) CHAPTER-1IV

DYNAMICAL CONDUCTIVITY OF SYSTEM WITH TWO
LAYERS OF CHARGE CARRIERS PER UNIT CELL

Longitudinal and transverse macroscopic as well as microscopic dynamical
conductivity are computed for a system having two layers of charge carriers per unit cell,
which involve both intralayer and interlayer interactions. It is found that dynamical
conductivity of system with two layers per unit cell s not a simple sum of dynamical
conductivities of two layers in a unit cell. However, interlayer interactions do not contribute
significantly to the dynamical conductivity for g and q, tending to zero. The charge carrier in
first and second layer of a unit cell interact with each other and their interaction causes a
change in the peak position and peak height in macroscopic as well as microscopic
conductivities The macroscopic conductivity of doping superlattice 1s found to be smaller
than double heterostructure when frequency 1s much larger or much smaller as compared
with single particle excitation frequency. The difference in conductivity of doping
superlattice and of double heterostructure over different wave vector and frequency regimes
is caused by the change in Coulomb interaction. The effect of interlayer interaction 1s
maximum when separation between two layers m a unit cell is half of the width of unit cell
1t is found that the difference in dielectric background of electron and hole layer significantly
affect the macroscopic conductivity There exists several transverse electric modes for a
single value of wave vector We have computed two adjoining lowest band of transverse
electric modes. The frequency range in which transverse modes exist is well separated from
that in which plasmons exist. Similar to the case of plasmons. one of the two adjoining
transverse electric band is narrow and other one s broad. However, unlike the case of
plasmons, frequency of none of transverse electric modes goes to zero as wave vector tends

to zero and broad band ies below the narrow band.

4.1 Introduction

The system with two layers of charge carriers per unit cell can be of two types (i) a
double heterostructure (DHS) (1i) superlattice having two layers of charge carriers {SL2) per

unit cell. The DHS consists of only two layers of charge carriers, whereas SL2 is a periodic
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structure along the direction of growth which consists of two layers of charge carriers per
unit cell of length, d. For d—»0, SL2 reduces to DHS. Two layers per unit cell can be of
electrons or of holes or one layer of electrons and other of holes. Therefore, both unipolar
conduction due to electrons (holes) and bipolar conduction due to electrons as well as holes

take place in the system having two layers of charge carriers per unit cell.

SL2 with one electron layer and one hole layer in a unit cell is either a DSSL or a
CSSL2. The DSSL consists of one-dimensional periodic sequence of two-layer alternate
doping, which is embedded alternatively, in a homogeneous dielectric host medium. The
separation of the electron (hole) into narrow layer causes splitting of conduction and valance
bands into Q2D subbands, whose spacing can be tailored by choosing approximate design

parameters. Therefore, a quantum phenomenon can be observed very well in a DSSL.

The CSSL2 consists of 1D periodic array of electron and hole layers embedded into
dielectric medium where background of electrons and holes are different. InAs/GaSb 1s a
good example of CSSL2, where electrons are contained in a InAs layer and holes are
contamed n a GaSb layer. The calculated subband structure shows a strong dependence on
the period of the superlattice. The energy gap decreases with increasing d and the
semiconductor to semimetal transition, which results in electron transfer from the GaSb layer

to the InAs layer. when the InAs quantum well thickness reaches a threshold.

SL2 with both layers in a unit cell are of electrons (holes) is a CSSLI. GaAs/
AlxGaj._xAs super lattice structure 15 a good example of CSSL1, consisting of alternate layers
of GaAs and AlyGaj.\As. A SL2 of GaAs/AlyGaj_As can be fabricated in two ways (i)
All GaAs layers have identical width while two successive AlyGaj.¢As layers are of |
different widths. The two AlyGaj_, As layers. of unequal widths, sandwich a GaAs layer and
both belong to the same unit cell of superlattice structure. (ii) All AlxGaj_xAs layers are of
identical width. whereas two successive layers of GaAs, which sandwich a AlyGaj_4As are
of different widths and the number of electrons per unit area is different in two successive

GaAs layers in a unit cell.

