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1.0  Introduction: 

1.1 Scientific Context : 

Agriculture is the backbone of the economy of most of the nations in the world as it 

provides livelihood for 60 per cent of the world population (FAO, 2000). Similarly, in 

India, agriculture is the most important and extensive land use activity. Its importance 

for the Indian society need not be over-emphasized, as its role in economy, employment, 

food security, national self reliance and general well being, does not need reiteration. 

Agricultural land is undergoing severe pressure as it is getting intensified to increase the 

productivity to meet the demands of increasing human population, to compete with 

global economy and to adopt with the changing habits of human consumptions 

(Atzberger, 1998). At the same time, its productivity is also prone to risks due to 

fluctuation of weather, international market, and consumer preference. Under such 

circumstances, much efforts are required to improve accuracy by adapting both the 
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conventional and non-conventional methods which can aid in obtaining reliable and 

timely information on various components of crops like area, production and yield. 

1.2 Conventional methods for agricultural land studies: 

Conventional method in agricultural land studies includes crop statistics generation. The 

historic references to crop statistics generation in India date back to Kautilya’s 

Arthasastra as well as Moghul era. Crop statistics viz. crop production and crop acreage 

in our country is collected through ground survey and crop cutting experiments. The 

crop production of principal agricultural crops is usually estimated using following 

formula: 

Crop Production = Area under the crop x the average yield  

         Unit area of the crop  

 

But sometimes, at district level these estimates are obtained through General 

Crop Estimation Surveys (GCES). These surveys are done on the basis of crop cutting 

experiments conducted on a number of randomly selected fields in sampled villages of 

the district. In addition, during these surveys, crop acreage is also estimated through 

complete enumeration of crops in an area. Certain studies on such conventional methods 

showed that there is a seen variation in statistics generation in different states. In states 

namely Kerala, Orissa and West Bengal, 20 per cent sampling on rotation basis is done 

and in northern eastern states ad hoc surveys are employed while in remaining parts of 

the country, multi-season full enumeration approach is adopted for the generation of 

statistics (Dadhwal et al., 2002). 

This conventional system of estimation holds an important position in crop 

statistics generation of our country as it is applied country wide but in spite of this wide 

application it consists of the following major limitations like: 
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• It involves complex field surveys 

• It is costly, time consuming and tedious 

• It is more labour intensive (Verma et al., 2003) 

• It has to pass through a hierarchy of aggregation of village, taluka, district and 

state level, which contributes to a delay in reporting, rigidity of definition, and 

more importantly a delay in compilation of national forecasts (Mahey et al., 

1995) 

•  It is often subjective, influenced by personal bias 

• It involves non-completion of enumeration in sample villages which contributes 

to non-sampling errors (Singh et al., 2003) 

 It sometimes involves non-reporting of crop sown and in few cases, reporting of 

non sown crop as sown crop  

 It also shows discrepancy in reported crop area 

 It presents variation in the crop area ratio for village level worker and supervisor 

(Iyer, 1991) 

Looking at the above limitations of conventional methods used in agricultural 

studies, there arises a need for a new technique which could overcome these demerits. In 

this context, the new non-conventional technology of Remote Sensing (RS) has proved 

its potential as it simultaneously removes all the above disadvantages of ground survey 

method. It is standard, reliable and possibly cheaper and faster methods for agricultural 

land studies. It aids in understanding the different aspects of agricultural studies. 
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1.3 Non- conventional methods for agricultural land studies: 

1.3.1 Application of Remote Sensing in Agriculture: 

Remote Sensing (RS) has a great potential in the field of agriculture giving new 

opportunities for improving agricultural statistics. It offers accelerated, repetitive and 

spatial – temporal synoptic view in different windows of the electromagnetic spectrum 

from its vantage point in space. In the last few years, RS technology has been 

increasingly identified as an objective, standard and possibly cheaper and faster 

methodology for crop production estimation (Bouman, 1992; Shinde and Shrivastava, 

2012). In addition, it is a non-conventional and non-destructive method of agricultural 

studies (Pinter et al., 2003). This method has certain more advantages which are as 

follows: 

• It provides temporal and near real time information on crop conditions making 

early detection and management of problems easy and thereby preventing 

potential crop losses.  

• It is a non-invasive method with ability to measure large areas with high detail 

without disturbing the crop. 

• It is potentially cheaper, more efficient and more spatially detailed than field 

sampling  

The main sources of RS data are optical and microwave sensors. In fact, optical 

satellites which operate in the visible and infrared parts of the spectrum, acquire 

information which are more closely linked to human perception. Examples of 

information products that can be spatially derived from optical domain are: Colour, 

Crop Vitality, Canopy temperature, etc. In optical region, both visible and infrared 
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bands are very useful in identifying cultivated areas and eventually in understanding the 

crop conditions. The most important limitation of optical instruments is their weather 

dependence for their operational use as clouds are not transparent at visible/ Infrared 

(IR) wavelengths. This factor needs to be taken care of for agricultural applications as 

reliable timed images are needed throughout the growing season to understand the crop 

status. Application of microwave RS helps in overcoming this weather dependency 

(Navalgund et al., 2007). 

