
CHAPTER IV

POSETS DP(X), IP(X) AND K{X)

In the third chapter, we obtained that if X and Y are countably 

compact r3 spaces without isolated points, then DP(X) and DP(Y) are order

isomorphic if and only if X and Y are homeomorphic. This result is similar to 

Theorem 1.3 and Theorem 1.17. This suggests that there might be a 

common generalization. We explore this in the present chapter. We obtain 

the relation of the poset DP(X) with the poset IP(X) of covering maps on a 

Hausdorff space X [22] and the relation of the poset DP(X) with the poset 

K(X) of compactifications of a locally compact space X [17]. We show that 

for a dense subset U of a compact space X, DP(X,U)=IP(X,U) where 

IP(X,U) (respectively DP(X,U)) is the poset of all covering (respectively 

density preserving) maps / on X satisfying |/_1(/(x))| = 1, for each x in U.

In particular, for a locally compact space X we have DP(]3X,X)=IP(j3X,X). 

Using this and a result due to Porter and Woods we obtain well-known 

Magill’s result which states that for locally compact spaces X and F, K(X) 

and K(Y) are order isomorphic if and only if px-X and /3Y-Y are 

homeomorphic.

Some results of this chapter are being published in the Bulletin of the 

Australian Mathematical Society, 72 (2005).
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1. Poset DP(X,A).

In this section for a topological space X we define the poset 

DP(X,A) where icl. We show that for a subset 4 of a compact 

Hausdorff space X containing all the isolated points of X, DP(X,A) is a 

complete upper semilattice with the order relation defined in DP(X). We also 

prove that if Ax, A2 are subset of Hausdorff spaces Xx and X2 such that At 

contains all the isolated points of Xt and A2 contains all the isolated points of 

X2 then an order isomorphism y/:DP{Xx, Ax) -» DP(X2, A2) induces a cln- 

bijection F :Xx~Ax -> X2 -A2.

Definition 4.1.1. For a subset A of a topological space X define

DP(X,A) = {/ e DP(X) | \r\f(x))\ = 1, for each X G A}.

Note. For a topological space X, DP(X, <p) = DP(X).

Lemma 4.1.2. Fora subset A of a topological space X, DP{X,A) is a poset 

with respect to the order defined in DP(X).

Proof. We show that < is reflexive, antisymmetric and transitive.

*<’ is reflexive: Take / in DP(X,A) and consider the identity map

IRf: Rf Rf. Clearly IRf o / = /. This proves / » / for all / in DP(X,A). 

*<’ is antisymmetric: Let /, g be in DP(X,A) such that f <g and g<f. 

Then we need to show f »g. By Definition 2.2.3 there exist continuous
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maps h:Rg->Rf and k:Rf -^Rg such that h°g = f and k°f = g. The 

composite maps h<>k and k°h are the identity maps on Rf and Rg 

respectively. This implies that h and k are inverses of each other. Since h 

and k are bijective continuous maps, both h and k are homeomorphisms. 

This proves / « g.

*<’ is transitive: Suppose / < g and g<h. Then there exist continuous 

maps £, .Rg -» Rf and k2 :Rh -» Rg such that kl°g = f and k2°h = g. The 

composite map kx°k2\Rh~* Rf is continuous and

(kx ok2)oh = kx o (k2 oh) = kx og = f.

This proves f <h. Therefore (DP(X,A),<) is a partially ordered set. We 

shall denote this poset by DP(X,A).

Lemma 4.1.3. For a subset A of a topological space X, if g eDP(X,A), 

f e DP(X) and g<f, then f e DP(X,A).

Proof. Suppose / e DP(X) is such that g <f for some g e DP{X,A). Then 

by Lemma 2.3.3 we have p(f) c p{g), i.e., for each y in Rf there exists z 

in Rg such that f \y) e g l(z). Let x e /“’ (y) c g~f z). Then 

/~!(/W)^g~l(g(x)) for some z = g(x) e Rg. In particular, if xeA then 

g e DP(X,A) and g<f implies |g~’(g(x))| = l and <p * f'(f(x)) c: g-'(g(x)). 

This proves I/"1 (/(x))l = 1 for each xe A. Hence / e DP(X, A).
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Theorem 4.1.4. Let A be a subset of a compact space X containing all 

isolated points of X. Then DP(X,A) is a complete upper semilattice.

Proof. Let S be a non-empty subset of DP(X,A) and let Z = Ilf.
feS

Consider the natural evaluation map g:X-»Z such that nf(g(p))=f(p), 

where nf :Z->Rf is the fth projection map. Set T = g(X), nf =%f |r and

define g-.X-^T by g(p) = g(p), peX. Continuity of g follows from 

continuity of g. We complete the proof by showing g is least upper bound 

of S.

Now %'f og' = / for each f in S implies that f <g for each / in S. 

Therefore g is an upper bound for S. Finally by Lemma 4.1.3 we get

g e DP{X,A).

