CHAPTER YV

TOPOLOGY ON A FAMILY OF DUALS INDP(X)

In [29], Thrivikraman has constructed homeomorphism between ‘the
collection F of all subsets of the set of dual atoms in X(X) which are hinged
with overlapping dual atoms in K(X)’ and the underlying locally compact
Hausdorff space X by inducing a natural topology on the set F. In section 1
of this chapter, we introduce and study the notion of overlapping duals and
also the notion of duals hinged with overlapping duals. In section 2, we
topologize collection T of all subsets of the set of duals in DP(X) which are
hinged with overiépping duals in DP(X) and study when the topological
sbace 3 is homeomorphic o X . In fact, we prove that 3 is homeomorphic

to X when X is a countably compact 7, space without isolated points. To

prove this result we ‘introduce the notion 4of F —closed sets and observe that
for a locally compact Hausdorff space X, the notion of F-closed sets
coincides with the notion of F -compact sets defined by Thrivikraman in
[29]. Finally in section 3, we use lattice theoretic properties of the complete

lattice DP(SX,X) to obtain topological properties of SX - X when X is a

locally compact Hausdorff space.

1. Set D of duals and its subsets.
For a topological space X, we shall denote the collection of all dual
members in DP(X) by D.
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Definition 5.1.1. Two distinct duals in D are said to overlap if there are

precisely three dual members in D greater than their meet.

Example 5.1.2. Consider the usual space R of real numbers and let (f;{1,2})
and (g;{1,3}) be duals in DP(R). Then by Theorem 3.1.5,
frg=({fArg;{,2,3}) and the duals greater than fAg in DP(R) are f, g
and (h;{2,3}). Hence f and g are overlapping duals because f, g and &

are the only duals in DP(R) greaterthan fag.lf k> f A g then by Lemma

233, plk)c p(f r8).

Definition 5.1.3. An % in D is said to be hinged with two overlapping duals

S and g in D if # overlaps both / and g and there are precisely six duals

in D greaterthan fAgnah.

Example 5.1.4. Consider the usual space R of real numbers and let (£;{1,2})
and (g;{1,3}) be duals in DP(R). Then the dual (4;{1,4}) in DP(R) overlaps
both f and g. By Theorem 3.1.5, fAagah=~(fAgah{l,2,3,4}) and the
duals greater than f ngahin DP(R)are f, g, h, (7;{2,3}), (1:{2,4}) and
(v;{3,4}) . Another épplication of Lemma 2.3.3 justifies that 1, g, &, 7, n
and y are the only duals in DP(R) greaterthan f Agah. Thus & is hinged

with f and g.
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Definition 5.1.5. For overlapping duals f and g in D, define the point { fg[
fo be the set containing f and g along with all those duals in D which are

hinged with f and g.

Note. Let X be aitopological space and let (f;{x,y}), (g;{w,z}) be two
overlapping duals in DP(X). Then f and g are overlapping duals implies
{x,y}n{w,z} # o, for otherwiée there will be only two duals in DP(X) greater
than fAg. Sincé f and g are also distinct duals, we have
{x,y}{w,z}={x=w}. Let » be a duai‘hinged with f and g. Then &
overlaps both ’ f and g. By the above discdssion and using the fact that -
there are precisely six duals in DP(X) greater than f A g Ah, it follows fhat
the non-singleton member of p(k) contains x as one 6f its member. Thus,

for f and g as described above, the point |fg|={(A{x,y})|ye X —{x}}.

Also, if A,k €|fg|, h+ k then k and k are overlapping duals and |hk|=|/z|.

Lemma 5.1.6. Let X be a topological space and let D be the sef of all duals
in DP(X). Then foroverlapping duals f and g in D, the point { fg{ uniquely
determines a point éf X.