Radar microwaves, owing to their penetrative power, can pass not only through 

clouds, haze or fog but also through crop canopy and reach the soil below. As a result, 

the resulting radar images are influenced by the properties of the soil (Vescovi and 

Gomarasca, 1999). These images are primarily sensitive to crop structure (Dobson et al., 

1995) and biomass (Davidson et al., 1997), as well as soil roughness and moisture 

(Engman and Chauhan, 1995). The information from radars may be supplementary to 

that of optical systems when visible/IR sensors are unavailable because of cloud 

(Clevers and van Leeuwen, 1996). 

Use of this data could be made for a number of applications such as crop 

inventory, crop acreage, crop production/yield forecasts, drought and flood damage 

assessment, range and irrigated land monitoring and management (Sahai and Dadhwal, 

1990). Most importantly both optical and microwave data have proved their potentials in 

assessing different crop parameters. 

1.4 Crop parameters: Biophysical and Biochemical parameters 

Agricultural, ecological, and meteorological applications require an accurate 

quantitative estimation of vegetation biochemical and biophysical variables (Asner, 
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1998; Houborg et al., 2007). The information about the spatial and temporal distribution 

of these parameters provides an important input into various models quantifying the 

exchange of energy and matter between the land surface and the atmosphere. The 

knowledge of canopy biophysical variables is of prime interest in many applications 

including crop function modeling, evapotranspiration, crop growth modeling and yield 

prediction. In addition, this information also aid in predicting the soil-vegetation- 

atmosphere energy transfers. Even at a much smaller scale, as in precision farming and 

water management, biophysical parameters play a critical role to describe the state of 

crop development and water needs. Measurement of these parameters during the 

growing season also provides an opportunity for improving grain yields and quality by 

site-specific application of fertilizers. Among the many crop parameters, Leaf Area 

Index (LAI), Leaf Relative Water Index (RWC), Leaf Chlorophyll Content (CC) and 

Biomass are of prime importance.  

Direct field techniques for estimating these parameters require frequent 

destructive harvesting. Such techniques are difficult, extremely labour intensive, and 

costly in terms of time and money. They can hardly be extended to cover large areas. In 

order to handle these problems, RS technology offers numerous advantages over 

traditional methods of conducting agricultural and other resource surveys.  Advantages 

include the potential for accelerated surveys, capability to achieve a synoptic view under 

relatively uniform lighting conditions, availability of multispectral data for providing 

intense information, capability of repetitive coverage to depict seasonal and long-term 

changes and availability of imagery with minimum distortion etc. This proves RS data, 
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both in terms of optical and microwave, beneficial in assessing important biophysical 

and biochemical parameters of different crops.  

1.5 Optical remote sensing and crop parameters:  

The timely spectral reflectance information covering major ElectroMagnetic Radiation 

(EMR) range can be linked to biophysical and biochemical parameters which are the 

indicators of plant health. Quantitative techniques can be applied to the spectral data, 

whether acquired from close-range or by aircraft or satellite-based sensors, in order to 

estimate crop status/condition. This technology is capable of playing an important role 

in crop management by providing the information on different types of crop parameters 

namely, LAI, Biomass, RWC, CC and some other measurable biophysical parameters. 

Each parameter has been taken up separately and discussed below. 

- Leaf Area Index  (LAI) 

The Leaf Area Index (LAI), an important biophysical parameter characterizing a canopy 

is defined as the total one-sided area of leaf tissue per unit ground surface area (Watson, 

1947). It has a key role as one of the surface parameters in climate, weather and 

ecological studies. It is a biophysical variable that influences vegetation photosynthesis, 

transpiration and the energy balance of canopies (Bonan, 1993). It serves as an 

important input to the ecosystem productivity models operating at landscape to global 

scales (Turner et al., 1999) and also as an interaction component of general circulation 

models (Buermann et al., 2001). Estimation of LAI is critical for understanding and 

quantitatively analyzing many physical and biological processes. These processes are 

related to vegetation dynamics, global carbon cycle and climate.  
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RS facilitates LAI estimation at frequent intervals which defines the size of 

interface for mass and energy exchange over a wide range of spatial scales and with 

considerable temporal resolution. However, conventional approach of LAI 

measurements are cumbersome, very tedious, time consuming task and impossible to 

obtain at global scale and in this respect satellite RS is the most effective means of 

measuring LAI global fields on a regular basis (Pandya et al., 2006; Martinez et al., 

