
CHAPTER-III

DYNAMICAL CONDUCTIVITY OF SUPERLATTICES 

WITH ONE CHARGE CARRIER LAYER PER UNIT CELL

Calculation Of longitudinal and transverse macroscopic as well as microscopic 

dynamical conductivity for modulation doped type-1 superlattice is reported in this chapter. 

Our computed long wavelength macroscopic conductivity significantly differ from Drude 

conductivity in low frequency regime (microwave and infra-red radiations). Macroscopic 

conductivity shows oscillatory behaviour along the direction of growth of superlattice. 

Propagation of transverse electromagnetic waves in a superlattice has been studied for all 

possible values of frequency and wave vector. It is found that microscopic transverse 

conductivity exhibits poles along both real and imaginary axis of frequency Depending on 

the values of wave vector components, along and perpendicular to direction of superlattice, 

both the poles can lie on real axis or on imaginary axis of frequency. We also find that there 

can be more than one penetration depths for a superlattice and one of them decreases with 

frequency for frequencies below microwave regime.

3.1 Introduction

Ever since their discovery, CSSL1 have been the subject of immense research 

interest. Extensive theoretical as well as experimental investigations have been performed on 

collective excitations [1-8], light scattering and Coulomb scattering [9-12], optical properties 

[13], transport properties [14-16] and the electrodynamical properties [5,15-19] of CSSL1. 

The electrodynamical studies are of great interest from the point of view of device 

applications and from the standpoint of fundamental physics exhibited by SL ,Several 

interesting dynamical and static processes are induced in a SL on application of an 

electromagnetic field. For example, application of a electric field along the direction of 

growth of SL leads to unconventional transport phenomenon which attracted a great deal of 

recent research interests. There have been many experimental and theoretical studies 

focusing around the negative differential velocity; negative effective mass and negative 

differential conductance in the study of linear as well as non-linear vertical transport (Esaki
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and Tsu conduction) in a CSSL1 [20-22], It was suggested that the observation of negative 

differential conductivity along the direction of growth of SL might lead to high frequency 

devices.

Linear transport in SL has attracted comparatively less attention because of the belief 

that it could be understood in terms of Drude type theories. There have been some theoretical 

studies on linear conductivity along the plane perpendicular to the direction of growth of SL 

[16,23,24], However, most of these calculations of conductivity of SL have been performed 

for special cases of wave vector and frequency and none of these is valid for all values of 

wave vector and frequency. Also, the important effects such as those arising from 

intersubband transitions (finite width of electron layer), interlayer interactions, wave vector 

dependence in low and high frequency regime and the change in dimension from 3D to 2D 

are not properly incorporated in these studies. Several interesting and new features of 

dynamical linear conductivity along the direction of growth and in the plane perpendicular to 

the direction of growth of a SL emerge out in different regimes of wave vector and 

frequency. These features cannot be explained by existing calculations. This has been main 

motivation to take up the theoretical study presented in this chapter

Application of electromagnetic field to a system excites collective excitations. 

Recently it has been shown that screened longitudinal polarizability function of 2DEG when 

calculated RPA shows poles on imaginary axis of frequency, co [25]. It is said that poles on 

imaginary axis of© represent a ‘collective state1, which has been called as ghost plasmons. 

Recent experimental data on 2D electron system suggests that an electron system shows 

negative compressibility This is a direct evidence of existence of ghost plasmons because 

negative compressibility means the negative dielectric function [26], Pines and Nozieres [27] 

had shown that poles in screened polarizability at imaginary axis of co implies that 

longitudinal dielectric function is not analytic in upper half plane of complex to and it leads 

to a negative value of static dielectric function which means overscreening

The present theoretical approach employs the Maxwell’s equations and continuity 

equation to develop real space formalism of dynamical conductivity in terms of density 

response function, current response function and the dielectric response function. Presently 

developed real space formalism of conductivity takes into account the possibility of 

conduction along the direction of growth and along the plane perpendicular to direction of 

growth of a CSSL1. It properly incorporates all kinds of dynamical and static processes along



with screening effects arising from many body electron-electron interactions. We calculated 

both longitudinal and transverse conductivities in the absence of magnetic field at zero 

temperature and we have studied them for all possible values (real as well as imaginary) of 

wave vector and frequency for CSSL1. In comparison with existing theoretical work on 

linear conductivity, the present theoretical study being more rigorous is valid for 2D and 3D 

limits. The calculation is applied to AlxGai_xAs/GaAs CSSL1. This chapter is organized in 

four sections. Formalism and calculation of longitudinal and transverse conductivities are 

given in section 3.2. Macroscopic and microscopic dynamical conductivity have been 

discussed under various limits in section 3.3 and 3.4. respectively. This chapter is concluded 

in sec.3.5.