Proof. Since f and g are overlapping duals in D, we have f =~ (f;{a,b})
and g ~(g;{a,c}) f&r a,b,ce X, b#c. By the previous Note, the point |fg|

contains all the duals of the form (#;{a,d}), where d € X —{a}. Thus
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= (A7)
hel fel,
|i1)2

is the point of X determined by the point | fz|.

For a topological space X, we denote by I, the set of all subsets of

D of the form [ fg], where f and g are overlapping dualé in D.

Definition 5.1.7. An f in D is said to be defermined by a subset 4 of I if

there exist distinct points |g,g,| and | h,| in 4 satisfying {f} =|g,&,|N|Ah,|.

Example 5.1.8. Let X be a topological space. Suppose the points |g,g,|
and |[wh,| determine points x and y of X respectively. Then the dual

(f3{x,»}) belongs to |g,g,| and |ih,| both: Since the dual f overlaps g,
gk, by it follows' that there are precisely six duals in DP(X) greater than
frg ng,and fal Ah,. fhat {f}=|2.8,| " |mh,| follows from the fact that
if g <lg,g,| N |h,|, g+ f, then g hasto overlap h, h,, g, and g,, which is

not possible.

Definition 5.1.9. A subset 4 of J is said to be F —closed if ) f exists and

A=n, where 5 is the collection of all duals zf/\i f in DP(X).
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Example 5.1.10. Consider the usual space R of real numbers and let F be

the collection of all duals in D hinged with overlépping duals in DP(R). Let
4= {lfgl, [hk!} where  f=(fi{L2}), g=~(&{3)., h=H{45)),
k~(k;{4,6}). Then Ac F is F—closed because the points |fzg| and |h#|
determine the dual (y;{1,4}) in DP(R) and hence in this case A={y} and

Y f =w . Note that the collection of all duals > Py f in DP(R)is equalto 4.

2. Topology of I and the order structure of DP(X).

Let X be a Hausdorff space without isolated points and let 3 and D
be as defined in section 1. In this section, we show that there exists a
bijection between I and X which maps F -closed sets in 3 to closed
nowhere dense sets in X . We topologize the set I and obtain conditions
under whibh I is homeomorphic to X. Consequently we derive Theorem

1.9 due to Thrivikraman [29] and Theorem 1.3 due to Magill [17]. We first

prove the following result:

Theorem 5.2.1. Let X be a Hausdorff space without isolated points and let

3 be the collection of all duals hinged with overlapping duals in DP(X).

Then there exists a bijective map from 3 onto X which maps F —closed

sets in 3 to closed nowhere dense sefsin X .

Proof. Define £:3—> X by 5({ fg})-——a, where a in X is the unique point

determined by } fg]. By Lemma 5.1.6, map £ is one-one. Further, to observe
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that the map ¢ is onto, for ae X choose distinct points b,ce X —{a}. The

duals (f §{a, b}) and (g;{a, c}) are overlapping in DP(X) and the point |fg| -

in 3 satisfies £(fg])=a.-
We now prove that £ maps F —closed sets in I to closed nowhere

dense subsets of X. Let 4 be a F—closed subset of 3. Consider the

following cases:

Case (i) If 4= { } fg}}, where the point |fg| determines point « in X, then 4

is F—closed and by definition of &, £(4)={a}, which is a ciosed nowhere

dense subset of X'.
Case (ii) Let 4 be a non-singleton F —closed subset of 3 and let 1 be the

set of all duals determined by 4. Since 4 is F -closed, ) f exists and the
collection 7 of all duals 2;\/1 f isequal to 1. We denote o f by h.

