CHAPTER V

TOPOLOGY ON A FAMILY OF DUALS IN DP(X)

In [29], Thrivikraman has constructed homeomorphism between 'the collection F of all subsets of the set of dual atoms in K(X) which are hinged with overlapping dual atoms in K(X)' and the underlying locally compact Hausdorff space X by inducing a natural topology on the set F. In section 1 of this chapter, we introduce and study the notion of overlapping duals and also the notion of duals hinged with overlapping duals. In section 2, we topologize collection \Im of all subsets of the set of duals in DP(X) which are hinged with overlapping duals in DP(X) and study when the topological space \mathfrak{I} is homeomorphic to X. In fact, we prove that \mathfrak{I} is homeomorphic to X when X is a countably compact T_3 space without isolated points. To prove this result we introduce the notion of F – closed sets and observe that for a locally compact Hausdorff space X, the notion of F-closed sets coincides with the notion of F-compact sets defined by Thrivikraman in [29]. Finally in section 3, we use lattice theoretic properties of the complete lattice $DP(\beta X, X)$ to obtain topological properties of $\beta X - X$ when X is a locally compact Hausdorff space.

1. Set D of duals and its subsets.

For a topological space X, we shall denote the collection of all dual members in DP(X) by D.

Definition 5.1.1. Two distinct duals in D are said to *overlap* if there are precisely three dual members in D greater than their meet.

Example 5.1.2. Consider the usual space **R** of real numbers and let $(f;\{1,2\})$ and $(g;\{1,3\})$ be duals in $DP(\mathbf{R})$. Then by Theorem 3.1.5, $f \wedge g \approx (f \wedge g;\{1,2,3\})$ and the duals greater than $f \wedge g$ in $DP(\mathbf{R})$ are f, gand $(h;\{2,3\})$. Hence f and g are overlapping duals because f, g and hare the only duals in $DP(\mathbf{R})$ greater than $f \wedge g$. If $k \ge f \wedge g$ then by Lemma 2.3.3, $\wp(k) \subseteq \wp(f \wedge g)$.

Definition 5.1.3. An *h* in *D* is said to be *hinged* with two overlapping duals f and g in *D* if *h* overlaps both f and g and there are precisely six duals in *D* greater than $f \wedge g \wedge h$.

Example 5.1.4. Consider the usual space **R** of real numbers and let $(f;\{1,2\})$ and $(g;\{1,3\})$ be duals in $DP(\mathbf{R})$. Then the dual $(h;\{1,4\})$ in $DP(\mathbf{R})$ overlaps both f and g. By Theorem 3.1.5, $f \land g \land h \approx (f \land g \land h;\{1,2,3,4\})$ and the duals greater than $f \land g \land h$ in $DP(\mathbf{R})$ are $f, g, h, (\gamma;\{2,3\}), (\eta;\{2,4\})$ and $(\psi;\{3,4\})$. Another application of Lemma 2.3.3 justifies that f, g, h, γ, η and ψ are the only duals in $DP(\mathbf{R})$ greater than $f \land g \land h$. Thus h is hinged with f and g.

Definition 5.1.5. For overlapping duals f and g in D, define the point |fg| to be the set containing f and g along with all those duals in D which are hinged with f and g.

Note. Let X be a topological space and let $(f; \{x, y\})$, $(g; \{w, z\})$ be two overlapping duals in DP(X). Then f and g are overlapping duals implies $\{x, y\} \cap \{w, z\} \neq \varphi$, for otherwise there will be only two duals in DP(X) greater than $f \wedge g$. Since f and g are also distinct duals, we have $\{x, y\} \cap \{w, z\} = \{x = w\}$. Let h be a dual hinged with f and g. Then h overlaps both f and g. By the above discussion and using the fact that there are precisely six duals in DP(X) greater than $f \wedge g \wedge h$, it follows that the non-singleton member of $\wp(h)$ contains x as one of its member. Thus, for f and g as described above, the point $|fg| = \{(h; \{x, y\}) | y \in X - \{x\}\}$. Also, if $h, k \in |fg|, h \neq k$ then h and k are overlapping duals and |hk| = |fg|.

۲

Lemma 5.1.6. Let X be a topological space and let D be the set of all duals in DP(X). Then for overlapping duals f and g in D, the point |fg| uniquely determines a point of X.