2010). Methods of LAI measurements can be grouped into two categories. The first 

category consists of empirical methods wherein relationships between LAI and 

Vegetation Indices (VIs) such as the Normalized Difference Vegetation Index (NDVI) 

are established (Asrar et al., 1984; Curran and Williamson, 1987; Chen and Cihlar, 

1996, Franklin et al., 1997; Kuusk, 1998; Xavier and Vettorazzi, 2004; Wang, et al., 

2007; Patil et al., 2012). To map LAI, second category of methods is the inversion of 

physical Canopy-Reflectance (CR) models (Goel and Strebel, 1983; Goel, 1988; 

Privette et al., 1994; Myneni et al., 1997; Houborg and Boegh, 2008; Yao et al., 2008). 

- Biomass: 

Crop biomass is the total dry-matter production of a crop which is the net result from 

photosynthesis, respiration, and mineral uptake (Stoskopf, 1981). This biophysical 

parameter is an indicator of the productivity and function of crop (Mutanga and 

Skidmore, 2004). It aids in monitoring of crop vitality and hence is very important 

quantitative characteristic of crop condition (Bendig et al., 2014). It is also considered as 

an effective tool for predicting yield capacity (Kryvobok, 2000).   

Biomass estimation can be done via different approaches, based on (1) field 

measurement (Brown et al., 1989; Brown and Iverson, 1992; Houghton et al., 2001) (2) 
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Geographic Information System (GIS) (Brown and Gaston, 1995) and (3) RS methods 

(Nelson et al., 2000; Lu et al., 2005). Crop biomass estimations using field based 

traditional techniques involves in situ destructive sampling. This approach is the most 

accurate way for collecting biomass data and hence provides higher quality data. But 

this conventional method has certain limitations. It requires sufficiently high number of 

field measurements for the development of biomass estimation models and also for the 

evaluation of the biomass estimation result. The data collection process involved in this 

approach is time consuming, labour-intensive and is unfeasible over large spatial extents 

(Ajaere, 2012). Second approach i.e. GIS–based methods using ancillary data are also 

difficult. It has problems related to acquiring high quality ancillary data, indirect 

relationships between biomass and ancillary data, and the comprehensive impacts of 

environmental conditions on biomass accumulation. Conversely, biomass estimation 

using data acquired from remote sensors such as field spectroradiometers and aerial or 

satellite borne sensors offers numerous advantages. These include the non-destructive 

and non-obtrusive nature of the data collection methods; repetition of data collection, 

the large spatial coverage of a given sensor system; a synoptic view, a digital format that 

allows fast processing of large quantities of data (Lu, 2006; Hatfield and Prueger, 2010). 

Therefore, RS-based biomass estimation has increasingly attracted scientific interest. 

Timely pre-harvest forecast of crop biomass using satellite data could aid in quantifying 

marketable yield. This would provide an international competitive advantage to a farmer 

leading to economic gain for the farm operation (Rabe, 1996). Several authors have 

accomplished biomass estimation using remote sensing techniques. One way of biomass 

estimation using remotely sensed data is by applying a number of VIs such as NDVI 
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which is indicative of vegetation biophysical characteristics (Aase and Siddoway, 1981; 

Tucker et al., 1981; Persson et al., 1993; Hobbs, 1995; Shippert et al., 1995; Serrano et 

al., 2000; Liu et al., 2004; Moges et al., 2004; Jensen, 2005; Gao et al., 2013; Perry et 

al., 2014; Santi et al., 2014; Kross et al., 2015). The limitation of this approach that 

determines biomass by establishing relationship between biomass and spectral 

reflectance data is the non-consideration of physical and physiological processes (Asrar 

et al., 1985). Another way is based on understanding of the relationship between 

Phytomass Production (PP) and the Photosynthetically Active Radiation (PAR) 

absorbed by the canopy (Monteith, 1972; Hodges and Kanemasu, 1977; Daughtry et al., 

1983). This method needs additional information about incident or utilized solar 

radiation and therefore is likely to be more appropriate in biomass prediction in different 

climatic regimes (Choudbury, 1987). 

- Relative Water Content (RWC): 

Water as an important element for the proper plant growth, is of great significance for 

real-time understanding of vegetation status, especially in dryland agriculture (Zhang et 

al., 2011). Several factors influence crop water status. These include environmental 

conditions, agronomic practices, soil properties, and crop growth (Hanks, 1988). Crop 

water status is also an important consideration for monitoring agricultural drought. 