We first observe that 4 is a primary member of DP(X). We assume-
the contrary. Let go(h) contains more than one non-singleton members, say
K and H. Chooseépoints abeK, a#b, c,de H, ¢c#d and consider the
duals (f;{a,b}) and (g;{c.,d}). By Lemma 2.3.3, it follows that #< f and
hég. The duals f and g belongto 1 as n=A. Further, f,g e A implies f
and g are determined by the points of 4. Hence there exist points |k k,| and
k;k,| determining f; |ksks| and [k, k,| determining g . Suppose |kk,|, |k:k,],
kske|, |k,ky| determine points a, b, ¢, d in X . The set intersection of points

| k,k,| and |ksk| in 4 determines a dual equivalent to (k;{a,c}). Therefore
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k e A . This further implies k>4 and hence we have {a,c}c H or {a,c}c K
which contradicts the choice of points @ and c¢. Therefore our assumption

that p(k) contains more than one non-singleton member is wrong. Hence %
is a primary member say (h; H), where H is a closed nowhere dense subset
- of X . We complete the proof by showing £(4)=H . Let x e £(4). Then there
exists point |ih,|e 4 'such that £(|ih,|)=x. Take an‘other'point b, 4.
Suppose it determines y in X. Since {(c;{x,y}}=|al,|N|h]|, o is
determined by 4. Clearly o e 1 and o 2% which implies g(c) < g(h)and
hence xeH. This proves that &(4)c H. To establish the reverse
containment let ze H. Since 4 is a non-singleton member of 3, £(4A) c H
and ¢ one-one implies that H is a non-singleton‘éubset of X. Choose
we H -{z}. Clearly the dual (v;{z, w}) belongs to 1 since p)c p(h).
- Thus there exist pointé I,| and [I7,] in 4 such that |I,,|n|il,|={w}, point
5| determines point z in X and the point |7;1,|determines point w in X.
But this gives |,,| in 4 such that cfﬂl]lz])zz. Hence &£(4) o H. This proves
that £ is a bijective map, which maps F-closed sets in 3 to closed

nowhere dense sets in X .

Lemma 5.2.2. Let the space X and the set 3 be as in Theorem 5.2.1. Then
the family {Ac 3|4 is F —closed} contains ¢ and 3 and is also closed

under finite union and arbitrary intersections.
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Proof. That ¢ is F -closed follows vacuously and the set 3 is F —closed

follows because 1= D and Py f exists, which is the constant map.
Next, let 4, and 4, be F-closed subsets of 3. Then fo,- f exists,

where 4, is the collection of all duals determined by 4,, i=1, 2 and 7, = 4,,

i=1, 2, where 7, is the collection of all duals 2/\,1 f.  As observed in
Theorem 5.2.1 each of the meets f/\l f,i=1,2,isa primary member in

DP(X) say (g;;H,), i=1, 2, where H,, H, are closed nowhere dense

subsets of X. We denote by 4 the collection of all duals determined by

4,04, Let g~ (g;H, v H,). We shall show that f/\ﬁfz g.

Since p(f)cw(g), g< f foreach fe i UAi,. Further, if f is a dual
determined by point |kk,| in 4, and |kk,| in 4, then also g<f as
() cp(g). Thus f el implies g < f. This proves that g is a lower bound
for the set 1. We now establish that g is the greatest lower bound for the set
4. Let k e DP(X) be such that

g<k{f,foreach fel. - &)
Now
g<k

= pk)c )

= ifk ejp(k) and |K,|>1,then K, c H, UH,.

We first observe that £ is a primary member in DP(X). If possible, let

K,, K, be non-singleton members. of (k). Then K,UK,cH UH,.
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Choose distinct points a, b e K,; ¢, d € K,. Then there exist (f;{a,b}),
(f,;{e,d}) in A, which imply existence of |g,g,|, |2:84|. |8586|+ |g:&) in
4, U 4,, determining the points a, b, ¢, d in X . Therefore (f;;{a,c})e i as

{fi} € |g:182] N |gsgdl-

Since p(f;)z pk), f, 2k which is a contradictioﬁ in view of (1).
Thefefore_our assumption that £ is not a primary member is wrong. Let H
be the non-singleton member in p(k). We now claim that H=H, UH,.
Clearly H ¢ H, U H,. If possible, suppose

HOUH,¢H

=  there exists ae H, U H, suchthat ag H
Choose be H. Then the dual (f;{a.b})ed, but f 2k which is a
contradiction in view of (1). This proves that H=H, UH, and hence
g=~(g:H, QH,_) is the greatest lower bound for the set 1.

