
CHAPTER II

LATTICE DP(X)

Attaching an algebraic object to a topological space in order to study 

the later is a well-known procedure. Two examples of such techniques are 

the use of the rings of continuous functions to study the space X and the 

use of the semilattice of compactifications of a Tychonoff space X to study 

the remainder fiX-X of its Stone-Cech compactification pX. Posets of 

compactifications of a completely regular Hausdorff space have been 

extensively studied by various authors including Magili [17], Rayburn [23], 

Visliseni and Flaksmaier [31], Thrivikraman [29, 30], Kannan [12]. In [22] 

Porter and Woods have extensively studied the poset IP(X) of covering 

maps on a fixed domain X, where by a covering map we mean a perfect 

irreducible continuous surjection. The poset IP(X) turns out to be a complete 

upper semilattice with the partial order '<’ defined by / < g if there exists a 

continuous map h:Rg->Rf such that h ° g = f. Besides obtaining several 

interesting results, Porter and Woods have partially answered in [22] the 

question: When IP(X) is a complete lattice?

In an attempt to obtain further results in this direction, we have 

observed that IP(X) is naturally contained in the poset DP(X) of the density 

preserving maps. In the first section of this chapter we recall the definition of 

density preserving maps [8] and give some examples. In the second section,
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we define partial order on the set DP(X) of density preserving maps and 

prove that DP(X) is a poset with this partial order. In the last section of this 

chapter we answer the question: When DP{X) is a complete lattice?

Some results of this chapter are being published in the Bulletin of the 

Australian Mathematical Society, 72 (2005).

1. Density Preserving Maps; Definition and Examples.

In this section we recall the definition of a density preserving map and 

give several examples of such maps. Throughout, our maps are continuous.

Definition 2.1.1. A continuous map / from a topological space X into a 

topological space Y is called density preserving if IntClf(A) *<p, 

whenever IntA * <p, where A is a subset ofX [8].

Examples 2.1.2. (a) An open map is a density preserving map.

2.1.2. (b) An RC-preserving map is a density preserving map. (A continuous 

map / from a topological space X into a topological space Y is called an 

RC-preserving map if image of a regular closed set in X is a regular closed

•nr) PI

2.1.2. (c) A closed irreducible surjection is a density preserving map. In fact,

let / from a topological space X into a topological space Y be a closed

irreducible surjection and let AcX be such that Int A* q>. Then the proof

for the case A = X follows trivially. Suppose [X-IntA] is a nonempty proper
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closed subset of X. Since / is closed and irreducible, f(X - Int A) is a 

proper closed subset of Y. Observe that the nonempty open set 

[Y-f(X-Int A)] is contained in f(IntA) and hence IntClf(A) *. This 

proves that / is density preserving. In particular, an irreducible surjection 

from a compact Hausdorff space to a Hausdorff space is density preserving.

2.1.2. (d) The map / :[0,1]—> [0, 1] defined by

f 2x, 0 < x < T

is a continuous perfect RC-preserving surjection and hence a density 

preserving map. Since /[0, y]=[0,1], / is not irreducible and hence is not a 

covering map.

2.1.2. (e) The restriction of the continuous map / defined in the above 

example 2.1.2(d) on [0,1) is a density preserving surjection but is none of the 

following: RC-preserving, closed, perfect and irreducible.

2.1.2. (f) The map /:[0,1)->S'1 defined by f{x)=e2nbc is a bijective 

continuous density preserving map. In fact / is irreducible. On the other 

hand / is not RC-preserving as / maps the regular closed set [^,1) onto a 

non-regular closed set in Sl. Also, / is not an open map as the image of the 

open set [0,|) under / is not an open subset of Sl. Since / is not a closed 

map, it is not a covering map.

2.1.2. (g) The natural inclusion of the usual space of rational numbers into 

the usual space of real numbers is a density preserving epimorphism.
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2.1.2. (h) Let X be a topological space and let K be a closed nowhere 

dense subset of X. Then the natural quotient map q\X ~>X\K, where X\K 

is the space obtained by collapsing K to a point, is a density preserving map. 

Let us see a proof of this fact: Take AaX with Int A^=<p. Observe that

either Int AnK = (p or IntAnK^p.

Case 1: Suppose Int AnK -(p. Then q(Int A) is an open set in X \K 

satisfying q(Int A) c Clq(A). This proves Int Clq(A) * <p.

Case 2: SupposeIntAnK*<p. Since K is a nowhere dense set, IntActK . 

Choose jc in IntA-K. Observe that we can find an open set U c A such 

that jceU and UnK = q> \ for otherwise jc will become a limit point of K and 

hence jc will be in K. Clearly q(U) is an open set in X\K satisfying 

q(U) c. Clq(A) and hence Int Clq(A) * <p.