Water stress due to drought limits plant productivity and crop yields by reducing 

photosynthesis and leaf growth (Boyer, 1982; Bradford and Hsiao, 1982). Thus, crop 

water status provides important information that can aid in several different ways. It 

prevents crop water deficit through irrigation (Koksal, 2008). It aids in the selection of 

genotypes in breeding (Munjal and Dhanda, 2005). It also proves beneficial in 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib22
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assessment of crop growth under drought conditions (Tucker, 1980; Peñuelas et al., 

1993). Numerous methods are used to determine crop water content; leaf Relative Water 

Content (RWC) is one such method. RWC was introduced as an useful indicator for 

plant water status essentially because it expresses the absolute amount of water, which 

the plant requires to reach artificial full saturation (Slatyer, 1967). This was used instead 

of plant water potential since RWC refers to its relation with cell volume and accurately 

indicates the balance between absorbed water by plant and consumed through 

transpiration (Arjenaki et al., 2012). RWC estimations conventionally are tedious and 

time consuming. Several authors have determined plant water status in different crops 

using remote sensing techniques by measuring spectral indices based on vegetation 

moisture feature bands since they change in response to crop water content (Hunt et al., 

1987; Peñuelas et al., 1997; Ustin et al., 1998; Stimson et al., 2005). Spectral indices 

offer a numerous advantages over conventional laboratory estimations. They provide 

methods for easy and quick measurements, and for the integration at the canopy level. 

Moreover, additional parameters can be estimated simultaneously via a series of diverse 

spectral indices (i.e. photosynthetic capacity, leaf area index, intercepted radiation, and 

chlorophyll content) (Araus et al., 2001). NDWI is one of the important spectral indices 

used in sensing vegetation water content using remote sensing imagery by employing 

empirical statistical approach. This index was used by Anderson et al. (2004) for 

determining canopy water content in crops namely soybean and corn.  

- Leaf Chlorophyll Content (CC) 

Chlorophyll is Earth’s most important organic molecule and leaf’s one of the most 

important biochemicals. The amount of chlorophyll within a vegetation canopy is 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib38
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib39
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib37
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905199/#bib2
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positively related to both the vegetation productivity and its health (Dash et al., 2009). 

CC is of great importance as 

 It controls photosynthetic potential (Singh et al., 2015) and, consequently, 

primary production as it has a dominant control upon the amount of solar 

radiation absorbed by a leaf (Blackburn, 2007).  

 It is also an important indicator of nutritional stress (Collins, 1978; Milton and 

Mouat, 1989; Curran et al., 1990; Filella and Penuelas, 1994).  

 Thus its estimation can provide an accurate, indirect estimate of plant nutrient 

status especially Nitrogen because the molecular structure of the chlorophyll 

incorporates a large proportion of total leaf nitrogen (Everitt et al., 1985; Filella 

et al., 1995; Moran et al.,2000). CC in leaves is to a great extent dependent on 

the soil nitrogen availability and on crop nitrogen uptake and so it is an indicator 

of nitrogen content. Hence, this parameter in agricultural fields can prove to be 

of a great use. Estimates of this parameter can help the farmers and agronomists 

to make management decisions related to nitrogen supply at critical growth 

stages. 

 It is influenced by stress due to nutritional deficiency and also its ratio changes 

with abiotic factors such as light (Fang et al., 1998), and so it can become an 

important indicator for providing useful insights into plant–environment 

interactions (Richardson et al., 2002). 

The knowledge of this parameter extracted from satellite data is therefore 

expected to be a valuable tool in the evaluation of plant nitrogen. Undoubtedly 

conventional methods of estimation of chlorophyll are too tedious and in this context RS 
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methods are found to be superior. Approaches for the estimation of CC from remotely 

sensed data are based either on the inversion of physically based models (Jacquemoud et 

al., 2000; Zarco-Tejada et al., 2004; Schaepman et al., 2005) or improved relationships 

between CC and spectral indices (Daughtry et al., 2000; le Maire et al., 2004). In 

physically based model approach, simulation of canopy reflectance is done and then 

quantitative relationships between remotely sensed data and canopy attributes for 

inversion purposes are created. Approaches using spectral indices rely on establishment 

of empirical relationships between laboratory measured CC and observed spectral 

reflectances.   

 This discussion highlighted the significance of optical RS in assessing crop 

parameters like LAI, Biomass, Chlorophyll and RWC. Specifically its reflective optical 

domain functions as a unique cost-effective source, providing spatial and temporal 

information on key biophysical and biochemical characteristics of land surface 

vegetation (Houborg et al., 2009). As discussed previously, these techniques for 

estimating crop parameters have either been based on the empirical-statistical 

approach that links VIs and crop parameters using experimental data, or on the 

physical modelling approach that involves inversion of radiative transfer model.  

1.5.1. Empirical- statistical approach: 

Empirical-statistical approach considers the contrasts in reflectance and fits a 

relationship between reflectance and crop variables, mainly by the use of VIs. 