3.2 Formalism and Calculations of Conductivity

The longitudinal/transverse macroscopic conductivity, aL/T(r,r'i&)) and microscopic 

conductivity aL/T(r<r'iffl) are reported in chapter-11. Evaluation of a(r.r',co) and c(r,r',to) for 

both longitudinal as well as transverse field basically depends on calculation of density 

response function. Equations (2.5a), (2.18) and (2.29) describe generalized longitudinal and 

transverse dynamical conductivities in the form of self-consistent equations. These equations 

are in real space and they have wide applicability

Neglecting the difference m dielectric constants of layers in a unit cell, of length d in 

direction of growth, a CSSL1 can be modelled to be a periodic sequence of layers of charge 

carriers embedded into a homogeneous dielectric medium of dielectric constant, sq. It is 

further assumed that, (i) electrons are confined to layers and there is no overlap between the 

wave functions of adjoining layers, (ii) an electron executes fiee particle motion with 
effective mass, m* in x-y plane. We first Fourier transform Eqs.(2 5a), (2.18) and (2.29) in 

x-y plane and we obtain

crL/T(q,z,z',co) = (y-io3/47i:)JV(q,z,z")aL/r(q,zw,z',Q)dz", (3.1)

aL(q,z,z,,co)=aL(q,z,z',co)-nCTL(q,z,z1,O3)V(q>z1,z2)aL(q,z2,z',0)

clz,dz2, (3.2)

CTT(q,z,z',co) = aT(q,z,z',co) + (ico/c2) JJaL(q,z,z,,o3) G(q,zl,z2,co)

aT(q,z2,z',ff>) dz, dz2 (3.3)
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with

and

where

V(q,z1,z2) = (27ie2/q) exp(-ql zrz2| ) (3-4a)

G(q,z„z2,tD) = (2fi/p) exp(-pl zrz2|), (3.4b)

p=[q2-(©2/c2)]I/2. (3.4c)

We further consider the case of superlattice where electrons and holes are mainly confined to 

their respective layers (non-tunnelling case). Confinement of motion gives rise to discrete 

energy levels along z-axis. For an electron in nth level of Ith layer, envelope function is given 

by

<j)n,(z)= (2/L)1/2 sin {(n+l)7i[(z-ld)/LFl/2J}, (3.5)

where L is the width of electron layer. On defining z~ld=t with -L/2<t<L/2, Eqs.(3.1) to (3.4) 

can be transformed to

aL/T(q,l,r,t,t',(DHy4(D/47i)EjV(q,[,l",t!t,')aLn'(q,lM'5t"5t',co)dt",
t“

(3.6)

aL(q,l,l't,t,,ci))=crL(q,lJ',t,t',whrlfaL!q,l,li,t-tt,C0)V(q,l|,t1,l',t7)

l.
aL(q,t2,t',co) dt, dt2, (3.7a)

aT(q,l,l,t,t',co)=<jT(q,l,I,,t,t',a))+(ica/c2)EJJdt1 dt2CTT(q,l,ll,t,t|,co)
1|jUl

G(q ,1,, 11,12,t2,ci)) aT(q,l24',t2,t?,co) (3.7b)

with

V(q,l,l',t,t')=(27te2/q) exp[-q| (l-l')d+(t-t')l ] (3.8a)

and

G(q,l,l',t,t',co)=(27t/p) exp[-pl (l-l')d+(t-t')l ].
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With the use of discrete Fourier transform

fCq,^,©) = I f(q,l,l',©)exp[-iqz(l-l,)d] (3.9)
t-t’

we get

cr^Cq^co) = [(y~io)e2/2q]e2 a^r(q,co)U(q,qz) -(ico/47c) (s0-l).

