
CHAPTER V

TOPOLOGY ON A FAMILY OF DUALS INDP(JY)

In [29], Thrivikraman has constructed homeomorphism between ‘the 

collection F of all subsets of the set of dual atoms in K(X) which are hinged 

with overlapping dual atoms in K(X)’ and the underlying locally compact 

Hausdorff space X by inducing a natural topology on the set F. In section 1 

of this chapter, we introduce and study the notion of overlapping duals and 

also the notion of duals hinged with overlapping duals. In section 2, we 

topologize collection 3 of all subsets of the set of duals in DP(X) which are 

hinged with overlapping duals in DP(X) and study when the topological 

space 3 is homeomorphic to X. In fact, we prove that 3 is homeomorphic 

to X when X is a countably compact T3 space without isolated points. To

prove this result we introduce the notion of F- closed sets and observe that 

for a locally compact Hausdorff space X, the notion of F- closed sets 

coincides with the notion of F- compact sets defined by Thrivikraman in 

[29]. Finally in section 3, we use lattice theoretic properties of the complete 

lattice DP(pX,X) to obtain topological properties of f$X-X when I is a 

locally compact Hausdorff space.

1. Set D of duals and its subsets.

For a topological space X, we shall denote the collection of all dual 

members in DP(X) by D.
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Definition 5.1.1. Two distinct duals in D are said to overlap if there are 

precisely three dual members in D greater than their meet.

Example 5.1.2. Consider the usual space R of real numbers and let (/;{1,2» 

and (g;{l,3}) be duals in DP( R). Then by Theorem 3.1.5, 

f Ag S=!(/Ag;{l>2,3}) and the duals greater than f Ag in £>P(R)are /, g 

and (h; {2,3}). Hence / and g are overlapping duals because /, g and h 

are the only duals in DP (R) greater than f Ag Ai k>f Ag then by Lemma 

2.3.3, p(k) c p(/ a g).

Definition 5.1.3. An h in D is said to be hinged with two overlapping duals 

/ and g in D if h overlaps both / and g and there are precisely six duals 

in D greater than f Ag Ah.

Example 5.1.4. Consider the usual space R of real numbers and let (/;{1,2» 

and (g;{l,3}) be duals in DP(R). Then the dual (h;{ 1,4}) in DP(R) overlaps 

both / and g. By Theorem 3.1.5, f Ag Ah&(f Ag a/z; {1,2,3,4}) and the 

duals greater than f Ag Ah in DP(R)are /, g, h, (y;{ 2,3}), (ty, {2,4}) and 

{yr,{3,4}). Another application of Lemma 2.3.3 justifies that /, g, h, y, tj 

and yr are the only duals in DP( R) greater than f Ag Ah. Thus h is hinged 

with / and g.
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Definition 5.1.5. For overlapping duals / and g in £>, define the point \fg\ 

to be the set containing / and g along with all those duals in D which are 

hinged with / and g

Hots. Let X be a topological space and let (.f;{x,y}), (g;{w,z}) be two 

overlapping duals in DP(X). Then / and g are overlapping duals implies 

{x, y} n {w, z} * <p, for otherwise there will be only two duals in DP(X) greater 

than / a g. Since / and g are also distinct duals, we have 

{x,>>}n{w,z} = {x = w). Let h be a dual hinged with / and g. Then h 

overlaps both / and g. By the above discussion and using the fact that 

there are precisely six duals in DP(X) greater than / ag Ah, it follows that 

the non-singleton member of p(h) contains x as one of its member. Thus, 

for / and g as described above, the point |ygj = {(/z;{x,}>})|

Also, if h,kg|yg|, h&k then h and k are overlapping duals and \hk\ = |^|.

Lemma 5.1.6. Let X be a topological space and let D be the set of all duals 

in DP(X). Then for overlapping duals f and g in D, the point \fg\ uniquely 

determines a point of X.