Establishment of these relationships between remotely sensed crop canopy reflectance 

and ground-measured biophysical and biochemical parameters of particular crop is done 

via simple or multiple regression (Jacquemoud et al., 1995), partial least square 
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regression (Huang et al., 2004), or by training an artificial neural network (Dorigo et al., 

2007). As discussed previously, many authors have demonstrated the capability of 

spectral indices such NDVI and Normalized Difference Water Index (NDWI) in the 

estimation of different biophysical and biochemical parameters: Prediction of biomass 

(Broge and Leblanc, 2001; Haboudane et al., 2004a), mapping of CC (Al-Abbas et al., 

1974; Haboudane et al., 2002), mapping of LAI (Xiao et al., 2002; Vina et al., 2011) as 

well as detection of stress (Eklundh, 1996; McVicar and Jupp, 1998).  

Empirical-statistical methods are highly efficient due to their simplicity and 

straightforwardness (Baret and Guyot, 1991). However, they have their own limitations: 

• Established empirical equations are limited to a particular site and time for 

which the relationship was established  

• It is usually sensitive to the soil background, crop chlorophyll content, or to the 

orientation and spatial distribution of the leaves in the canopy.  

• In addition, for calibration of the empirical formulas established for different 

vegetation or crop types, a reliable reference data-set is required.  

• Furthermore, such methods generally make use of few spectral bands, with a 

consistent under-exploitation of the full spectral range available in new 

generation sensors (Francesco and Luigi, 2006).  

An alternative approach for the estimation of crop parameters is the physical 

modeling approach. 

1.5.2 Physical modelling approach: 

Physical models are potentially more robust and accurate than empirical models and 

hence are relevant alternatives to empirical approaches (Gastellu-Etchegorry et al., 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Francesco,%20V..QT.&newsearch=partialPref
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2003). This physical modeling approach is based on the inversion of Radiative Transfer 

(RT) models, which physically relate canopy biophysical and biochemical variables to 

reflectance data (Jacquemoud 1993; Gastellu-Etchegorry et al., 1996; Bicheron and 

Leroy 1999, Goel and Thompson, 2000; Quin and Liang, 2000).  

1.5.2.1 Radiative Transfer models: 

In the field of optical remote sensing, for understanding of light interception by plant 

canopies and the interpretation of vegetation reflectance in terms of biophysical 

characteristics, RT models have been proved to be very useful (Jacquemoud et al., 

2009).  A virtual transfer of photons within vegetation is performed in these models, 

taking into account canopy biochemical and biophysical characteristics and objects of 

the surrounding environment (Malenovsky et al., 2009). Since these models consider 

explicitly two main physical processes of light absorption and scattering within a plant 

canopy, they aid in designing VIs, performing sensitivity analyses, and developing 

inversion procedures to accurately retrieve vegetation properties from satellite data 

(Jacquemoud et al., 2006). Methodological diagram in Figure 1 depicts steps involved 

in retrieving of biophysical and biochemical parameters by inversion of RT based RS 

retrieval. 

Previous studies on physical RT models have shown that among the different RT 

based RS models, the model of leaf optical PROperties SPECTra (PROSPECT) and the 

SAIL (Scattering by Arbitrary Inclined Leaves) canopy bidirectional reflectance model 

are the most popular and are looked on as standards (Liang, 2003). Combining these 

models into PROSAIL has allowed description of both the spectral and directional 

variation of canopy reflectance as a function of 
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 leaf biochemistry - mainly chlorophyll, water, and dry matter contents   

 canopy architecture - primarily leaf area index, leaf angle distribution, 

and relative leaf size 

 
Fig 1. Bottom-up physical RT inversion mapping a quantitative characteristic of 

vegetation canopy from remotely sensed imaging spectroscopy data (Source: 

Malenovsky et al., 2009) 

 

The PROSPECT+SAIL Model: PROSAIL 

A RT model, PROSPECT (Jacquemoud and Baret, 1990) simulates the leaf reflectance 

and transmittance from 400 to 2500 nm as a function of the leaf mesophyll structure 

parameter (N), the chlorophyll a+b content (Cab), and the leaf water content (Cw). For 

given solar θs and view zenith angles (θv), and a given relative azimuth angle (ϕsv),  

SAIL (Verhoef, 1984) calculates the canopy bidirectional reflectance using leaf optical 
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properties, soil reflectance, and canopy architecture; the latter is represented by the leaf 

area index LAI, the mean leaf inclination angle (θl), and the hot spot parmeter (sL).  