(3.10)
Equation (3.10) represents macroscopic conductivity due to electrons and ions. Similarly, 

Fourier transform of Eqs.(3.7a) and (3.7b) give

orL(q,qz,a>) = CTL(q,qz,®)'/ eL(q,qz,(o) (3.11)

and

&T(q,qz,©) = GT(q,q/5G)) / F(q,qz,co), (3.12)

with

F(q,qz,to) = [1- ((o)+iy)2d/2pc2) U(p,qz) [sT(q,qz,co)-l] (3.13) 

sL/r(q,qz,O))=E0+(27te2/q) U(q,qz) c4/T(q,eo). (3.14)

The structure factor U(q.qz) is given by

U(q,qz) = H(q)-C(q){ 1- [sinh(qd)/(cosh(qd)-cos(qzd))]}. (3.15)

U(p,qz) is obtained from (3.15) on replacing q by p. The H(q) and C(q) are the expectation 
values of exp(-q| t-t'l) and exp[-q(t-t')], respectively The H(q) is defined as

H(q) = Jdt Jdt' exp[-q| t-t'l ] I 4>(t)|214>(t')l2 (3-16)
-u/jl -'-/a

and C(q) is obtained from Eq.(3.I6) on replacing ql t-t'l by q(t-t'). Equation (3.10) to (3 15) 

are applicable for both intrasubband as well as intersubband transition. In following we 

consider only intrasubband transition case (n=0). Evaluation of (3.16) with the use of 

Eq.(3 5), for intrasubband transition, gives
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H(q) = [u/x+2/u] - 32 (ti2/xu)2 [1- exp(-u)]

and

C(q)= g(q) g(-q)

with

g(q) = (47i2/xu) [1- exp(-u)], (3-19)

where u = qL and x = iP + 4n^. The a^(q,(o) and aj(q,©) are longitudinal and transverse 

2D polarization functions, respectively. We consider the case of a modulation doped CSSL1, 
where RPA can be used to calculate a^T'Cq^). The RPA expression of aj-^q.co) is given by 

[28]

a^(q,©)=(m’kF/7tlrq){ [(((Q+iy)/qvF-q/2kF)2-1 ] 1/2-[(©+iy)/qvF-q/2kF] 

- [((©+iy)/qv,+q/2kF)2 -1]1/2 +[(©+iy)/qvF+q/2kF]},

(3.20)

where vp and kp are 2D Fermi velocity and Fermi wave vector, respectively. Within RPA, 

aT(q,co) can be given by [16]

aj(q,©) = [q2/(co+iy)2] [x(q,©) + njm], (3.21)

where ns is the number of electrons per unit area and x(q,co) is 2D free electron current- 

current response function We evaluated x(q,co) to obtain

aJq,a>)=-(m7-n;Jr){1 +(qvF/3(©+iy)) {[(kFvF/(©+iy))((©+iy)2/(q vF)2-1)-1 ] 

[((©+iy)/qvr?q/2kF)2-1 ]1/2 -[(kFvF/(©+iy))((©+iy)2/(qvF)2-1)+1 ]

[((co+iy )/q v,+q/2kF)2-]1/2}}, (3.22)

Equations (3.20) and (3.22) are valid for all values of to and q<2kp Equations (3.10) to 

(3.15) describe dynamical linear conductivities for all value of q. qz, to. y and ns. However, 

in following we analyze our results for different special cases of low frequency regime in 
non-retardation limit uo«qc). Zeroes of !;L(q,qz,o)) give frequencies of longitudinal 

collective excitations whereas zeroes of F(q,qz,to) yield frequencies of transverse collective
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excitations in a CSSL1. Several types of TE and TM modes have been calculated for CSSL1 

[15-18]. However, the discussion of these modes was mostly confined to long wavelength 

limit. For the case of L much smaller than d, the CSSL1 reduces to LEG. The LEG results 

can be obtained from Eqs.(3.I0) to (3.15) and (3.20) to (3.22) on taking L-»0 limit of H(q) 

and C(q). Our calculated and a^'(q,qz,io) can be decomposed into

components along x-y plane and along z-axis (direction of CSSL1). However, in our 

formalism electron motion is assumed to be confined to x-y plane and no electron 

momentum transfer can take place along z-axis for q==0, hence aL^(qz,m)s aL/T(qz>o))=0.