Proof. Since f and g are overlapping duals in D, we have $f \approx (f; \{a, b\})$ and $g \approx (g; \{a, c\})$ for $a, b, c \in X$, $b \neq c$. By the previous Note, the point |fg|contains all the duals of the form $(h; \{a, d\})$, where $d \in X - \{a\}$. Thus

$$\{a\} = \bigcap_{\substack{h \in |fg|, \\ |h^{-1}(y)|=2}} h^{-1}(y)$$

is the point of X determined by the point |fg|.

For a topological space X, we denote by \Im , the set of all subsets of D of the form |fg|, where f and g are overlapping duals in D.

Definition 5.1.7. An f in D is said to be *determined* by a subset A of \mathfrak{I} if there exist distinct points $|g_1g_2|$ and $|h_1h_2|$ in A satisfying $\{f\} = |g_1g_2| \cap |h_1h_2|$.

Example 5.1.8. Let X be a topological space. Suppose the points $|g_1g_2|$ and $|h_1h_2|$ determine points x and y of X respectively. Then the dual $(f;\{x,y\})$ belongs to $|g_1g_2|$ and $|h_1h_2|$ both: Since the dual f overlaps g_1 , g_2 , h_1 , h_2 , it follows that there are precisely six duals in DP(X) greater than $f \wedge g_1 \wedge g_2$ and $f \wedge h_1 \wedge h_2$. That $\{f\} = |g_1g_2| \cap |h_1h_2|$ follows from the fact that if $g \in |g_1g_2| \cap |h_1h_2|$, $g \neq f$, then g has to overlap h_1 , h_2 , g_1 and g_2 , which is not possible.

Definition 5.1.9. A subset A of \mathfrak{I} is said to be F - closed if $\bigwedge_{f \in \lambda} f$ exists and $\lambda = \eta$, where η is the collection of all duals $\geq \bigwedge_{f \in \lambda} f$ in DP(X).

Example 5.1.10. Consider the usual space **R** of real numbers and let *F* be the collection of all duals in *D* hinged with overlapping duals in *DP*(**R**). Let $A = \{|fg|, |hk|\}$, where $f \approx (f; \{1,2\})$, $g \approx (g; \{1,3\})$, $h \approx (h; \{4,5\})$, $k \approx (k; \{4,6\})$. Then $A \subseteq F$ is *F*-closed because the points |fg| and |hk| determine the dual $(\psi; \{1,4\})$ in *DP*(**R**) and hence in this case $\lambda = \{\psi\}$ and $\bigwedge_{f \in A} f = \psi$. Note that the collection of all duals $\geq \bigwedge_{f \in A} f$ in *DP*(**R**) is equal to λ .

2. Topology of \mathfrak{I} and the order structure of DP(X).

Let *X* be a Hausdorff space without isolated points and let \Im and *D* be as defined in section 1. In this section, we show that there exists a bijection between \Im and *X* which maps *F*-closed sets in \Im to closed nowhere dense sets in *X*. We topologize the set \Im and obtain conditions under which \Im is homeomorphic to *X*. Consequently we derive Theorem 1.9 due to Thrivikraman [29] and Theorem 1.3 due to Magill [17]. We first prove the following result:

Theorem 5.2.1. Let *X* be a Hausdorff space without isolated points and let \Im be the collection of all duals hinged with overlapping duals in DP(X). Then there exists a bijective map from \Im onto *X* which maps *F* – closed sets in \Im to closed nowhere dense sets in *X*.

Proof. Define $\xi: \mathfrak{I} \to X$ by $\xi(|fg|) = a$, where a in X is the unique point determined by |fg|. By Lemma 5.1.6, map ξ is one-one. Further, to observe

that the map ξ is onto, for $a \in X$ choose distinct points $b, c \in X - \{a\}$. The duals $(f; \{a, b\})$ and $(g; \{a, c\})$ are overlapping in DP(X) and the point |fg| in \Im satisfies $\xi(|fg|) = a$.

We now prove that ξ maps F-closed sets in \mathfrak{T} to closed nowhere dense subsets of X. Let A be a F-closed subset of \mathfrak{T} . Consider the following cases:

Case (i) If $A = \{ |fg| \}$, where the point |fg| determines point a in X, then A is F-closed and by definition of ξ , $\xi(A) = \{a\}$, which is a closed nowhere dense subset of X.