PROSAIL since is a coupling of PROSPECT and SAIL models, it measures the 

bidirectional reflectance of homogeneous canopies as a function of several structural 

and biophysical parameters, soil reflectance, illumination and viewing geometry (Vuolo 

et al., 2010). Different inputs used in this coupled model are: leaf chlorophyll a+b 

content (Cab), leaf water content (Cw), leaf dry matter content (Cdm), leaf brown 

pigment content (Cbp), leaf mesophyll structure index (N), LAI, average leaf angle 

(ALA), a hot spot parameter (sL) and soil brightness (BS). Figure 2 shows the different 

input variables to PROSAIL model i.e coupled SAIL and PROSPECT RT models and 

different steps involved. 

 
Fig 2. The PROSAIL model: Input parameters and steps involved (Source:  Botha et al., 

2007) 

http://www.sciencedirect.com/science/article/pii/S0303243406000596
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The RT model PROSAIL simulates bi-directional reflectance and retrieves 

biophysical parameters through its inversion. Hence physically based models for 

retrieving vegetation characteristics from satellite measurements can actually be used by 

inverting these models (Kimes et al., 1998). Amongst different techniques used for 

inversion of the model, Look Up Table (LUT) is one of the important techniques. 

 

Inversion of PROSAIL using LUT: 

LUT approach is one of the relatively simpler; the most robust and accurate model 

inversion strategies. Many researchers in their work have applied LUT in combination 

with PROSAIL for retrieving biophysical parameters of different crop types at different 

locations (e.g. Weiss et al., 2000; Darvishzadeh et al., 2008; Richter et al., 2009; 

Verrelst et al., 2014). LUT is a large data base consisting of sets of input variables of the 

canopy RT model that are to be inversed. Alternatively, LUT can be generated on the 

basis of experimental observations, although this requires a very accurate sampling of 

the space of canopy realization. Simultaneous to generation of LUT, bidirectional 

canopy reflectance and fCover for 100000 different variable combinations is simulated 

by running PROSAIL. On generation of LUT, solution for a given set of reflectance 

measurements is found by selecting the closest cases in the reflectance table according 

to a cost function, and by extracting of the corresponding set of canopy biophysical 

variables (Baret and Buis, 2008). 

In the above sections, potential of optical RS in the estimation of crop 

biophysical and biochemical parameters has been clearly understood. At the same time, 

limitations of these types of RS data need to be emphasized eg: their weather 
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dependency. They are affected by cloud cover (Mudaliar, 2013), since clouds are not 

transparent at visible/IR wavelengths. This is especially important for agricultural 

applications where number of satellite images is required throughout the growing season 

in order to continuously follow the status of the crops as they grow.  In this context, an 

imagery obtained from Microwave RS can give the added information which is 

hampered by effect of cloud on optical imagery. 

1.6 Microwave remote sensing and crop parameters: 

RADAR (Radio Detection And Ranging), an active sensor system transmitting energy 

in the microwave region of the electromagnetic spectrum (EMS), measures the energy 

reflected back from the target in terms of backscattering.  Orbital remote sensing in the 

microwave region is potentially an important tool for agriculture monitoring. It has 

almost all-weather capability and can be acquired in day or night conditions, giving 

continual data and in addition it has high spatial resolution. Microwave RS gives 

unique information for sea wind and wave direction; derived from frequency 

characteristics, doppler’s effect, polarization, backscattering etc. Such information 

cannot be obtained by visible and infrared sensors (Dhumal et al., 2013). All these 

characteristics of radar make it appropriate for agriculture studies as these features 

increase the chance for providing useful data for crop monitoring. Furthermore, 

application of radar improves signal penetration within vegetation and soil targets. The 

nature of interaction of microwave energy with agricultural targets is quite different 

from that with optical visible-IR energy. In an agricultural systems, the microwave 

signal can interact either with canopy or soil only but more likely there is scattering 
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within the canopy and there occurs return from multiple sources (Smith et al., 2005) 

(Figure 3).  

 
Fig 3. Interaction of radar signal with an agricultural target: 1) backscatter directly from 

the crop (including multiple scattering) 2) backscatter from the combination of crop and 

soil 3) backscatter directly from the soil (including multiple scattering) (Source: Brisco 

and Brown, 1998) 

 
 This interaction of the radar signal with canopy and soil and its attenuation is 

sensitive to number of instrument and vegetation related factors. Instrument related 

factors are: Frequency (wavelength), Polarization, Incidence angle, Look direction, 

Resolution while vegetation related factors are: Surface roughness, Crop canopy 

dielectric constant that is dependent on the biomass and plant water content, Crop 

structure viz. size, shape, orientation and number density of the elements like leaf, 

stalks and fruits, Canopy structure viz. row, plant number density and underlying soil 

contribution, sensitive to the moisture and roughness. 