Extensive mvestigations have been carried out on the electronic properties of DSSL
{1-4]. Detailed theoretical study on the electronic and optical properties of a DSSL shows
that. in spite of impurity scattering, well behaved plasmon modes could be observed in DSSL

because of tunable carrier density and nearly perfect separation of electrons and holes [5]. It
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has been demonstrated that, for 2DEG consisting of random impurity potential, plasma
osciilatioqs can be observed for reasonably high values of carrier density for restricted values
of wave vector [6]. Metzner etal [7] investigated intralayer relaxation process and pair
recombination in doped n-i-p-i structure after a pulse excitation. They demonstrated that the
introduction of a fixed donor-acceptor pair distance leads to drastic changes in recombination
kinetics. [n the last few years, a number of experiments on GaAs DSSL have been carried out
to demonstrate the tunability of bipolar conductivity [8], absorption coefficient [9-11],
photoluminescence [12] and electroluminescence [13] and subband spacing by an externally

applied voltage or by optical excitation [14-15].

The optical absorption coefficient, in heavy doped n and p type GaAs is evaluated
and is found that absorption coefﬁcier‘n is very sensitive to the density of electron states and
band gap shrinkage [11,14,15]. Experimental measurements on photocurrent and
photoluminescence of these materials have revealed that the optical properties of DSSL are
quite different from those of all bulk materials and ordinary superlattice {16-17]. The optical
detection of vertical transport [18-19] offers the possibility of measuring the diffraction

properties of carrier motion along the growth axis without modifying the electronic states of

the structure.

Collective excitation spectrum of CSSL2 has been studied for non-tunneling {20-24]
as well as for tunneling case [25-28]. Dispersion cutves for surface and bulk plasmons [21-
25], surface polaritons [29-30] as well as surface phonons [31-34] have been studied
theoretically as well experimentally for CSSL2, It has been shown that collective excitations
are very sensitive to the variation of thickness of the layer and this effect is clearly reflected
in electron energy loss spectra. Phonons in GaAs/AlAs CSSL2 have been observed directly
in Raman scattering experiments and it is found that optical phonons are completely confined
within either GaAs or AlAs lavers [35]. Sawaki er al. [36] calculated the scattering rates m
GaAs/AlAs CSSL2, assummg that confined electrons interact only with LO phonons
confined to the same layer and having vanishing displacements at the interfaces. The results

showed that the polaron damping rate decreases with the narrowing of the well layer.

Non-hnear high electric field hot carrer transport in CSSL2 employmng a force and
energy balance approach has been investigated taking into account of both intralayer and
interlayer carrier-carrier interaction between like carriers as well as interactions between

electrons and holes [37-39]. Carrier-phonon and carrier-impurity scattering interactions are
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also included [40]. Linear high field transport is also examined with the determination of
memory function contribution due to dynamically screened electron-hole scattering.

It has been demonstrated that large absorption coefficients are obtained in the
infrared region when InAs well thickness (dy) and Gaj_x[nSb barrier thickness (dy) are of
the order of d1=39 A and dp=25 A {41] These small values of dy and d7 increase the
interface roughness scattering and the mobility, p for that mechanism scale can be
approximated as R « dsz [42]. A comprehensive single particle formalism for both in plane
and growth direction free carrier transport in CSSL2 has been worked out [43]. It is found
that, in the limit of large barrier to well thickness ratios, the formalism reproduces
expressions for Q2D, while in the opposite limit of thin barriers, transport in CSSL2 becomes
analogous to that in a 3D semiconductor with an anisotropic etfective mass. While the
CSSL2 mobility usually falls between the two limits, it frequently differs from both {44]. The
approximate electron concentration and mobility paiallel to the plane wire derived for Hall
measurements at 4.2 K in low magnetic field. The electron mobility for InAs quantum wells
of thickness of 150-200 fo\ ranges between 1.5 and 2 x105 em2/V sec at 42 K [45].
Transport measurements in CSSL2 conducted by several groups showed negative differential
conductance [46-47]. Magneto transport measurements on a series of n type InAs-Gaj.
xInkSb superlattices with thm wells and barriers led to the observation of diagonal

conductivity (Shubnikov de Hass oscillations) as well as Hall conductivity (oscillations

oxy) 148].