Next, we prove that g is the least upper bound of S. Let k be 

another upper bound of S. Define h:Rk->Rg' by h(x) = g\y), where 

y e k~x (x). We first observe that the map h is well defined. Let h(x) = g'(y,) 

and h(x) = g'(y2) for some xeRk. Since f <k for each / in S, we have 

p(k) e £>(/) for each / in S and hence yx,y2 er'(x)c/'‘(z) for some z 

in Rf which implies /0,) = /02) for each / in S. This proves that 

g(yi) = g (yf)' Clearly h°k = g . Also h is continuous because k is a 

quotient map and g is continuous. This also proves that g is the least upper 

bound of S. Since S c DP(X, A) is arbitrary, it follows that DP(X,A) is a 

complete upper semilattice.
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Remarks, (a) If X is a compact space without isolated point and AcX then 

the proof that DP(X, A) is a complete upper semilattice can be obtained by 

Theorem 2.3.5 as follows: Let S be a non-empty subset of DP(X,A). Then 

S is a non-empty subset of DP(X) and DP(X) is a complete upper 

semilattice implies that S has a least upper bound say g in DP(X). Since 

/ < g for all / g S', by Lemma 4.1.3 we have g e DP(X, A).

(b) Recall that if X is a compact Hausdorff space without isolated points 

then DP(X) is a complete lattice [Theorem 2.3.6]. On the other hand, if A is 

a dense set inside such a space X, then DP{X,A) need not be a complete 

lattice. For example, consider the Stone-Cech compactification PQ of the 

usual space Q of rational numbers. Then the complete upper semilattice 

DP(PQ,Q) is not a complete lattice as the greatest lower bound of the set 

{/eDP(PQ,Q)\f is a dual obtained by identifying two distinct points of 

PQ-Q} does not exist in DP{pQ,Q). In fact, if g is the greatest lower bound 

of S then we claim that it is primary. Assuming the claim in hand, we can 

write g as (g,K) where K is the only non-singleton member in p(g). 

Clearly p(f) c p(g), for all f eS which implies PQ-Q^K and hence 

K = pQ-Q. But this is not possible as K is closed and PQ-Q is not closed. 

For a proof of the claim suppose p(g) contains non-singleton members H 

and K. Choose a e H and b e K. The dual e DP(PQ,Q), g < f but

p{f) ce p(g) gives a contradiction.
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Theorem 4.1.6. Let At be a subset of a Hausdorff topological space X, 

containing all isolated points of X,, i = 1, 2 and let

V: DP(X),A,)~> DP(X2, A2) be an order isomorphism. Then them is a 

cln-bijection F:Xx~Ax ->X2-A2 such that

Pivif)) = {{*} I* e A2} u {F(A) | A € p{f),A c X, - Ax}.

Proof. We consider the following cases:

Case (i) Suppose |X, -Ax\ = 2. Let x,_yeX, -Av Then DP(Xi,Al)={IXl,f}, 

where / Since if/ is an order isomorphism, DP(X2,A2) contains

exactly two members which implies that \X2 - A2\ = 2. Let a,b<=X2-A2. Then

the map F:Xx-Al->X2-A2 defined by F(x) = a and F(y) = b is the

required map.

Case (ii) Suppose \Xl-At\^3. Let peXx-Ax. Choose distinct points 

q, r e X, - (4 u {/?}), By Theorem 3.1.6, yr(f;{p,q}), <p(g;{p,r}) are 

dual points of DP(X2,A2), say (/; {a, b}) and (g; {c, d}) respectively. Note 

that a,b,c,d eX2-A2 because / and g are duals and both f\A and g\Al 

are one-one. Clearly

(/; {a, b}) a ( g; {c, d)) = yr (/ a g; {p, q, r}).

If {a, b} n {c, d) = <p then

(/; {a, b}) a (7; {c, d}) = (/ a g- {a, b), {c, d}), 

which is not possible since (/; {p, q}), (g; {p, r}), (h; {q, r}) are three dual 

points in DP(Xx,Ax) greater than (/ a g: {p, q, r}) where as (/; {a, b}),
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(g; {c, d}) are the only two dual points in DP(X2,A2) greater than 

(/ a g; {a, b}, {e, d}). Therefore {a, b} n {c, d} * 9. Since y/ is an order 

isomorphism, it is a singleton, say {a}. Define F:X1-Al ->X2-A2 by 

F(p) = a. Note that a eX2-A2. We now show that the choice of a does not 

depend upon the choices of r and q. Let sgI, ~(Ax u{p,q,r}). Then there 

exist points y and z in X2-A2 such that y/(k;{p,s}) = (k;{y,z}). We have 

= (/;{«,&})• Assume yz(g‘AP,r}) = (gl{ax}) ■ Using similar 

arguments, we conclude that {y,z} intersects both {a,b} and {a,c} in exactly 

one point. As discussed in the proof of Lemma 3.2.3, this one point is 

precisely a. Thus for any s eXx -(Ax u(pj), if y/(k;{p,s}) = (k;{y,z}) then 

ae{y,z} and if s' is any other point in Xx-(Axv{p,q}) and if 

y/(cr;{p,s }) = (cr;{y',z^}) then {y ,z= Thus F is well defined.