Similar to optical RS, even in microwave RS, empirical statistical approaches 

can be adopted for full exploration of information regarding retrieval of crop 
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parameters. In this case, the empirical relationships are built between the characteristics 

of radar signal and crop variables during different growth stages in the field. Unlike 

optical models, microwave physical models are not suitable for inversion techniques and 

hence retrieval of the crop parameters from microwave physical models is quite 

difficult. These radar physical models are based on complex electromagnetic 

descriptions of all the canopy scatterers (stalks, leaves and ears) and of the underlying 

soil surface. They are utilized in sensitivity studies, new sensor configurations testing or 

for simple models validation. Moreover, these models require the large amount of input 

parameters and even they are very complex. Because of these reasons, they are not 

suitable for operational inversion purposes (Guissard et al., 2005). 

1.6.1 Empirical-statistical approach: 

RS techniques for estimating crop parameters from radar  backscattering is based on the 

empirical-statistical approach which involves derivation of relationships by calibrating 

observed quantities (LAI, Biomass etc.) with backscatter. This approach is very much 

similar to that used in optical measurements of crop biophysical and biochemical 

parameters. Many authors have established linear or non-linear relationships between 

microwave backscattering coefficient of a vegetation canopy and different crop 

parameters such as LAI, plant water content or biomass (Ulaby et al., 1984; Bouman, 

1991; Ferrazoli et al., 1997, Pampaloni et al., 1997, Mattia et al., 2003). Multi-variate 

regression analysis is also developed to fit relationships between radar backscatter and 

target parameters (Major et al., 1994, McNairn et al., 1998). 

 Estimations of biophysical and biochemical parameters no doubt has potential 

for accurate predictions of crop yield but to ensure food security in rapidly growing 
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population with tremendous pressure on the agricultural land to produce more food, the 

trend analysis of different crops in a given area becomes significant. 

1.7 Trend analysis of different crops: 

Numerous authors have analyzed the trends in terms of area, production and yield of 

different crops grown in different regions of the world (Kumar and Mittal, 2006; Ali et 

al., 2013; Abid et al., 2014). Such information can aid the policy makers in 

recommending policies leading to sustainable increase in the food production 

(Vaidyanathan, 1992; Chand et al., 2007; Reddy and Mishra, 2009). These workers have 

also showed that the rapid growing population has increased pressure on agricultural 

land to produce more food (Anonymous, 2010). There are several reasons such as 

slowing agricultural yields, limited land availability and the increasing demand for 

biofuels leading to competition for available land and lag in the food supply. Recently, 

the phenomenon of land-grabbing has also intensified adding to the pressure on 

agricultural land and thereby on food supply. Thus, for the sustained agricultural 

growth, a holistic approach considering factors related to this resource can not only 

balance the demand and supply but also augment growth in the rural economy and 

associated secondary activities like food processing and retail trading (Kannan and 

Sundaram, 2011).  In this holistic approach, if climatic factors are also considered, it 

will give more significant results. 

1.8 Vulnerability Assessment of agricultural fields: 

Understanding the regional and local dimensions of vulnerability is essential to develop 

appropriate and targetted adaptation efforts (Ranade, 2009). Vulnerability indicators are 

needed for practical decision-making processes, to provide policymakers with 
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appropriate information about where the most vulnerable individuals are located 

(Gbetibouo et al., 2001).Vulnerability, an emerging concept for climate science and 

policy can be expressed as the conjunction of the climatic hazards, socio-economic 

conditions, and the adaptation baseline. Over the past decade, efforts to assess 

vulnerability to climate change triggered a process of theory development and 

assessment practice, which is reflected in the reports of the Intergovernmental Panel on 

Climate Change (IPCC). IPCC defines vulnerability as “the degree to which a system is 

susceptible to, or unable to cope with, adverse effects of climate change, including 

climate variability and extremes. It is a function of three factors: a) the types and 

magnitude of exposure to climatic change impacts, b) the sensitivity of the target system 

to a given amount of exposure, and c) the coping or adaptive capacity of the target 

system (IPCC, 2007). The exposure to climate change will influence sensitivity – either 

positively or negatively and farmers will have to respond these changes provided that 

they have the capacity to adapt. The increasing exposure and sensitivity factor with a 

decreasing adaptive component increases the vulnerability. This emphasizes the need to 

increase the adaptive component of the system. Earth’s climate change during the past 

few decades has become the focus of scientific and social attention as it has severe 

impacts on various ecosystems. It has now become a reality and several researchers are 

working on this burning issue by working out the future projections as well as assessing 

the impact in several sectors including agriculture (Sastri, 2009). Agriculture is an 

important driver of the wheels of the Indian economy. Any change in climate is likely to 

impact agriculture. The change can be in terms of temperature, precipitation, or any 

other climatic parameters (Manavalan et al., 2009). Furthermore, this climate change 
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will expose farmers to new and unfamiliar conditions (Watts and Goodman, 1997) and 

farmers have to cope up with these changes. Numerous physical and socio-economic 

factors come into play in enhancing or constraining the current capacity of farmers to 

cope with adverse changes. Thus, vulnerability study of agriculture involves 

environmental, physical and socioeconomic factors. Considerable studies have gone into 

question of just how agriculture is vulnerable to climate change in different regions, and 

how much. It varies across regions, sectors, and social groups.  