Case (ii) Let *A* be a non-singleton *F* – closed subset of \mathfrak{I} and let λ be the set of all duals determined by *A*. Since *A* is *F* – closed, $\bigwedge_{f \in \lambda} f$ exists and the collection η of all duals $\geq \bigwedge_{f \in \lambda} f$ is equal to λ . We denote $\bigwedge_{f \in \lambda} f$ by *h*.

We first observe that *h* is a primary member of DP(X). We assume the contrary. Let $\wp(h)$ contains more than one non-singleton members, say *K* and *H*. Choose points $a, b \in K$, $a \neq b$, $c, d \in H$, $c \neq d$ and consider the duals $(f; \{a, b\})$ and $(g; \{c, d\})$. By Lemma 2.3.3, it follows that $h \leq f$ and $h \leq g$. The duals *f* and *g* belong to λ as $\eta = \lambda$. Further, $f, g \in \lambda$ implies *f* and *g* are determined by the points of *A*. Hence there exist points $|k_1k_2|$ and $|k_3k_4|$ determining *f*; $|k_5k_6|$ and $|k_7k_8|$ determining *g*. Suppose $|k_1k_2|$, $|k_3k_4|$, $|k_5k_6|$, $|k_7k_8|$ determine points *a*, *b*, *c*, *d* in *X*. The set intersection of points $|k_1k_2|$ and $|k_5k_6|$ in *A* determines a dual equivalent to $(k; \{a, c\})$. Therefore

 $k \in \lambda$. This further implies $k \ge h$ and hence we have $\{a, c\} \subseteq H$ or $\{a, c\} \subseteq K$ which contradicts the choice of points a and c. Therefore our assumption that $\wp(h)$ contains more than one non-singleton member is wrong. Hence h is a primary member say (h; H), where H is a closed nowhere dense subset of X. We complete the proof by showing $\xi(A) = H$. Let $x \in \xi(A)$. Then there exists point $|h_1h_2| \in A$ such that $\xi(|h_1h_2|) = x$. Take another point $|h_3h_4| \in A$. Suppose it determines y in X. Since $\{(\sigma; \{x, y\})\} = |h_1h_2| \cap |h_3h_4|, \sigma$ is determined by A. Clearly $\sigma \in \lambda$ and $\sigma \geq h$ which implies $\wp(\sigma) \subseteq \wp(h)$ and hence $x \in H$. This proves that $\xi(A) \subseteq H$. To establish the reverse containment let $z \in H$. Since A is a non-singleton member of \mathfrak{I} , $\xi(A) \subseteq H$ and ξ one-one implies that H is a non-singleton subset of X. Choose $w \in H - \{z\}$. Clearly the dual $(\psi; \{z, w\})$ belongs to λ since $\wp(\psi) \subseteq \wp(h)$. Thus there exist points $|l_1l_2|$ and $|l_3l_4|$ in A such that $|l_1l_2| \cap |l_3l_4| = \{\psi\}$, point $|l_1l_2|$ determines point z in X and the point $|l_3l_4|$ determines point w in X. But this gives $|l_1l_2|$ in A such that $\xi(|l_1l_2|) = z$. Hence $\xi(A) \supseteq H$. This proves that ξ is a bijective map, which maps F-closed sets in \mathfrak{I} to closed nowhere dense sets in X.

Lemma 5.2.2. Let the space X and the set \mathfrak{T} be as in Theorem 5.2.1. Then the family $\{A \subseteq \mathfrak{T} | A \text{ is } F - closed\}$ contains φ and \mathfrak{T} and is also closed under finite union and arbitrary intersections. *Proof.* That φ is F-closed follows vacuously and the set \Im is F-closed follows because $\lambda = D$ and $\bigwedge_{f \in \lambda} f$ exists, which is the constant map.

Next, let A_1 and A_2 be F-closed subsets of \Im . Then $\bigwedge_{f \in \lambda_i} f$ exists, where λ_i is the collection of all duals determined by A_i , i = 1, 2 and $\eta_i = \lambda_i$, i = 1, 2, where η_i is the collection of all duals $\geq \bigwedge_{f \in \lambda_i} f$. As observed in Theorem 5.2.1 each of the meets $\bigwedge_{f \in \lambda_i} f$, i = 1, 2, is a primary member in DP(X) say $(g_i; H_i)$, i = 1, 2, where H_1 , H_2 are closed nowhere dense subsets of X. We denote by λ the collection of all duals determined by $A_1 \cup A_2$. Let $g \approx (g; H_1 \cup H_2)$. We shall show that $\bigwedge_{f \in \lambda} f \approx g$.