2. Poset DP(X).

We define here a notion of equivalence on the set of density 

preserving maps defined on a fixed topological space X. We identify 

equivalent density preserving maps on a fixed domain X and denote by 

DP(X), the set of all such equivalent classes of density preserving maps. An 

order relation < is defined on DP(X) such that (DP(X),<) becomes a 

partially ordered set (poset). We also observe behavior of density preserving 

maps on isolated points.
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Definition 2.2.1. Two density preserving maps / and g defined on a 

topological space X and range Rf and Rg respectively are said to be 

equivalent if there exists a homeomorphism h:Rf ->Rg satisfying h° f = g.

Notation. Two such equivalent maps / and g are denoted by / * g.

Examples 2.2.2. (a) Let X be a topological space and let f:X->Rf be a 

homeomorphism. Then /«Ix because the homeomorphism h:X^>Rf 

defined by h(x) = f(x) satisfies h°Ix = /, Thus all homeomorphisms on X 

represent one single member in DP(X). Similarly the family of all constant 

maps defined on X represents a single member in DP(X).

2.2.2. (b) Consider R, the usual space of all real numbers. Define 

/: R —»[0, °o) by f(x) = x2 and g: R ->[0,oo) by gO) = |x|. Clearly both / 

and g are continuous density preserving maps. Observe that the map 

h:[0,qo)-»[0,oo) defined by h(x) = x2 is continuous and h°g = f. Thus 

f"g-

Definition 2.2.3. Let X be a topological space and let /, g be in DP(X), 

we define an order relation < on DP(X) by g < f if there exists a continuous 

map h:Rf Rg satisfying h°f = g.
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Examples 2.2.4. (a) Consider lx and c in DP(X) where Ix represents the 

class of all homeomorphisms on X and c represents the class of all 

constant maps on X. Observe that c < Ix in DP(X).

2.2.4. (b) Consider the usual space R of real numbers and take closed 

nowhere dense sets K = (1, 2, 3} and L = {1, 2} in R. Consider the natural 

quotient maps q: R -» Rj* and p: R R|£ as defined in Example 

2.1.2 (h). Then q < p because the map h:Rp-> Rq defined by

is continuous and satisfies h°p = q.

2.2.4. (c) Along the lines of above example if we consider an increasing finite 

chain of closed nowhere dense sets in a topological space X and if 

{g, }"=1 is the corresponding family of quotient maps obtained by identifying Kt 

to a point then qn <qn_x <....... <qx in DP(X).

Theorem 2.2.5. Let X be a topological space. Then (DP(X),<) is a partially 

ordered set, where < is an order relation as defined in 2.2.3.

Proof. We show that < is reflexive, antisymmetric and transitive.

*<’ is reflexive: Take / in DP(X) and consider the identity map

Iv:Rf ~>Rf, Clearly lw ° / = /. This proves / « /, for ail / in DP(X).

’<’ is antisymmetric: Let /, g be in DP(X) such that /<g and g<f. Then 

we need to show f ~g. By Definition 2.2.3 there exist continuous maps

xe R-{ 1,2, 3} 
xe{l,2,3}

h: Rg-^ Rf and k:Rf Rg such that h°g = f and k°f = g. The
24



composite maps h°k and koh are identity maps on Rf and Rg 

respectively. This implies that h and k are inverses of each other. Since h 

and k are bijective continuous maps, both h and k are homeomorphism. 

This proves / » g.

‘<’ is transitive: Suppose f<g and g<h. Then there exist continuous 

maps kx :Rg -» Rf and k2 :Rh -» Rg such that kx°g = f and k2°h = g. The 

composite map kx°k2:Rh-»Rf is continuous and

{kx ok2)°h = kx°(k2°h) = kx°g = f.

This proves /<h.

Lemma 2.2.6. Let X be a topological space and let f, g be in DP(X) with 

g<f. Then the map h:Rf->Rg satisfying h°f = g is also density 

preserving.

Proof. Let Ac Rf be such that lntA*(p. Then /"'(IntA) is a nonempty 

open subset of X. Also, f~x(IntA) cf~\A) implies Intf~\A)*cp. Set 

f~l(A) = A*. Since g is density preserving, IntCl g(A*)*<p. That h is a 

density preserving map follows from the following fact: 

q> *IntClg(A*)

= IntCl{hof)(A')= MCI (h ° /)(/“' (A)) 

c IntClh(A).
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Lemma 2.2.7. Let f :X -> F be a density preserving map from a topological 

space X into a Tx space Y. Then f maps isolated points to isolated points. 

Proof. Let x be an isolated point in X. If f(x) is not an isolated point of Y 

then IntClf({x}) = /«(/'({x}) -q>. But this is not possible because f:X->Y is 

density preserving and Int {x} * <p.

LEMMA 2.2.8. Let f:X-+Y be a density preserving map from a topological 

space X into a Tx space Y. If Y is without isolated points then fibers 

f(>0, .v e Y are closed nowhere dense subsets of the space X.