Proof. Since / and g are overlapping duals in D, we have /»(/;{«,6}) 

and g&(g;{a,c}) for a,b,c el, b*c. By the previous Note, the point 

contains all the duals of the form (h;{a,d}), where d e X - {a}. Thus
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{a}= rroo
\h~'{y)\=2

is the point of X determined by the point \fg\.

For a topological space X, we denote by 3, the set of ail subsets of 

D of the form , where / and g are overlapping duals in D.

Definition 5.1.7. An / in D is said to be determined by a subset A of 3 if 

there exist distinct points |g!g2| and \hxh2\ in A satisfying {/} = \gxg7\r^\h{h2 \.

Example 5.1.8. Let X be a topological space. Suppose the points |g,g2| 

and \hxh2\ determine points x and y of X respectively. Then the dual 

(f;{x,y}) belongs to ]g,g2[ and |/z,/z2| both: Since the dual / overlaps glf 

g2, hx, h2, it follows that there are precisely six duals in DP(X) greater than 

/ A £i A 82 afd / aa h2. That {/} = |gjg2| n \hxh2\ follows from the fact that 

if g e |gjg2| n \hxh2\, g*f, then g has to overlap , h2, g, and g2, which is 

not possible.

Definition 5.1.9. A subset A of 3 is said to be F - closed if a f exists and 

k = Tj, where rj is the collection of all duals > a / in DP(X).
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Example 5.1.10. Consider the usual space R of real numbers and let F be 

the collection of all duals in D hinged with overlapping duals in DP (R). Let

A = {\fg\, |M|}, where /«(/;{1,2}), g*(g;{l,3», h*(h;{4,5}),

k*(k;{ 4,6}). Then A c F is F - closed because the points \fg\ and \hk\ 

determine the dual 1,4}) in DP(R) and hence in this case X = {y/} and 

a f = iff. Note that the collection of all duals > a / in DP{R) is equal to X.
feX feX

2. Topology of 3 and the order structure of DP(X).

Let X be a Hausdorff space without isolated points and let 3 and D 

be as defined in section 1. In this section, we show that there exists a 

bijection between 3 and X which maps F- closed sets in 3 to closed 

nowhere dense sets in X. We topologize the set 3 and obtain conditions 

under which 3 is homeomorphic to X. Consequently we derive Theorem 

1.9 due to Thrivikraman [29] and Theorem 1.3 due to Magill [17]. We first 

prove the following result:

Theorem 5.2.1. Let X be a Hausdorff space without isolated points and let 

3 be the collection of all duals hinged with overlapping duals in DP{X). 

Then there exists a bijective map from 3 onto X which maps F-closed 

sets in 3 to closed nowhere dense sets in X.

Proof. Define £:3-»X by #(|^|)=a, where a in X is the unique point 

determined by l/gj. By Lemma 5.1.6, map £ is one-one. Further, to observe
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that the map 4 is onto, for aeX choose distinct points b,c^X-{a}. The 

duals (f;{a, b}) and (g;{a, e}) are overlapping in DP(X) and the point \fg\ 

in 3 satisfies #(jigj) = a.

We now prove that 4 maps F - closed sets in 3 to closed nowhere 

dense subsets of X. Let A be a F - closed subset of 3. Consider the 

following cases:

Case (i) If A = {\fg\}, where the point \fg\ determines point a in I, then A 

is F-closed and by definition of 4, 4(A) = {a}, which is a closed nowhere 

dense subset of X.

Case (ii) Let A be a non-singleton F - closed subset of 3 and let A be the 

set of all duals determined by A. Since A is F- closed, a / exists and the
: feA,

collection rj of all duals £ a / is equal to A. We denote a / by h.
/eA / t~A

We first observe that h is a primary member of DP(X). We assume 

the contrary. Let p(h) contains more than one non-singleton members, say 

K and H. Choose;points a,beK, a*b, c,deH, c*d and consider the 

duals (f;{a,b}) and By Lemma 2.3.3, it follows that h<f and

h < g. The duals / and g belong to A as ij = A. Further, f,ge A implies / 

and g are determined by the points of A. Hence there exist points |kxk2\ and 

%kA\ determining/; |&5&6| and \k7kt\ determiningg. Suppose \kxk2\, \k2kA\, 

\k5k6\, \k1 kg\ determine points a, b,c,d in X. The set intersection of points 

|&tfc2| and \k5k6\ in A determines a dual equivalent to (k;{a,c}). Therefore
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keA. This further implies k>h and hence we have {a,c}c H or {a,c}cK 