Since $\wp(f) \subseteq \wp(g)$, $g \leq f$ for each $f \in \lambda_1 \cup \lambda_2$. Further, if f is a dual determined by point $|k_1k_2|$ in A_1 and $|k_3k_4|$ in A_2 then also $g \leq f$ as $\wp(f) \subseteq \wp(g)$. Thus $f \in \lambda$ implies $g \leq f$. This proves that g is a lower bound for the set λ . We now establish that g is the greatest lower bound for the set λ . Let $k \in DP(X)$ be such that

$$g < k < f$$
, for each $f \in \lambda$. (1)

Now

$$g < k$$

 $\Rightarrow \qquad \wp(k) \subseteq \wp(g)$
 $\Rightarrow \qquad \text{if } K_1 \in \wp(k) \text{ and } |K_1| > 1, \text{ then } K_1 \subseteq H_1 \cup H_2$

We first observe that k is a primary member in DP(X). If possible, let K_1 , K_2 be non-singleton members of $\wp(k)$. Then $K_1 \cup K_2 \subseteq H_1 \cup H_2$.

Choose distinct points $a, b \in K_1$; $c, d \in K_2$. Then there exist $(f_1; \{a, b\})$, $(f_2; \{c, d\})$ in λ , which imply existence of $|g_1g_2|$, $|g_3g_4|$, $|g_5g_6|$, $|g_7g_8|$ in $A_1 \cup A_2$, determining the points a, b, c, d in X. Therefore $(f_3; \{a, c\}) \in \lambda$ as $\{f_3\} \in |g_1g_2| \cap |g_5g_6|$.

Since $\wp(f_3) \not\subseteq \wp(k)$, $f_3 \not\geq k$ which is a contradiction in view of (1). Therefore our assumption that k is not a primary member is wrong. Let H be the non-singleton member in $\wp(k)$. We now claim that $H = H_1 \cup H_2$. Clearly $H \subseteq H_1 \cup H_2$. If possible, suppose

 $H_1 \cup H_2 \not\subseteq H$

 $\Rightarrow \qquad \text{there exists } a \in H_1 \cup H_2 \text{ such that } a \notin H.$

Choose $b \in H$. Then the dual $(f_1; \{a, b\}) \in \lambda$, but $f_1 \not\geq k$ which is a contradiction in view of (1). This proves that $H = H_1 \cup H_2$ and hence $g \approx (g; H_1 \cup H_2)$ is the greatest lower bound for the set λ .

We now observe that the arbitrary intersection of F-closed sets is F-closed set. Let $\{A_{\alpha}\}_{\alpha\in\mu}$ be a family of F-closed sets. Then $(g_{\alpha}; H_{\alpha}) \approx \bigwedge_{f \in \lambda_{\alpha}} f$ exists for each $\alpha \in \mu$, where λ_{α} is the collection of all duals determined by A_{α} and $\eta_{\alpha} = \lambda_{\alpha}$, where η_{α} is the collection of all duals $\geq g_{\alpha}$. We now consider the following cases:

Case(i) $\bigcap_{\alpha \in \mu} A_{\alpha}$ is a singleton. In this case $\bigcap_{\alpha \in \mu} A_{\alpha}$ is *F*-closed.

Case(ii) $\bigcap_{\alpha \in \mu} A_{\alpha}$ is not a singleton. Let $A = \bigcap_{\alpha \in \mu} A_{\alpha}$. Then the set λ of all duals determined by A is contained in λ_{α} for each $\alpha \in \mu$. Let $g \approx (g; H)$, where $H = \bigcap_{\alpha \in \mu} H_{\alpha}$. We shall show that $g \approx \bigwedge_{f \in \lambda} f$. That g is a lower bound for λ follows because $(f; \{a, b\}) \in \lambda$ implies $f \in \lambda_{\alpha}$ for all $\alpha \in \mu$. But this gives

 $\{a,b\} \subseteq H_{\alpha}$ for each $\alpha \in \mu$ and hence $\{a,b\} \subseteq H$. This proves $g \leq f$.