Existing theoreucal mvestigations on collective excitations and dynamical
conductivity of DSSL. CSSL2 and DHS. which are reviewed above have following

shortcomings:

(1) Most of the theoretical studies have been performed for small wave vector and they

are not valid for all values of wave vector and frequency

(2) The dynamical response ot DSSL. CSSL2 and DHS involve both ntralayer as well
as interlayer interactions because of two layers of charge carriers per unit cell
these systems. Contribution from mterlayer mteractions to dynamical macroscopic
and microscoptc conductivity become sigmficant at large value of wave vector,
which has not been properly dealt in existing studies of dynamical conductivity and

collective excitations.
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(3) How does the difference in structure of DSSL., CSSL2 and DHS affect the dynamical
conductivity and collective excitations has not been properly addressed in existing

work reported above.

In this chapter, we report our theoretical study on macroscopic and microscopic
dynamical conductivity for SL2 (DSSL and CSSL2) and DHS using formalism reported in
chapter-1I. The GaAs DSSL can be modelled as periodic sequence of electron and hole layers
embedded alternately in a polarizable host media of dielectric function €(w) and of a unit cell
(which comprises one electron and one hole layer) of length d along z-axis. The electrons and
holes in the GaAs DSSL are mainly confined to their respective layers and their motion along
z-axis can be described with the use of wave functions and energy eigen values of harmonic
oscillator. Our model CSSL2 structure consists of alternate layers of electrons and holes
along z-axis, where background dielectric media of electrons 1s different than that for holes.
We take dy as the thickness of an electron layer and d7 as the thickness of a hole layer. The
fength of the umit cell along z-axis, which is the sum ot d| and dy is taken to be d. An
example of CSSL2 offers a two-component plasma in an inhomogeneous background. The
lattice which consists of electrons s different from that containing holes, in a unit cell. The
electron and holes plasmas interact with each other in addition to their interaction with lattice
vibrations of InAs and GaSb Our calculation incorporates intralayer and interlayer'
interactions and are valid for all values of wave vector and frequencies. The calculation of
the dvnamical conductivity of SL2 and DHS are reported in sec.4.2 while the result and

discussion of them are discussed m sec.4.3. This chapter 1s summarized in sec.4 4.

4.2 Calculation of dynamical conductivity

As is reported m chapter ll, general eguations of dynamical macroscopic and

microscopic conductivities are given by the relations.

(e, e’ w) = (y-iw/4n) [V(ry") o' " (" ¥, 0) dgr”, (4.1)

& (r,r 0)=c(r,r o) B4 (rr,0)Vir, ot (e .0)dr,dr,

(4.2)

and
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& (r,r,0)=c"(r,r,0 F(io/c)lo"(r,r,0)G(r,r,o )8 (r,r',0)
dr,db,,  (43)
where )
V(r,r') = e?/| r-r/ (4.4a)
and

G(r,r',0)=exp[(in/c) r-r| Y r-r'l . (4.4b)

The al/T(r,r',00) is defined by Eq.(2.21). After taking the Fourier transformation in x-y co-

ordinates, Eqs.(4.1) and (4.3) can be transformed to

c"N(q,z,2',0)= (v-in/dn) V(q,z,z") a“(q,z",2,0) dz", (4.5)

&(q,2,2 ,0)=c"(q,2,2',0)-1[5Y(q,2,2,,0)V(q,2,,2,)0(q,25,Z',02)

dz,dz, (4.6)

and
5'(q,z,2',0) = 6'(q,2,2,0) + (i0/c?) [| 6%(q,2,2,,0) G(q,2,,2,,0)

5'(q,2,,2',®) dz, dz,, (4.7)

where V(q,z1,z2) and G(q.z1.22.m) are defined by the Egs.(3.4a) and (3 4b). We further
consider the case of superlattice where electrons and holes are mamly confined to their
respective layers (non-tunnelling superlattices). Confinement of motion gives rise to discrete
energy levels along z-axis. The z-motion is described with the use of envelope functions has
been reported in Ref.[50] and [51]. We solve Eqs (4.5) and (4 7) by assigning the width d;
and d7 to electron and hole layer. respectively. The length of unit cell. d 2d|+dy. the ordinate

of Ith unit cell can be defined as
z=ld+R+t with -d/2 <t<d/2. (4.8)