Proof. Continuity of the map / guarantees that each fiber f~\y) is a closed 

subset in the space X. If possible, suppose for some y in Y, f~x 0>) is not a 

nowhere dense set in the space X. Then 

IntCir\y) = lntf-\y)*<{>.

Set A = /"' (y). Note that IntA * <p but

IntClf(A) = IntClf(f-' (y)) = IntCl{y} = <p , 

which contradicts that / is density preserving.

3. Completion of DP(X).

In this section we prove that if X is a compact Hausdorff space 

without isolated points, then DP(X) is a complete lattice with respect to the 

partial order defined in Definition 2.2.3. For this we first define dp-partition for
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a density preserving map / and then use it to characterize equivalent 

members in DP(X).

Definition 2.3.1. Let X be a topological space and let / e DP{X). Then the 

partition p(f) = {/'‘ (y) | yeRf} of X is called the dp-partition generated by 

/•

Example 2.3.2. Consider the density preserving map /: R -»[0,oo) defined 

by /(x) = |x|. Then p(/) = {{-x,x}|xe[0,oo)} is the dp-partition of R 

generated by /.

We recall that a partition P of a set X is said to be refined by a 

partition P* of X if for every A in P there exists B in P* such that Bel 

We denote this by P* c P. On the same lines we define p(g) c p(f), where 

/ and g are density preserving maps on a space X and p(f) and p(g) 

are the corresponding dp-partitions of X generated by / and g 

respectively.

Now onwards we assume that members of DP(X) are quotient maps. 

In case X is compact, this condition is automatically satisfied.

The following lemma relates order on DP{X) with the dp-partition.
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Lemma 2.3.3. Let X be a topological space and let f,g& DP(X). Then 

f<g if and only if p(g) c p(f).

Proof. Suppose f <g. Then by Definition 2.2.3 there exists a continuous 

map h-.Rg-^Rf satisfying h°g = f. Let yeRg. Then we need to find x in 

Rf such that g'HjO c f~\x). Observe that we have an x in Rf such that 

h(y) = x. Set A = g~l(y) e p(g). Clearly Aq (h°g)~l(x) = /-1(x). This 

proves p(g)c p(f).

Conversely, suppose p(g) c p(f), then for 2 in Rg we find a unique 

y in Rf for which g_1 (z) c f~l (y). Define h:Rg->Rf by h(z) = y. The 

map h is well defined and h°g = f. Continuity of h follows from the fact that 

g is a quotient map and / is continuous. Hence/ ^ g.

Lemma 2.3.4. Let X be a topological space and let /, g e DP(X). Then f 

and g are equivalent if and only if p{f) = p(g).

Proof. Suppose / is equivalent to g. Then / < g and g < f. By Lemma 

2.3.3, p(g) is a refinement of p(f) and is refined by p(f). Hence 

P(f)= P(g)-

Conversely, suppose p(f)= p(g). Then for each zeRg take the 

unique y e Rf for which g~l (z) = f~l (y) and define h:Rg-+ Rf by h(z) = y.

Observe that h is bijective. Continuity of h as well as of h~l is proved on the 

same lines as that of Lemma 2.3.3. Hence h is a homeomorphism and 

therefore / and g are equivalent.
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Theorem 2.3.5. Let X be a compact Hausdorff space without isolated 

points. Then the poset DP(X) is a complete upper semi-lattice.

Proof. Let S be a non-empty subset of DP(X). Consider the product space 

Z = n Rf and the natural evaluation map g:X->Z satisfying
/«S

ftf{g(p))- fip). where nf is the natural f'h projection of the product space 

Z onto the space Rf .Set T- g(X), %'f=nf \T and define g:X->T by

g'(p) = g(p)t peX. We complete the proof by showing that g is least 

upper bound of S.

Observe that re 7 °g' = / for all / in S implies that f <g for each / 

in S. This proves that g is an upper bound for S.

We now prove that g is the least upper bound of S .Let k be another 

upper bound for S. Define h:Rk-> Rg' by h(x) = g'(y) where y e k~x(x). We 

first observe that the map h is well defined. For xeRk if h(x) = g'(yl)and 

h(x) = g'(y2) then £(>,) = g’Oa) because f <k implies p(k) c p(f) for 

each / in S and hence y1,y2ek~}(x)cf~\z) for some z in Rf implies 

f(yl) = f(y2) for each / in S. By definition of map h it follows that 

hok - g . The continuity of map h follows as A: is a quotient map and g is 

continuous. This also proves that g is the least upper bound for S. Since 

S c DP(X) is arbitrary it follows that every nonempty subset of DP{X) has 

least upper bound. Hence DP{X) is a complete upper semilattice.
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Theorem 2.3.6. Let X be a compact Hausdorff space without isolated 

points. Then DP(X) is a complete lattice.

Proof. Since a constant map onto its image is a density preserving map and 

any two such maps are equivalent, DP(X) has the minimal element. The 

required result now follows from Theorem 2.3.5 and the fact that a complete 

upper semilattice with minimal element is a complete lattice.
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