We now show that g is the greatest lower bound of the set λ . Let $k \in DP(X)$ be such that

$$g < k < f$$
, for each $f \in \lambda$. (2)

Now g < k implies $\wp(k) \subseteq \wp(g)$. If $K_1 \in \wp(k)$ and $|K_1| > 1$ then we have $K_1 \subseteq H$. As discussed earlier k is a primary member in DP(X). Let K be the non-singleton member in $\wp(k)$. We now claim that K = H. If possible, suppose $a \in H$ is such that $a \notin K$. Choose $b \in K$. Then the dual $(f_1; \{a, b\}) \in \lambda$ but $f_1 \ngeq k$, which is a contradiction in view of (2). This proves that $H \subseteq K$. The reverse containment $K \subseteq H$ can be easily proved. Hence $g \approx (g; H)$ is the greatest lower bound for the set λ .

Lemma 5.2.3. Let *X* be a Hausdorff space without isolated points. Then the complements of *F* – closed sets in \Im forms a base for the topology of \Im , where \Im is the collection of all duals hinged with the overlapping duals in DP(X).

Proof. Follows from Lemma 5.2.2.

Recall that a subset A of countably compact T_3 space X without isolated points is closed if and only if whenever $B \subseteq A$ and $Cl_X B$ is nowhere dense in X then $Cl_X B \subseteq A$ [22].

Theorem 5.2.4. Let *X* be a countably compact T_3 space without isolated points and let *F* be the collection of subsets of *D* consisting of duals hinged with overlapping duals, with the topology described by declaring complements of *F*-closed sets in \Im as open sets in \Im . Then \Im is homeomorphic to *X*.

Proof. By Theorem 5.2.1 there exists a bijection $\xi: F \to X$, which maps F-closed sets in \mathfrak{I} to closed nowhere dense sets in X. Since F-closed sets are closed sets in \mathfrak{I} , ξ is a closed map. That ξ^{-1} is a closed map follows from the fact that closed nowhere dense subsets of X determine the topology of X. Therefore ξ is a bijective closed map whose inverse is also closed. Hence ξ is a homeomorphism.

Note. By Corollary 4.2.3 and Lemma 4.2.4 we have $DP(\beta X, X)$ is order isomorphic to K(X). Let D and \Im be subsets of $DP(\beta X, X)$ as defined earlier. Then in this case our notion of F-closed sets defined in 5.1.9 coincides with the notion of F-compact sets defined by Thrivikraman in [29]. Hence as a corollary to the above result we have the following result due to Thrivikraman [29].

63

Corollary 5.2.5. Let *X* be a locally compact space. Then there is a bijection from \Im to $\beta X - X$ which carries *F* – compact sets in \Im to compact sets of $\beta X - X$ and vice-versa. Further, the complements of *F* – compact sets of \Im form a topology for \Im if and only if *X* is locally compact. In this case \Im is homeomorphic to $\beta X - X$.

As a consequence of the above result we also obtain the well-known Magill's result [Theorem 1.3] concerning the Stone-Čech remainder of a locally compact Hausdorff space.

3. Lattice $DP(\beta X, X)$ and the remainder $\beta X - X$.

In this section we deduce topological properties of $\beta X - X$ from the lattice theoretic properties of $DP(\beta X, X)$. We recall that for $A \subseteq X$, $DP(X, A) = \{f \in DP(X) | |f^{-1}(f(x))| = 1, \text{ for each } x \in A\}$.

Theorem 5.3.1. Let *X* be a locally compact space. Then $DP(\beta X, X)$ is distributive if and only if $|\beta X - X| < 3$.

Proof. Observe that $|\beta X - X| < 3$ if and only if $|DP(\beta X, X)| < 3$. Hence $DP(\beta X, X)$ is distributive if $|\beta X - X| < 3$. Suppose $|\beta X - X| \ge 3$. Then choose distinct points $a, b, c \in \beta X - X$ and consider members $I_{\beta X}$, $(f; \{a, b\})$, $(g; \{b, c\})$, $(h; \{a, c\})$ and $(k; \{a, b, c\})$ in $DP(\beta X, X)$. Clearly

 $(f \lor g) \land h \approx h$

and

$$(f \wedge h) \vee (g \wedge h) \approx k$$
.