Here. R; is the distance of the jth layer of Ith umt cell from the bottom of cell. j varies over
the unit cell and can take two values (1 and 2). Equations (4.5) and (4.7) with the use of

Eq.(4.8) are transformed nto following mtegral equations.
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Gl‘j][r(qﬁl"l’ ’t:'t, ’0))3(7‘-10)/475)%; jvlj(qﬁlﬁ 1"3t3t" )aﬁn(q’lﬂ 3yat" 7t'90) )dt”a
(4.9)

S LIt ,0)=0}(q,L I t,t,0)3, - g [I65(q,L1,t4,0) Vi gLt uty)

di(q.ty,t0) dt dt,  (4.10)

and
S LIt ,0) = ol(q,Ll Lt,0)3, + (im/cz)&f Jdt,dt, 3(q,L1,t,t,0)
Gy, (gt 0)o (gLl b te)  (4.11)
with
V(gL tt)=(2me’/q) exp[-gl (11 )d+R,+(t-t) ] (4.12a)
and
Gy (q,Ll' ., 0)=n/p) exp[-pl (I-")d+R +t-t)l ], (4.12b)

where §,j is Kronecker delta function and Rjj = Rj-R}, which 1s the distance between ith and
Jth laver of a umt cell As i and j can take two values. o} (8;}) 1s a 2x2 matrix in i and J.
Further. each element of oj; (B'U) can form a matrix in terms of subband index However, in
this chapter. we confine to intrasubband transitions mn ground subband. Equations (4 9) to
(4.12) are further sixinpliﬂed with the use of discrete ourier transform with respect to { and I

1n a manner similar to that described in chapter I11. After algebraic simplifications. we obtamn

oi; (4,q,0) = (y-i0/4m)V (q,9,)05 " (q,0) - (iw/4r) , [¢ (@)-1],

(4.13)
" - L
53(9,9,0) = £(9,0,,0) 5,(q,q,,®) (4.14)
and
~T e T
6,(9,9,,0) = F(q,9,,0) 6,(9,9,0), (4.15)
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where ¢} j(9,92,©) and F-g‘j(q,qz,m) are the inverse of longitudinal dielectric response function,

£{j(q,92,®) and transverse response function. Fij(q,qz,0), respectively which are defined as

£1(4,9,0) = & £,(0) + V(q,q,) o' (q,00) (4.16)

and

Fij(q3qz>m) = Sij + [(Yi'im)/CZ] th(q,ql,(ﬂ) G;(qaqzam)- (417)

vj is the inverse of transport relaxation of a charge carrier in jth layer of a unit cell. The gj(w)
is background dielectric function which involve lattice vibrations. A simple form of gjj(w) is

given as
gjj(m) = 800) [G)(O‘)-*_EY[)I})—(DL;]) / [G)(®+i’Y))h)"(D'F;]' (4 1 8)

The ypp 1s the phenomenological damping parameter for phonons. The ©L,j and oTj are the
frequencies of longitudinal and transverse optical phonon mode, respectively in jth layer of a
unit cell. Eonj is high frequency dielectric constant of jth layer. For homogeneous background
(same background for charge carriers in two layers in a unit cell), €1 1(®)= €2(w), whereas
for the case of charge in two layers, within a unit cell, having different background
g1 [(@)=e(w). For this case of energy involved m electronic transitions 1s much larger than

oLj (0T))- gjj(®) ~ twy. The Vij(q.qz) = (2ne2/q) Uij(q.az). where Uyj(q,qz) is structure

factor which 1s defined as

Ui(9,9,)= [H(@)-C,(@)] 3,+C,(q) W,(q.,.), (4.19)

where
W,(a.9,)={[(exp(-q| R, | Jexp(iq,d) / (exp(q,d)-exp(igd))] +
[(exp(ql R, Dexp(-qd)/(exp(-q,d)-exp(-igd))]}. (4.20)