which contradicts the choice of points a and c. Therefore our assumption 

that p(/?) contains more than one non-singleton member is wrong. Hence h 

is a primary member say (h;H), where H is a closed nowhere dense subset 

of X. We complete the proof by showing g(A) = H. Let x e g(A). Then there 

exists point |/j,A2|e4 such that Take another point ^h^eA.

Suppose it determines y in I. Since {{<r\{x)y})}-\hji2\r\\hihi\t a is 

determined by A. Clearly ere/1 and a>h which implies p(<j)cp(h)and 

hence xeH. This proves that £(4)cH. To establish the reverse 

containment let zeH. Since A is a non-singleton member of 3, g(A)c H 

and £ one-one implies that H is a non-singleton subset of X. Choose 

weH-{z}. Clearly the dual (y/;{z, w}) belongs to A since p{y/)cip{h). 

Thus there exist points \l{l2\ and |/3/4| in A such that \lj2\n\hh\ = {,f} > Point 

|/,/2| determines point z in I and the point |/3/4| determines point w in I. 

But this gives |/,/2| in A such that ^lj2\)=z. Hence £(4)s/f. This proves 

that £ is a bijective map, which maps F- closed sets in 3 to closed 

nowhere dense sets in X.

Lemma 5.2.2. Let the space X and the set 3 be as in Theorem 5.2.1. Then 

the family {4c3|4 is F-closed} contains q> and 3 and is also closed 

under finite union and arbitrary intersections.
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Proof. That <p is F- dosed follows vacuously and the set 3 is F - closed

follows because X = D and a / exists, which is the constant map.
feX

Next, let A, and 4, be F - closed subsets of 3. Then a / exists,1 2 feXj

where X,. is the collection of all duals determined by 4, / = 1, 2 and tj, = X,., 

i = l, 2, where jj, is the collection of all duals > a /. As observed in
feJlj

Theorem 5.2.1 each of the meets a /, / — l, 2, is a primary member in

DP(X) say (gj;Hi), i = 1, 2, where //,, H2 are closed nowhere dense 

subsets of X. We denote by X the collection of all duals determined by 

4 u A2. Let g «(g;Hl u H2). We shall show that A^f « g.

Since p(f)Qp(g), g^f for each /eX[ uX2. Further, if / is a dual 

determined by point \kxk2\ in 4 and \k2k4\ in 4, then also g<f as 

p(f) c p(g). Thus / e X implies g < f. This proves that g is a lower bound 

for the set X. We now establish that g is the greatest lower bound for the set 

X. Let k g DP(X) be such that

g < k </, for each /eX. (1)

Now

g<k

=> p{k) q p(g)

=> if Kx ep(k) and |^|> 1, then-Kx c:H1\jH2.

We first observe that k is a primary member in DP(X). If possible, let

Kx, K2 be non-singleton members of p(k). Then Kx u K2 c H, u H2.
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Choose distinct points a, b e Kx] c, deK2. Then there exist (fx;{a,b}), 

Cf2;{c,d}) in A, which imply existence of |g,g2|, |g3g4|, |g5g6|, l^vSTsj in 

Ax u A2, determining the points a, b, c, d in X. Therefore (/3;{a,c}) el as

{/aMki&l n|g5g6|.

Since p{j\) s p{k), f^'lk which is a contradiction in view of (1). 

Therefore our assumption that k is not a primary member is wrong. Let H 

be the non-singleton member in p(k). We now claim that H = HxuH2. 

Clearly H qHxuH2. If possible, suppose

HxuH2&H

=> there exists aeHxuH2 such that a&H.