Thus $(f \lor g) \land h \neq (f \land h) \lor (g \land h)$. This proves that $DP(\beta X, X)$ is not distributive.

Theorem 5.3.2. Let *X* be a locally compact Hausdorff space. Then $DP(\beta X, X)$ has a minimal element but no atom if and only if $\beta X - X$ is connected.

Proof. By Corollary 4.2.3 and Lemma 4.2.4, $DP(\beta X, X)$ is order isomorphic to K(X). Therefore $DP(\beta X, X)$ has a minimal element if and only if X is locally compact. Further X is locally compact if and only if $\beta X - X$ is compact. Hence $DP(\beta X, X)$ has a minimal element if and only if $\beta X - X$ is compact.

We now complete the proof by establishing $DP(\beta X, X)$ has an atom if and only if $\beta X - X$ is disconnected. Let f be an atom in $DP(\beta X, X)$. Then observe that for such an f, $\wp(f)$ contains precisely two non-singleton members say H_1 and H_2 such that their union is $\beta X - X$. For, if $\wp(f)$ contains more than two non-singleton members, say H_1 , H_2 and H_3 then the map g such that $\wp(g)$ contains $H_1 \cup H_2$ and H_3 belongs to $DP(\beta X, X)$ and g < f as $\wp(f) \subseteq \wp(g)$. This contradicts that f is an atom. Therefore if $DP(\beta X, X)$ has an atom f then $\wp(f)$ contains exactly two non-singleton members say H_1 and H_2 such that $\beta X - X = H_1 \cup H_2$. Clearly H_1 and H_2 are clopen sets making $\beta X - X$ disconnected.

Conversely, suppose $\beta X - X$ is disconnected. Then there exist nonempty disjoint clopen sets H_1 and H_2 in $\beta X - X$ such that $\beta X - X = H_1 \cup H_2$. The natural quotient map q obtained by identifying H_1 and H_2 to distinct points, is an atom in $DP(\beta X, X)$.

Theorem 5.3.3. Let *X* be a locally compact Hausdorff space. If $DP(\beta X, X)$ is complemented then $\beta X - X$ is totally disconnected.

Proof. Let $x, y \in \beta X - X$, $x \neq y$. Then consider the dual member $(f; \{x, y\})$ in $DP(\beta X, X)$. Since $DP(\beta X, X)$ is complemented, there exists g in $DP(\beta X, X)$ such that $f \wedge g \approx \omega$ and $f \vee g \approx I_{\beta X}$, where ω is the minimal element in $DP(\beta X, X)$. Since $f \wedge g \approx \omega$, $\wp(g)$ can contain atmost two non-empty members. Further, $f \vee g \approx I_{\beta X}$ implies that $\wp(g)$ contains exactly two non-empty members say H and K such that $x \in H$ and $y \in K$. Since H and K are the only members of $\wp(g)$, we have $\beta X - X = H \cup K$. Therefore for each pair of distinct points x and y in $\beta X - X$, there exist disjoint closed sets H and K such that $x \in H$, $y \in K$ and $\beta X - X = H \cup K$. Hence $\beta X - X$ is totally disconnected.

We recall that a lattice *L* is modular if $a \le c \Rightarrow (a \lor b) \land c = a \lor (b \land c)$, where *a*, *b*, *c* \in *L*. **Theorem 5.3.4.** Let *X* be a locally compact Hausdorff space. Then $DP(\beta X, X)$ is modular if and only if $|\beta X - X| < 4$.

Proof. It is easy to observe that if $|\beta X - X| \le 3$ then $DP(\beta X, X)$ is modular. Suppose $|\beta X - X| \ge 4$. Choose distinct points a, b, c and d in $\beta X - X$ and consider members $I_{\beta X}$, $(f; \{a, b\})$, $(g; \{a, b, c\})$, $(h; \{c, d\})$ and $(\omega; \{a, b, c, d\})$ in $DP(\beta X, X)$. Observe that

$$(g \lor h) \land f \approx f$$

and

$$g \lor (f \land h) \approx g$$

That $DP(\beta X, X)$ is not modular follows from the facts that $g \le f$ and $(g \lor h) \land f \neq g \lor (h \land f)$.