if X and Y 

are homeomorphic.

In Chapter 4, we determine some conditions under which a density 

preserving maps is an irreducible map. We further discuss the natural 

question: When DP(X) = IP{X) ? We recall definition of an irreducible map. A 

surjection f :X —>Y said to be irreducible if f(F)*Y for every proper closed 

subset F of X [18]. Further for a subset A of a topological space X we 

define DP(X,A) = {fe DP(X) \ j/~'(/(x))| = 1, for* e A}. We obtain the 

following result.

Theorem 5. Let A be a dense subspace of a topological space X. Then 

every f in DP(X, A) is irreducible.
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Corollary 6. If X is a compact Hausdorff space and A is a dense subset of 

X, then DP(X,A) = IP(X,A). In particular, if X is a locally compact 

Hausdorff space then DP(aX,X) - IP(aX,X), where aX is a 

compactification of X.

In particular, for a locally compact space X we have 

DP{fiX, X)=IP(J3X, X). As a consequence of this we obtain Magiil’s result [8]. 

Using a result due to Porter and Woods [10] we obtain that DP(tSX,X) is 

order isomorphic to K(X). As a consequence of this we are able to use lattice 

theoretic properties of the complete lattice DP(J5X,X) to obtain topological 

properties of pX-X when X is a locally compact Hausdorff space.

An / e DP(X) is said to be a dual if the only non-singleton fiber of / 

is a doubleton. In Chapter 5, we introduce and study the notion of 

overlapping duals and also the notion of duals hinged with overlapping duals. 

We topologize the collection 3 of all subset of the set of duals in DP(X) 

which are hinged with overlapping duals in DP(X) and study when the 

topological space 3 is homeomorphic to X. We in fact prove here that 3 is 

homeomorphic to X when X is a countably compact T3 space without

isolated points. To prove this result we introduce here the notion of 

F - closed sets and observe that for a locally compact Hausdorff space X, 

the notion of F- closed sets coincide with the notion of F - compact sets 

defined by Thrivikraman in [15].
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In Chapter 6, we construct a “ pX like” compactification of a space X. 

We introduce here a topological property n for a topological space X. A 

space X is said to have property n if for every F e R(X) and x g F there 

exists an H e R(X) such that x e IntH and HnF = cp. For a Urysohn space 

X with property n, a filter a c Rf(X)-{<f>} is called an r -filter if it is closed 

under finite intersection and supersets. A maximal r —filter is called an 

r - ultrafilter. The family of all r - uitrafilters in X is denoted by rX. Further

for F e R(X) define F = {a erX\F ea}. Topologize the set rX by taking 

B = |f|F e ^(X)} as a base for closed sets in rX. The resulting space rX is 

a compact 7j non-Hausdorff space. We observe that the space rX satisfies 

a separation axiom stronger than Tx but weaker than T2 which we term as 

nearly Hausdorff and have defined as follows: A space X is called a nearly 

Hausdorff space if for every pair of distinct points x and y in X, there exist

regular closed sets Fx and Fy containing x and y respectively such that

x,y & FxnFy. We observe that nearly Hausdorffness is productive but not

closed hereditary. Also, we study the relation of nearly Hausdorffness with 

other separation axioms and we observe the following implications:

Regular =>Urysohn(X) <=>NearlyHausdorff{7T)

li
Urysohn=> Hausdorff=> NearlyHausdorffi=> Tx

We include examples to justify that the unidirectional implications in the 

above flow diagram need not be reversible. We observe that a nearly

Hausdorff space with property n is an Urysohn space. Hence the construction
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of rX described above can be done for a nearly Hausdorff space with 

property n, We observe the following results:

Theorem 7. Let X be a nearly Hausdorff space with property n. Then the 

space rX of all r - ultrafilters in X is a compact nearly Hausdorff space 

which contains X as a dense C*-embedded subspace.

Following results answers natural question: When rX = pXl

Theorem 8. Let X be a nearly Hausdorff space such that Rf(X) is a 

Wallman base. Then rX-(iX.

Corollary 9. If X is a normal space or zero-dimensional space then 

rX = pX.

In chapter 7, we describe the construction of projective cover (EX,hx) 

for a compact nearly Hausdorff space X on the lines of Gleason’s 

construction [18], In this chapter we study projective lift and extension of 

density preserving epimorphism /: X Y. We prove the following theorem 

in this chapter.

Theorem 10. Let X be a nearly Hausdorff space with property n. Then 

r(EX) = E(rX).
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Some of the results of Chapters 2, 3 and 4, in its original form are 

being published in the Bulletin of the Australian Mathematical Society, Volume 

72 (2005). Major results of Chapter 6 are accepted for its publication in the

‘Applied General Topology’ journal.
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