3.3 Macroscopic conductivity

From viewpoint of utility of our calculation in explanation of experimental results, 

we consider the case q«kp and cn«qc. On expanding Eqs.(3.20) and (3.22) for q«kp. we 

find that a^(q,o)) and aJ(q,co) can be related in following manner [16];

' aj(q,to) = a^(q,o))/[l-(7uh2/m,)a^(q!co)] (3.23)

which y ields correct \alues of aJ(q,co) for both the limits of (co+iy)»qkp and co-»0. 

Equation (3.10), with the use of Eqs.(3.20) and (3.22), gives

aL(q,qz,a> )=[< y-ito )/27iqa*] {1 +[(q2-1 - qq)1 -1 +q q) 1/2]/q} U(q ,qz)

(3.24a)
and

^(q.qz.ra) = -[(Y-ieo)/27tqa"] <l + l/3r|) [(rf-iyriq-lXrr-l-riq)''2- 

((q2-I)/r|q+I) (ri2-l+qq),,!]}U(q,qJ, (3,24b)
where q=q/kp. q=(co+iy)/qvp and a*=fi2/in*e2 is effective Bohr radius. In Eqs.(3.24a) and 

(3.24b). we have dropped ionic contribution to conductivity. Our computed normalized 

0R(q;qz.®) and crR.(q.qz,o>). real part of aL(q,qz,o)) and oT(q,qz,a)) respectively, are plotted 

in Fig.3 1 as function of (0 for two values of qd (0.001 and 0.1) at qzd=0, ns= 7.3x10*1 cm-2 

and y=0.1 meV for GaAs/AlxGa).x As CSSL1. which is modelled in terms of following 

values of parameters: m*=0,068 me, d=500 A, L=252 A and so=13.1 [12]. Computed 

s'10ws a peak near co=qvp and aL(q,qz.co)= aT(q,qz,co) at co=qvp/V2 for given 

value of q and qz. For single particle excitation, tim^E^+q-Ep, which for an electron at
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Fig. 3.1 Plot of cr^Cq,qz,u))/ad versus to at cos(qzd)=1 For 

qd=0.001. ak(q,qzCo) coincides with JR(q.qz,w) and each of them is 

shown by solid curve The dash-dash curve is aLR(q,qz,to) for 

qd=0.1. whereas dash-dot curve is ok(q,qz,to) for qd=0.1 These 

curve are obtained for ns=7 3x1011 cm'2 and y = 0.1 meV with aa = 

x\sezlymd
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Fermi surface and for the case of q«kp yields co~qvp eos0, where 0 is angle between k and 

q. For the case of forward scattering, 0=0 and one obtains co~qvp. We thus find that peak in 

CTR(q,qz,(o) around o>~qvp corresponds to single particle excitations for forward scattering 

case. The averaged mean square value of <o for single particle excitations when q«kp is 

given by co~qvp/V2. where <TR(q,qz,co) and exjp(q,qz.(o) intersect each other. It is found that 

position of peak in CFR(q,qz,o>) is independent of qz, whereas peak height increases on 

changing cos(q2d) from 1 to -1 It also enhances on increasing qd at fixed value of qzd. The 

q-dependence of peak height has been found to be weaker in case of cos(qzd)=l, as 

compared with that for cos(qzd) = -1. In long wavelength limit (qd«l and qzd«l) 

Eq.(3.15) reduces to

U(q,qz) - 2q/(q2+q2)d. (3.25)

We further find that for the case of | rj | »1, qd-»0 and qzd->0, <jL(q,qz,co) = 

aj(q,qz,ffl) and each of them is given by

ad(G)) =nse2/m'd (y-ito), (3.26)

which is well known Drude relation of conductivity, in our notations. However, 

CTL(q,qz,G)) and aj(q.qz,0)) significantly differ from cr^to) when [qi~l The condition 

I r| |~1 in the case of qd«l and qzd=0 can be fulfilled at small (o-values (microwave and 

infrared frequency regimes) if y and m* are small and ns is large In a modulation doped 