Wij(9.92) = Wiji(q,-qz) = Wji(q.qz) and lRigf=l Riilzo and 1R|jf=ds. The dg 15 separation
between two layers of charge carriers m a unit cell. Similarly, Gij(q.qz.w) = (2n/p) Ujj(p.qz).
where Ujy(p,qz) and Wij(p.qz) are obtained from Eqs. (4.19) and (4.20) on replacing q by p

The envelope function along z-direction can be taken as wave function of harmonic oscillator
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if the boundaries of layer of charge carriers are diffusive, which 1s the case of DSSL [49]. For

such a superlattice, matrix elements Hjj(q) and C; j(q) are given by [49]

Hy(@=exp(q*/e5)) - (V2q/Vm o) exp[-g7/20]] (4.21)
and |

Cy(q)y=exp{ (q°/4) [1/oi+1/051}, (4.22)
where

o, = (4me’m Ny, /e, )2 (4.23)

Np/A s the number of donars or acceptors per unit volume and nr;j is the effective mass of
the charge carrier. When the boundary of layer of charge carriers are sharp (abrupt), infinite
potential well wave functions can be used to describe z-motion of charge carrier in a layer
[50]. The abrupt boundaries appear in CSSL2 The Hji(q) and Cj)(q) with the use of infinite

potential well wave function are given as [50]

H (q) = [u/x+2/ u] - 32 (nw*/xu,)*[ - exp(-u,)] (4.24)
and

C(q)= g(q) g(-q), (4.25)
where

g(q) = (4n*/xu) [1- exp(-u)] (4.26)

with u=qd; and x=—=u?+4n2 and y=u.12. The effective longitudinal microscopic conductivity,

~L . .. ~T
67(q.q;.®) and transverse microscopic conductivity 63(q,q,,0) are now given by

859,00 =8 1 (4,0,0)+ 555(4,0,,0)F 85,(4,q,0 )1+ 55(q,q,0) (4.27)
and

Q0= 511 (4,,,0 )+ F1r(4,0,0)F 37(4.9,0)+ B1(q,q,0). (4.28)
Equation (4.14) and (4.15) can be rewritten n the form similar to Eqs.(3.11) and (3.12),

respectively. We denote G‘Q(q,qz,m) and %E(q,qz,m) as
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85(Q:9,0 )= 0%(q,0,0) / £(q,q,0) (4.29)
and
8;(q>qzam):: ()J;_(q,qz,(ﬂ) / F2(q>qz:m)s (430)

where cl'z(q,qz,m) and GE(q.qz,m) represents as the macroscopic longitudinal and transverse
conductivity, respectively. Similarly, £2(q.q,,») and F2(q,qz.0) are response functions for

longitudinal and transverse fields, respectively. They are defined as

Oji(qaqz’m): [1/ J81l((’))SZZ((D)]{O-*l-l(q’clzwa)) [EZZ(qaqzsm)' 8[2(q’qz90‘))] +

G;-Z(qaqzam) [81 l(q,qv@)' 821(q’qzvm)]} (43 1)

and
03(0,0,,0)= [1Ve, (0)e(@)]{611(8,9,,0) [F1(q,9,0)- JECERD)
+65(4,0,0) [F11(4,9,0) F21(q,q,.0)1}, (4.32)
where _
szz(l/m €1 €p
€ €1 (4.33)
and
F,=1F, Fp
F,, Fpl. (4.34)

The £11 and €27 (F1 and Fp2) involve mtralayer interactions, whereas €17 and €3] (F2 and
Fa1) are related to interlayer interactions We have noticed that generalised equation for
dynamical conductivity given in chapter-Il can be used to describe the conductivity of

superiattice having more than two layers of charge carriers m a umit cell
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4.3 Results and discussion

This section is divided in two parts. The macroscopic conductivity is discussed in

first part, whereas second part is devoted to the discussion of microscopic conductivity.