We now observe that the arbitrary intersection of F —closed sets is

F-closed set let {4,},, be a family of F-closed sets. Then
(g:H,) =~ ) S exists for each o € 4, where 4, is the collection of all duals
determined by 4, and 7, = A,, where 7, is the collection of all duals > g, .

We now consider the following cases:

Case(i) ()4, is a singleton. In this case [ )4, is F —closed.

aep asp
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Case(ii). [ )4, is not a singleton. Let 4= ("4, . Then the set 1 of all duals

aep acg

determined by 4 is contained in 1, for each ae 1. Let g ~(g;H), where

H=()H,. We shall show that g n T That g is a lower bound for A

acu
follows because (f;{a,b})e A implies fe A, for all aeu. But this gives
{a,b} < H, for each o e # and hence {a,b} H . This proves g < f.

We now show that g is the greatest lower bound of the set 1. Let-
k € DP(X) be such that

g<k<f, foreach fel. (2)
Now g<k implies p(k)c p(g). If K, ep(k) and |K|>1 then we have

K, ¢ H. As discussed earlier £ is a primary member in DP(X ). Let K be
the non-singleton member in p(k). We now claim that K = H'. If possible,
suppose ae H is% such that a¢ K. Choose be K. Then the dual
(fi:{a,b}) € 2 but f, # k, which is a contradiction in view of (2). This proves
that H ¢ K. The reverse containment X ¢ H can be easily proved. Hence
g =~(g; H) is the greatest lower bound for the set 1. |
Lemma 5.2.3. Let X be a Hausdorff space without isolated points. Then the
complements of F -closed sets in S forms a base for the topology of 3,
where 3 is the collection of all duals hingéd with the overlapping duals in
DP(X).

Proof. Follows from Lemma 5.2.2.
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Recall that a subset 4 of countably compact 7, space X without
isolated points is closed if and only if whenever B < 4 and CI, B is nowhere

dense in X then CI, B c 4 [22].

Theorem 5.2.4. Let X be a countably compact T, space without isolated

points and let F be the collection of subsets of D consisting of duals hinged

with overlapping duals, with the topology described by declaring

o~

complements of F-closed sefs in 3 as open sets in 3. Then 3 s
homeomorphic to X .

Proof. By Theorem 5.2.1 there exists a bijection £:F — X, which maps
F —closed sets in 3. to closed nowhere dense sets in X . Since F -closed
sets are closed sets in 3, £ is a closed map. That £ is a closed map

follows from the fact that closed nowhere dense subsets of X determine the

topology of X . Therefore & is a bijective closed map whose inverse is also

closed. Hence ¢ is a homeomorphism.

Note. By Corollary 4.2.3 and Lemma 4.2.4 we have DP(BX,X) is order
isomorphic to K(X). Let D and T be subseté of DP(AX,X) as defined

earlier. Then in this case our notion of F-closed sets defined in 5.1.9
coincides with the hotion of F-compact sets defined by Thrivikraman in
[29]. Hence as a corollary to the above result we have the following result

due to Thrivikraman [29].
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Corollary 5.2.5. Let X be a locally compact space. Then there is a bijection |

from 3 to X — X which carries F —compact sets in 3 to compact sets of
BX — X and vice-versa. Further, the complements of F —compact sets of 3

form a topology for  if and only if X is locally compact. In this case 3 is

homeomorphic to gX - X .

As a conséquence of the above result we also obtain the well-known
Magill's result [Theorem 1.3] concerning the Stone-Cech remainder of a

locally compact Hausdorff space.

3. Lattice DP(SX,X) and the remainder X - X.
In this section we deduce topological properties of X — X from the

lattice theoretic properties of DP(AX,X). We recall that for Ac X,

DP(X,A)={f e DP(X)||f(f (x))| =1, for each x e 4}.