CSSL1. electrons reside in wells, whereas doped impurities are confined to barriers to yield 

smaller value of y. A rough estimate of y can be made by using the relation y=e/m*p 

Depending on value of p. y can vary from 0.01 meV to 0.1 meV in modulation doped CSSL1 

[29], Recently, p=l.05x10? cm^V'Is-! at 1.5K. has been obtained in modulation doped 

GaAs/AlxGai_xAs [301 which suggests that y can be as low as 1.6xI0’3 nieV Therefore, 

|q|»l is not fulfilled even for q-lO^ cnr* and qzd=0 in microwave frequency regime 

This suggests that the use of Drude relation to explain dynamical conductivity in microwave 

and infrared frequency regimes can be highly erroneous in a modulation doped CSSL1. Also, 

CTj*(qT]zTfo^CFJ(tl-clz'aH for I H 1 not much larger than unity. Computed aL(q,co)/at|(oj) and 

aj(q,co)/od(©) are plotted as a function of to for co«Op at qzd=0, y=8.475xl0‘3 meV, 

ns=10l2 cm"2 for qd=0.001 and qd=0.005 [31] in Fig.3.2. It can be noted from the figure
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Fig. 3.2 The cr^(q,qz,a))/CTd(to) (solid line curve for qd=0,001 and 

dash-dash curve for qd=0 005) and aTR(q,qz,(jj)/cjd(u)) (dot-dot curve 

for qd=0 001 and clash-dot curve for qd=0.005) plotted as a 
function of co at y = 8.475 x 10"3 meV, ns = 1012. cm'2 and 

cos(qzd)=1.
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that aL(q,oo)/ad(a)) and aj(q/oya^co) are significantly different from unity at both values 

of qd for <o belonging to microwave and infrared frequency regimes.

It is found that the behavior of our computed crJ-'^(q,qz,co) versus co, for given q and

qz is identical to that versus q, for given to and qz. We further find that the behavior of

aR,r^((bc!z!(D=:0) w’^ q 13 almost identical to that with qz for q>qz O^cos^zd) <1. aL(q)

(aL(q,qz,ffi) when qz=o)=0) shows l/q2-dependence. whereas real part of ojCcd) exhibit 
ft

l/oj2-dependence for y2«(B2. por the case of single particle excitations, where q can be 

replaced by ^2ti, a^(q) goes over to 0^(05). It can therefore be concluded that each of 

aL/T(q!o,), CTf'/T(qz,(o) and aj^bq^) describes dynamical conductivity. Therefore, the 

conduction along the direction of growth of SL can be studied by calculating CTf/f(q,qz) as a 

function of qz. On rewriting Eqs.(3.24a) and (3.24b) for co-»0. we obtain

CTL(q3qzHy/2%qa'){l+i[(ri;+l+iri2q)1/2-(ri2+l-iti2q),/2]/q} U(q3qz)

(3.27a)
and

CTl(q?qz)=(y/27i:qa‘){l+(l/3Ti2)[i((r|2+l)/ri2q-l)(Ti2+i+ir|2q)l/2]-

[i((ri2+f)/Ti2q+l)(ri2+l-ir|2q)1/2]}U(q,qz),

(3.27b)

where q2= y/qvF Both Eqs (3 27a) and (3.27b) reduce to d.c conductivity

od = nse2/ym*d, (3.27c)

s

for the case of r|2>:>I and qzd«qd«l. Whereas for 112 not much larger than unity, 

aL(q,qz) < <J^(q,qz) at all values of q, qz and ns. It is found that computed ct^^(q,qz) as a 

function of q. at a non-zero value of qz, first increases and then declines after passing over a 

maximum which occurs at q=qz. The magnitude of maximum depends on qz and it has 

highest value (=crd) at qz=0. for a given value of q oj^bq^) versus q exhibits only one 

maximum. On the other hand ^^(q^z) as a function of qz exhibits an oscillatory behavior 

which is a characteristic of a periodic structure. The maxima occur at qz=2m7i/d, whereas 

minima occur at qz=(2m+l)7t/d. where nv=0,l,2.. for given value of q. Our computed 

aL(q,qz) and aj(q,qz) as a function of qzd at different values of d, ns, L and q. Our 

computed oJ(q,qz) at y=0 1 meV and ns=3.0xl0' l cm*2 [29] is plotted as a function of qzd
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Fig. 3.3 A plot of aj(q,qz)/ad versus qzd for, qd=1.0 (solid line 

curve), qd=2 0 (dash-dash curve) and qd=5.0 (dotted curve) at 

cos(qzd)=-1, ns=3.0x1011 cm'2 and y=0.1meV
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for three values of qd (1,0, 2.0, 5.0) in Fig.3.3. Values of rest of the parameters are taken 

same as used earlier. The value of wavelength, which corresponds to qz used to obtain 