After understanding the trends of different crops and vulnerability of agrilands in 

which they are growing, it is equally significant to understand the specific area under 

each crops, its yield and health. Thus, crop assessment for all these parameters using 

spatial data can prove beneficial.  

1.9 Crop mapping: 

Information regarding crops growing in an area is of great importance to researchers, 

policymakers, land managers and farmers for ensuring the sustainability of these and 

other land uses and for quantifying the net impacts that certain management practices 

have on the environment (Howard et al., 2012). Moreover, for actual estimates of the 

crop production and yield, accurate and in time identification, inventory and crop type 

classification of an area becomes imperative. This information can also help in proper 

water management and for the estimations of carbon sequestration by the soil.  

Acquisition of such information requires precise agricultural land-cover mapping for 

specific crops and their spatial distributions.  

Acquiring this information traditionally through field surveys for crop 

classification has limitations. Spatial data at this point makes such acquisitions easy. RS 
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helps in real time identification of the crops grown in agricultural fields (Wheeler and 

Misra, 1976; Crist and Kauth, 1986; Foody, 1995; Nirala and Venkatachalam, 2000; 

Prakash et al., 2000; Su, 2000; Kauth and Thomas, 2004; Arafat et al., 2013) and 

thereby can aid in crop production forecasts.  

Sensors required for this measurement cover different ranges of EMR. Optical 

RS measure reflectance from targets in the visible and IR regions of the EMS. This data 

has largely been relied upon for crop mapping (Turker and Arikan, 2005). Reason being 

each crop exhibit difference in reflectance because of varying biophysical characteristics 

during entire growing season. This helps in identification of different crops from optical 

data (De Wit and Clevers, 2004; Conrad et al., 2010; Foerster et al., 2012). However, 

optical data acquired during kharif season due to cloud cover are normally of little use in 

crop mapping. Radar sensors are not affected by atmospheric conditions. Unlike optical 

sensors, active radar systems have their own source of EMR, transmitting radio waves 

and receiving the reflected echoes from objects on the Earth’s surface. The longer 

wavelengths of radio waves allow transmitted signals to penetrate clouds (Henderson et 

al., 2002). This provides microwave systems high reliability in terms of data provision, 

especially during kharif season when optical sensors fail (Baghdadi et al., 2010; Lopez-

Sanchez et al., 2010; Schuster et al., 2011). Additionally, the information content of 

microwave and optical imageries differ. A radar sensor transmits short bursts or 'pulses' 

of an electromagnetic energy to an object of an interest and records an origin and 

strength of reflected echo (backscatter) from an object. Received backscatters are 

largely a function of the size, shape, orientation and dielectric constant of the scatterer. 

Hence, in vegetation related studies, microwave backscatter will vary based on the size, 
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shape and orientation of the canopy components. Crops with varying canopy 

architecture and cropping characteristics can be discriminated based on their backscatter 

intensities.  

Several authors have successfully used optical and microwave data 

independently (Misra and Wheeler, 1978; Schotten et al., 1995; Ribbes and Le Toan, 

1998; Sheikho et al., 1998; Chen et al., 2007a; Johnson, 2008; Karjalainen et al., 2008; 

Sesha Sai and Narasimha Rao, 2008; Larrañaga  et al., 2011; Goswami et al., 2012; 

Haldar et al., 2012a; Kussul et al., 2013) as well as in synergism for crop mapping 

(Rosenthal et al., 1985; Ban, 1996; Othman et al., 2002; Haldar and Patnaik, 2010; 

Fontanelli et al., 2014). 
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1.10 Objectives: 

The potential use of remote sensing tools in crop mapping, landuse classification and in the 

retrieval of crop parameters has been well explored. The information retrieved from the 

spatial data has served as inputs to generate yield related models and thereby have helped in 

improving yield forecasts. In the present study, both optical and microwave data have 

been taken up for understanding the importance of these data in assessment of 

agricultural lands and crops therein. The area under this study covered major portion of 

Vadodara and Padra talukas and some parts of Waghodia and Dabhoi talukas of 

Vadodara district for optical data study and major portion of Dabhoi and some parts of 

Sinor and Sankheda talukas of Vadodara district for microwave data study. The study 

was designed with two main objectives as follows: 

1. To understand advantages of microwave data in crop assessment 

2. Analysis of crop parameters using ASAR, LANDSAT and LISS-IV data 