Choose beH. Then the dual (fx;{a,b}) e A, but /,£& which is a 

contradiction in view of (1). This proves that H = HxkjH2 and hence 

g * (g;Hx uH2) is the greatest lower bound for the set A.

We now observe that the arbitrary intersection of F- closed sets is 

F - closed set. Let {Aa}ae/i be a family of F - closed sets. Then

(ga’Ha)* A / exists for each a e/i, where Aa is the collection of all duals

determined by Aa and t)a =Aa, where rja is the collection of all duals > ga. 

We now consider the following cases:

Case(i) f\Aa is a singleton. In this case f]Aa is F-closed.
cce/j ore/i
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Case(ii). f|Aa is not a singleton. Let A= f]Aa . Then the set X of all duals
aefi oeju

determined by A is contained in Xa for each aeju. Let g ~ (g; H), where 

H = We shall show that g » a /. That g is a lower bound for X
a&fi

follows because (f;{a,b})eX implies f eXa for all aep. But this gives 

{a,b} c Ha for each a gju and hence {a,b} c H. This proves g < f.

We now show that g is the greatest lower bound of the set X. Let 

k e DP(X) be such that

g<k < f, for each / eA. (2)

Now g<k implies p(k)cp(g). If ep(k) and |AT,|>1 then we have 

Kx c H. As discussed earlier k is a primary member in DP(X). Let K be 

the non-singleton member in p(k). We now claim that K = H. If possible, 

suppose a e H is such that a & K. Choose beK. Then the dual 

(fx;{a,b}) gX but fx which is a contradiction in view of (2). This proves 

that Hc.K. The reverse containment K^H can be easily proved. Hence 

g * (g;H) is the greatest lower bound for the set X.

Lemma 5.2.3. Let X be a Hausdorff space without isolated points. Then the 

complements of FL closed sets in 3 forms a base for the topology of 3, 

where 3 is the collection of all duals hinged with the overlapping duals in 

DP(X).

Proof. Follows from Lemma 5.2.2.
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Recall that a subset A of countably compact Tz space X without 

isolated points is closed if and only if whenever Be, A and ClxB is nowhere 

dense in X then ClxB c A [22].

Theorem 5.2.4. Let X be a countably compact r3 space without isolated

points and let F be the collection of subsets of D consisting of duals hinged 

with overlapping duals, with the topology described by declaring 

complements of F-closed sets in 3 as open sets in 3. Then 3 is 

homeomorphic to X.

Proof. By Theorem 5.2.1 there exists a bijection %:F-*X, which maps 

F ~ closed sets in 3 to closed nowhere dense sets in X. Since F- closed 

sets are closed sets in 3, £ is a closed map. That is a closed map 

follows from the fact that closed nowhere dense subsets of X determine the 

topology of X. Therefore £ is a bijective closed map whose inverse is also 

closed. Hence £ is a homeomorphism.

Note. By Corollary 4.2.3 and Lemma 4.2.4 we have DP{/3X,X) is order 

isomorphic to K(X). Let D and 3 be subsets of DP(fiX,X) as defined 

earlier. Then in this case our notion of F- closed sets defined in 5.1.9 

coincides with the notion of F- compact sets defined by Thrivikraman in 

[29], Hence as a corollary to the above result we have the following result 

due to Thrivikraman [29].
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Corollary 5.2.5. Let X be a locally compact space. Then there is a bijection 

from 3 to fiX-X which carries F-compact sets in 3 to compact sets of 

fix-X and vice-versa. Further, the complements of F- compact sets of 3 

form a topology for 3 if and only if X is locally compact. In this case 3 is 

homeomorphic to fiX-X.

As a consequence of the above result we also obtain the well-known 

Magill’s result [Theorem 1.3] concerning the Stone-Cech remainder of a 

locally compact Hausdorff space.

3. Lattice DP(fiX,X) and the remainder fiX-X.

In this section we deduce topological properties of fiX-X from the 

lattice theoretic properties of DP(fiX,X). We recall that for icl,

DP(X, A) = {fe DP(X) 11 (f(x))  | = 1, for each xe A).