Fig.3.3 lie in infrared radiation regime. It can be seen from the figure that amplitude of 

oscillation decreases on increasing qd and lower peak is broader as compared to upper peak. 

The qd can be enhanced on increasing d when q is kept fixed. The increase in d reduces the 

anisotropy and it takes the SL more closer to 3D solid. The layered structure of SL works like 

a filter of conductivity where amplitude of oscillations can be controlled by changing d for 

fixed q and by changing q for fixed value of d. Similar type of oscillations have 

experimentally been observed in microwave conductance along the direction of growth of a 

tunneling GaAs/AIAs SL [20], These oscillations have been attributed to negative differential 

conductivity along the direction of growth of a tunneling GaAs/AIAs SL. It is to be noted 

that our Eqs.(3,10)-(3.15) are applicable to a non-lunneling SL. However, our real space 

formalism are applicable to both non-tunneling as well as tunneling SL. Inclusion of 

tunneling along z-axis is expected to change absolute magnitude of conductivity and 

amplitude of oscillations along z-axis. However, the oscillatory behavior of conductivity, 

which characterizes periodic structure of SL along z-axis, will still be there. The oL(q,qz) as 

a function of qzd exhibits oscillatory behavior which is similar to that of o^(q,qz) as a 

function of qzd. However, <jJ(q,qz)» o-^(q.qz) tor L0<qd<5.0 Amplitude of oscillations 

has also been found to decrease on increasing ns.

3.4 Microscopic conductivity

The microscopic conductivity is given by Eqs.(3.11) and (3.12). where the effects of 
screening are incorporated in sL(q,qz,o)) and F(q.qz,(»). Propagation of various types of 

electromagnetic modes with and without including retardation effects in LEG and CSSL1 

have been discussed by several authors for different wave vector regimes [6,8.15-18]-. We 

here discuss only those electromagnetic modes which are given by r;L(q.qz,©) and F(q,qz,a>) 

For the case of q«kp. cL(q,qz.o)) and F(q,qz,co) can be written as

sL(q,qz^) = e0+(2/qa){i+ [(if-i- riq)1/2-(rf-i+ qq)I/2]/q}U(q,qz)

(3.28)
and
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Fig. 3.4 The CTR(q,qZlu))/aei is plotted as a function of a) for 

qd=0.01 (inset curve) qd=0.1 (dashed curve for L=252 A and solid 

line curve for LEG) and qd=Q.4 (dot-dot curve for L=252 A and solid 
line curve with crosses for LEG) at cos(qzd)= -1, ns=7 3 x1011 cm'2 

and y=0.1meV. .
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F(q,q^,co) = l+(d/a ) (rivF/c)2U(p,qz) U(q,qz) (q/p) {l+l/3q)

[(q2-1 )/qq-1 )(q2-1 -qq) !/2-((q2-1 )/qq+1 )(q2-1 +qq),/2]}

- (qvF/c)2(qd/2)(q/p) U^q^Eo-l]. (3.29)

The sL(q,qz,co) goes to zero at rpqvpcoL, where cop is

®L(q>qz) = qV {l-[l/(l+qa72U(q,q2))]2}1/2, (3.30)

where a*MPgQ/m*and cop is the plasma frequency for SL. which attains maximum value 

at qzd=0 and it reduces to (47tnse2/m*E())^2 when both qzd and qd are zero, cop goes to zero 

for qd-»0 at qzd7t0. ct£(q,qz>co) as function of co shows a peak around co=a)L for given 

values of q and qz. oj^-Tq^,©) 's real part of af<q,qz,co). The peak which corresponds to 

single particle excitations is smeared out in ap(q.qz,co) because of the screening which 

prominently affects the Sp(q,qz,co) at all values of q and qz for ©<0)L- Computed 

aR(q,qz,©) is plotted in Fig.3.4 as a function of co for three values of qd (0.01. 0.1 and 0.4) at 

cos(qzd)= -1, ns=7.3 x 10'' cnr^ and y=0 1 meV for two cases of L=252 A as well as for 