Theorem 5.3.1. Let X be a locally compact space. Then DP(BX,X) is
distributive if and only if |BX - X| <3.
Proof. Observe that |X-X|<3 if and only if |DP(8X,X) <3. Hence
DP(BX,X) is distributive if |#Y ~ X| <3. Suppose |3Y - X|=3. Then choose
distinct poinfs a, b, ce X~ X and consider members I, , (f;{a,b}),
(g;{b,c}), (h{a,c}) and (k;{a,b,c}) in DP(LX,X). Clearly

(fvg)rnh=h
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and
(falvigah=~k.
Thus (fvg)ah#(fAh)v(gnah). This proves that DP(SX,X) is not

distributive.

Theorem 5.3.2. Let X be a locally compact Hadsdorff space. Then

DP(BX,X) has a minimal element but no atom if and only if X -X is

connected.

Proof. By Corollary 4.2.3 and Lemma 4.2.4, DP(fX,X) is order isomorphic
to K(X). Therefore DP(SX,X) has a minimal element if and only if X is

locally compact. Further X is locally compact if and only if gX-X is
compact. Hence DP(SX,X) has a minimal element if and only if gX - X is

compact.

We now complete the proof by establishing DP(£X,X) has an atom if
andonly if AX - X is diséonnected. Let f be an atom in DP(B8X,X). Then
observe that for such an f, @(f) contains precisely two non-singleton
members say H, and H, such that their union is gX-X. For, if p(f)
contains more than two non-singleton members, say H,, H, and H, then
the map g such that gb(g) contains H, v H, and H, belongs to DP(fX,X)
and g< f as p(f)cp(g). This contradicts that f is an atom. Therefore if

DP(BX,X) has an atom f then gp(f) contains exactly two non-singleton
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members say H, and H, such that gX - X =H, U H,. Clearly H, and H,
are clopen sets making X — X disconnected.

Conversely, suppose BX — X is disconnected. Then there exist non-
empty disjoint clopen sets H, and H, in pgY-X such that
pX QX = H, v H,. The natural quotient map ¢ obtained by identifying H,

and H, to distinct points, is an atom in DP(fX,X).

Theorem 5.3.3. Let X be a locally compact Hausdorff space. If DP(fX,X)
is complemente'd then X — X is totally disconnected.

Proof. Let x,y e BX —'-X , x# y. Then consider the dual member (f;{x,y}) in
DP(BX,X). Since DP(BX,X) is complemented, there exists g in
DP(BX,X) such thét frg=o and fvg=~I,, where o is the minimal
element in DP(SX ,X)‘. Since fAg~w, p(g) can contain atmost two non-
empty members: Further, fvg~1, implies that g(g) contains exactly two
non-empty member§ say H and K such that xe H and ye K. Since H
and K -are the only ‘members of @(g), we have X - X = Hu K. Therefore
for each pair of distinct points x and y in X - X, there exist disjoint closed
sets H and K such that xeH, yeK and gX-X=HuUK. Hence

LX — X is totally disconnected.

- We recall that a lattice L is modularif a<c=>(avb)ac=av(bnc),
where g, b,ce L.
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Theorem 5.3.4. Let X be a locally compact Hausdérff space. Then |
DP(BX,X) is modular if and only if |BX - X|< 4.
Proof. It is easy to observe that if }ﬂX - X 1 <3 then DP(BX,X) is modular.
Suppose {ﬂX ~—X}.>.4. Choose distinct points a, 4, ¢ and 4 in gX —-X and
consider members I, (f3{a,b}), (g:{a.b.c}), (h;{c,d}) and (w;{a,b,c,d})
in DP(AX,X). Observe that

(gvinf=f
and

gv(fan~g
That DP(BX,X) is not modular follows from the facts that g<f and

(gvh)/\f¢g.v(h/\f).
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