Theorem 5.3.1. Let X be a locally compact space. Then DP(fiX,X) is 

distributive if and only if \ fix - X\ < 3.

Proof. Observe that \fiX-X\<3 if and only if \DP(fiX,X)\ <3. Hence 

DP(fiX,X) is distributive if \pX~X\<3. Suppose \fiX-X\>3. Then choose 

distinct points a,b,c<=fiX-X and consider members Im, (f;{a,b}), 

(g,{b,c)), (h;{a,c}) and (k;{a,b,c}) in DP(fiX,X). Clearly

(fvg)Ah*h
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and

(/A^)v(g Ah)*k.

Thus (/vg)/\h+ (f Ah)v(gAh). This proves that DP(pX,X) is not 

distributive.

Theorem 5.3.2. Let X be a locally compact Hausdorff space. Then 

DP{fiX,X) has a minimal element but no atom if and only if px-X is 

connected.

Proof. By Corollary 4.2.3 and Lemma 4.2.4, DP(PX,X) is order isomorphic 

to K(X). Therefore DP(px,X) has a minimal element if and only if X is 

locally compact. Further X is locally compact if and only if px-X is 

compact. Hence DP(pX,X) has a minimal element if and only if px-X is 

compact.

We now complete the proof by establishing DP(pX,X) has an atom if 

and only if px-X is disconnected. Let / be an atom in DP(pX,X). Then 

observe that for such an /, p(f) contains precisely two non-singleton 

members say Hx and H2 such that their union is px-X. For, if p(f) 

contains more than two non-singleton members, say Hx, H2 and H3 then 

the map g such that p(g) contains HxkjH2 and H3 belongs to DP(PX,X) 

and g < f as p{f) c p(g). This contradicts that / is an atom. Therefore if 

DP(px,X) has an atom / then p(f) contains exactly two non-singleton
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members say ff, and H2 such that px -X = if, u H2. Clearly ff, and H2 

are clopen sets making /IX-X disconnected.

Conversely, suppose pX-X is disconnected. Then there exist non­

empty disjoint clopen sets if, and ff2 in pX-X such that 

PX-X = ff, uH2. The natural quotient map q obtained by identifying ff, 

and if2 to distinct points, is an atom in DP(PX,X).

Theorem 5.3.3. Let X be a locally compact Hausdorff space. If DP(PX,X) 

is complemented then pX ~X is totally disconnected.

Proof. Let x,ye px-X, x*y. Then consider the dual member (/; {x,y}) in 

DP(pX,X). Since DP(pX,X) is complemented, there exists g in 

DP(px,X) such that f Agmco and where m is the minimal

element in DP(PX,X). Since f Ag « co, p(g) can contain atmost two non­

empty members. Further, / v g^Im implies that p(g) contains exactly two 

non-empty members say if and K such that x e if and y e K. Since H 

and K are the only members of p(g), we have px-X = HuK. Therefore 

for each pair of distinct points x and y in px - X, there exist disjoint closed 

sets if and K such that xeff, yeK and PX~X=HkjK. Hence 

pX-X is totally disconnected.

We recall that a lattice L is modular if a < c => (a v b) a c = a v (b a c) , 

where a,b,c&L.
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Theorem 5.3.4. Let X be a locally compact Hausdorff space. Then 

DP(pX, X) is modular if and only if \px-X\<4.

Proof. It is easy to observe that if \pX~X\<3 then DP{pX,X) is modular. 

Suppose \pX-X\>4. Choose distinct points a, b, c and d in pX-Xand 

consider members lm, {f;{a,b}), (g;{a,b,c}), (h;{c,d}) and (m;{a,b,c,d})

in DP(PX, X). Observe that 

(gvh)Af~f

and

gV if-Ah) Kg

That DP(pX,X) is not modular follows from the facts that g<f and 

(gvh)Af#gv(hAf).
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