L«d (LEG case). Away from peak, aR(q,qz,ro)«<jLR(q.qz,co). which underlines importance 

of screening effects. The peak height enhances, peak width decreases and peak position shifts 

toward higher values of co on increasing q at all values of cos(qzd) We have also found that 

q-dependence of position, height and width of the peak is maximum for cos(qzd)=-l and 

weakest for cos(qzd)=l. It is to be mentioned that the half width of a peak m &p(q,qz.o>) is 

the measure of damping of plasma oscillations. The increase in L from L«d (LEG case) to
o

252 A reduces the peak height and shifts the peak positions toward lower values of co,

whereas half width of peak remains almost unchanged at all q-values, as can be seen from 
~L

the figure. 0R(q,qz,co) has also been computed as a function of co for different values of qzd. 

It is found that peak height reduces and peak position shift towards lower co-values on 

changing cos(qzd) from 1 to -1

I
The cjT(q,qz.G)) has poles on both real as well as imaginary axis of co. The 

crJ(q,qz,co) ar>d Sjf(q,qz,co). real and imaginary parts of a f(q,qz,co), respectively are plotted 

for qd=0.1, qzd=0 1 and y=0 1 meV (i) in Fig.3,5a as a function of ico on replacing (co+iy) by 

(ico-y) m (3.12). and (n) m Fig.3.5b as a function of© when q=(©+iy)/qvp It is interesting to 

note that behaviors of aRf(q,qz,u)) and uj(q,qz,co) versus ico for ©< cop are similar to those of 

Ojf(q,qz,CQ) and o^q.q^oo) versus © for ©>©l, respectively. Also. aT\q5qZ)(0) near p0je on
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curve) for qd=0.1, qzd=0.1 and y=0 1 meV are plotted as a function 

of CO.
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ico-axis is negative and its magnitude is quite large, whereas aT(q,qz,co) near pole on oo-axis 

is very small and positive. From Fig.3.5a it can be concluded that there exists a collective 

state at imaginary to-ax is for real values of q and qz. The poles on imaginary to-axis for both 
q and qz real correspond to damped polaritons and they exist for I col <a>L- We found that the 

poles in aT(q,qz,o>) on imaginary axis disappear when we use aj(q.o)) ~ -nq2/m*ot>(£o+iy) 

and take 2D definition of current density. For better understanding of our results and the 

origin of poles in crr(q,qz,co) on imaginary value oo-axis, we consider the case of 

qvp«co~qc and simplify aJ(q,co) and U(q,qz). The F(q,qz,co)=0 which describes the 

condition of propagation of transverse electromagnetic modes (TEM), for qvp«oo~qc 

reduces to

r]4(a2-2a|3)+ 'n2((3i-2a+2p)+l= 05

where

a(q,qj = (Vc)2 (<ld/2) [U'(q,qz)+s0]
and

PCq.qJ = (vi/c)2 (d/a') U(q,qz) U’(q,qz)

with

tf(q,q7)= qd / [i+(qd)2/2- cos(qzd)].

Solution of Eq.(3.31) gives

03±(q»qz)=['(32+2p-2a)±P({32+4p-4a+4)l/2] (qvF)/(2a2-4a(3)l/2

(3.34)

(3.31)

(3.32a)

(3.32b)

(3.33)

The p/cc=2U/qa* which is found to be larger than unity for all possible values of q 

and qz In following we consider four possible cases

(i) U(q,qz) and l/(q,qz) are positive and real when both q and qz are real or q is real and qz 

is imaginary but I qzl <q. Both a and p are positive to give rise real o>. and imaginary co+. 