We now show y/ maps closed nowhere dense sets in Xx - Ax to closed 

nowhere dense sets in X2-A2. Let H be a closed nowhere dense set in 

Xx-Ax. Consider / e DP(Xx,Ax) of the form (/, //) and if ;//(/; H) = f then 

f = (f;K) for some closed nowhere dense subset K of X2-A2. Further, if 

p, q<= H, p*q. Then by Lemma 2.3.3 (g; {p, q}) >(f;H) which implies 

(g; {a, b}) > (/; K). This proves F({p, q}) = {a,b}cK. Hence F(H) c K.

Similarly, using y/~x we can define F: X2 -A2 -> Xx -Ax. Giving similar 

arguments as above one can show that F(K) c H.
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We now prove that F°F is identity on Xx-Ax. Let p^Xx-Ax and 

qeXx-(Axu{p}). Since (f;{p,q}) is a dual in DP(Xx,Ax) therefore 

y/{f; {a, b}) is a dual in DP(X2,A2) say (/; {a, b}). We know F(p) e {a, b). 

Assume F(p) = a. Suppose F (a)*q*p. Choose reXx~(Axu{p,q}). 

Then there exists ceX2-A2 such that ip(g;{p,r}) is a dual point say 

(g; {a, c}). Since F(a) e {p, r} and F(a) * p therefore F{a) = r, a 

contradiction since F(a) = q*r. This proves F°F is identity on Xx-Ax. 

Similarly, one can prove that F°F is identity on X2-A2. Hence 

F :Xx-Ax -> X2-A2 is a bijective map which preserves closed nowhere 

dense sets. Also, by the definition of the map F, it follows that 

PiVif)) = {W \x e A2} u {F(B) I B e p{f),B c X, - At }.

2. Density Preserving Maps and irreducible Maps.

In this section we determine conditions under which a density 

preserving map is an irreducible map. We further discuss the natural 

question: When DP(X) = IP(X)7 We first recall definition of an irreducible 

map.

Definition 4.2.1. Let f:X->Y be a surjective map. Then / is said to be 

irreducible if /(F) * Y for every proper closed subset F of X [32].
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Theorem 4.2.2. Let A be a dense subspace of a top

every f in DP(X, A) is irreducible.

Proof. Let / e DP(X, A) and let F be a proper close

f(F) = Rf. Then A being dense in X, the open set X-F has non-empty 

intersection with A. Let ye(X-F)nA. Then |/~'(/0))|> 1 as /(F) = Rf 

but this contradicts that /\A is one-one. This proves that / is irreducible.

Corollary 4.2.3. If X is a compact Hausdorff space and A is a dense subset 

of X then DP(X,A) = IP(X,A). In particular, if X is a locally compact 

Hausdorff space then DP(aX.X) = IP(aX,X) where aX is a 

compactification of X.

Proof. Clearly IP(X,A) c DP(X,A). For the reverse containment, set 

DC(X,A) = {/ e DP(X,A) | / is closed} and observe that 

IP(X) 3 Dr(X,A) = DP(X,A). The particular case follows because if X is 

locally compact, then X is dense in aX.

Note. In general, if A is subset of a topological space X which is not dense 

then DC(X,A) c IP(X) need not be true. For example take X= [0, 1],

A = [0,{) and define f: X -> X by

/(*) =
2.v. 0 < .v < t
J-X, < .t < !

Then / e D, (X.A) but / is not irreducible since f([b,\])-X.
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We recall the following result due to Porter and Woods [22] which 

relates the poset IP(X) of all covering maps on a fixed domain X which is a 

locally compact Hausdorff space with the poset K(X) of all Hausdorff 

compactifications of X.

Lemma 4.2.4. Let X be a locally compact Hausdorff space. The function 

if/: IP(pX,X) -> K{X) defined by iy(f) = fiX | p(f) is an order isomorphism, 

where f5X | p(f) is the natural compactification of X obtained by collapsing 

each fiber in p(f) to a point.

We now deduce the following result due to Magill [Theorem 1.3]. 

Theorem 4.2.5. Let X and Y be locally compact spaces. Then K(X) and 

K(Y) are order isomorphic if and only if px-X and pY-Y are 

homeomorphic.

Proof. Clearly for locally compact Hausdorff spaces X and Y, if px-X is 

homeomorphic to pY~Y then K(X) is order isomorphic to K(Y). Therefore 

it is sufficient to deduce a homeomorphism between px-X and pY-Y if 

K(X) and K(Y) are given to be order isomorphic. If K(X) and K(Y) are 

order isomorphic then by Corollary 4.2.3 and Lemma 4.2.4, DP(px,X) and 

DP(pY,Y) are order isomorphic and hence application of Theorem 4.1.6 

gives us a cln-bijection F: pX-X -> PY-Y. The bijection F is a closed 

map because all closed subsets in PX-X are nowhere dense. Similarly F~] 

is also a closed map. Hence F is a homeomorphism.
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