Also, co+<col and (oJ>col at all values of q and qz. When both q and qz are real. TEM 

wave has dispersive behavior in x-y plane as well as along z-a\is of CSSL1. When qz is 

imaginary and q is real. TEM wave is attenuated along z-axis and dispersed in x-y plane.
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(ii) U(q,qz) and l/(q,qz) are negative and real when qz is imaginary and q is real and they 

obey | qz| >q. The TEM wave is attenuated along z-axis and it disperses in x-y plane, a is 

negative and (3 is positive. Both ©+ and 0. lie on imaginary axis of frequency.

(iii) U(q,qz) and U (q.qz) are imaginary and positive when q is imaginary and qz is real and 

they satisfy qz>| ql. Both ct and (3 are negative. The 0. lies on imaginary axis whereas 

0+ lies on real axis of 0. In this case, TEM wave is attenuated in x-y plane and it 

disperses along z-axis.

(iv) U(q,qz) and l/(q,qz) are imaginary and negative for when q is imaginary and qz is real 

and they satisfy (l-cos(qzd))<(l-cosh(qd))< i (qd)-l 12. The TEM wave is attenuated in 

x-y plane and it disperses along z-axis. a is positive and p is negative. We find that both 
©+ and 0. lie on real axis of © for | pi >2 and they lie on imaginary axis of 0 for I p| <2.

Above analysis of our results suggests that F=0 yields real as well as imaginary 

roots of 0 The positive real value of ©+(q,qz) corresponds to frequency of a well-defined 

transverse collective excitation mode whereas imaginary root presents a collective excitation 

mode

The inverse of q when it is imaginary describes penetration depth in x-y plane. 
Equation (3.29). along with (3.25). shows that F=0 could only be satisfied when I ql and I qz| 

are of same order In case of I qdl and | qzd 1 not much smaller than unity, penetration depth 

is found to be almost independent of©. Equation (3 34) can further be simplified for qd«l 

and qzd«l to obtain

»:= (Dp / [l+(qz/q)2] + c2(q2+qj), (3.35a)

and

co;=-q2(q2+qi)2(adV2)20_2. (3.35b)

As mentioned above, in case (iv). bbth 0+ and 0. are real for | p| >2. Solution of Eq. (3.35a) 

for X1 (= 1 /iq) when qz«! ql gives X) =c/\aq>-0^. which is usual penetration depth defined in 

text books However, on computing Eq.(3 35b) for \2(=l/iq) when qz«l ql, we find that /o 

decreases with 0 and Eq (3.35b) can only be satisfied for of ©+<3x! 04 Hz at all values of 

qz. Our computed X2 is plotted as a function of 0 in Fig.3 6 at different values of qzd. We 
find that A2 is almost proportional to ©-1/3
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Fig. 3.6 The computed l2 is plotted as a function of to for qz=0.0 

(solid line curve), qz=0.5 I q| (dashed curve) and qz =0,8 I qi (dotted curve).



3.5 Conclusion

Longitudinal and transverse conductivities are computed for modulation doped 

GaAs/GaxAli_xAs superlattice by taking into account screening effects and the finite width 

of an electron layer. Our calculated macroscopic conductivity significantly differs from 

Drude conductivity, even in long wavelength limit (qd«l and qzd«l), for qvp-fco+iy). 
aL(q,qz,ft)) versus co exhibits a peak which corresponds to single particle excitations, 

whereas aj(q,qz,ft>) versus co does not shows any peak. 0^^(q,qz) as a function of qzd 

shows oscillatory behaviour which is characteristic of periodic structure of a SL. The 

amplitude of oscillations decreases on increasing qd. In case of CJR(q,qz,oo), peak height 

reduces and peak position shifts toward the lower values of co, whereas half width of peak 

remains almost unchanged on replacing LEG model by a more realistic model which takes 

into account finite width of an electron layer for given values of q and qz. oo+(q,qz) and co. 

(q,qz) can be real as well as imaginary, depending on q and qz. The real value of co+(q,qz) 

lies below microwave frequency range. Imaginary value of co+(q,qz) belongs to a collective 
state whose presence can be seen in aT(q,qz,ci)) and it is called as ghost polariton state There 

are two penetration depths, A.] and Xi which correspond to co. and co+, respectively A| 

increases, whereas An decreases with co. kj belong to frequencies below microwave 

frequene\ regime.
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