4.31 Macroscopic conductivity

The macroscopic conductivity for longitudinal field is given by G%(q,qz,m), whereas
the macroscopic conductivity for transverse field is given be GzT (q,qz,®). We first consider
the case of homogeneous background [ejj(®) =ep2(w)] and also we ignore the o-
dependence of £11 and €37 (a static background dielectric constant. The crgj/ T(q,q2,®) can be

written as sum of two parts

OLT(q,0,,0)= O{r{:0-0) + O (q,0,0), | (4.35)
where
o1 1(q,0,0) = o3 (q,q,,0)+ 635 (q,q,,0) (4.36)

and

o11(4,9,0) = 64 (q,q,,0) 057 (q,0) [V1(9,9.)-V (9,91 +

050 (4,,,0)05(q,0)[V,(q,9,)-V21(q.9)]. (4.37)

The of/T(q.qz®) involves mtralayer mteractions. whereas OIL/T(q,qZ,m) consists of
interlayer as well as intralayer interactions. This suggests that 0%/ T(q,qz,c)) 15 not the simple
sum of macroscopic conductivities of two layers in a umt cell. For ¢—>0 and g;—0,
Vii=V21 and Va2=Vj3, which gives cﬁ/T(q,qZ,mFO. Therefore, only intralayer
interactions contribute to the macroscopic longitudinal conductivity for q and q; tending to
zero When one of the two layers in a unit cell belong to electrons and other belongs to holes,

the electronic part of G%(q,qz.(o) for both g and q, tending to zero is given by
o5(®) = [n,€7/m,(y,-i0)] + [nae?/my(y,-io)], (4.38)

where ng] and ng) are the 2D carrter densities, y{ and yp are the damping constants and m

and m9 are the masses of electrons and holes, respectively. Equation (4.38) 1s classical result
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of conductivity of a system consisting of two types of charge carriers. For non-zero value of
q and g, the interlayer interactions contribute significantly to the macroscopic longitudinal
or transverse conductivity, G%JT(q,qz,m), obtained using Eq.(4.35), significantly differs from

op{®) even for qd<<! and q,d<<I when qvF is not very small as compared with far+iy].

In order to see the vanation of czl_J(q,qZ,O)) with q , we consider the case of q,—0

and ©=0. For smail q, G'L/T(q) can be given by

o) = 64 +Bq’, (439)
where

Oy = nge?/my, Tnpe’/myy,, (4.40)

! 3

B= Blnslez/ml"/l + Byn, e7/myy,, (4.41a)

B,= d*12 - 3hzk,:1/4m,yl, (4.41b)
and

B,= d¥12 - 3h%k,/4m,y,. (4.41c)

'- 2N . 4 . . / . g
B in Eq.(4.39) can be negative (3<0) or positive (3>0) depending on the value of ng[, ng?,
4
71, 72, d, m{ and mo. Independent of value of 3. s'li(q) always increases with q mn small g-
range and is independent of ng|. ng2, v, 72 or d. This suggests that G{i(q) can be greater than

4
or smaller than 64 depending on 3.

For the case of CSSL2. where g1 1{®)#€22(w). the electronic part of G%z(q,qz,co) for both

q and gz tending to zero s given by

O'{Ee(m) = nslez\[g—;?./ [m}(yl—ia))\fg;z] + nszez\/-s_”/ [mz(yz‘i@)\gz‘z]a
(4.42)

which is different from c2e(w) given by Eq (4.37) Equation (4.42) shows that unlike the
inhomogeneous background case, electronic part of ol is affected by lattice vibrations of two
material in unit cell. Also, conductivity of electrons (holes) s affected by their background of

both electrons and holes. Their relative contribution are deternuned by €11/ep2.
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NORMALISED MACRO-SCOPIC CONDUCTIVITY

1
5.0 10-0 15.0 20.0
qd

Fig. 4.1 A plot of o5.(q)/oq (solid line), che(q)/cy (dot-dot curve) and
cos(q)/oq (dashed curve) versus qd at ©=0 and q,d=0 for GaAs DSSL.
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Fig. 4.2(a) The oir(q)/oy for DHS (dashed curve) and DSSL (solid

line curve) is plotted as a function of qd for ©=0 and q,d=0.
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Fig. 4.2(b) A plot of T5r(4, 92,0 /o4 Versus o at a.d=1.0 and qd=2.0.

Dashed curves and solid line curve represent DHS and DSSL,
respectively.

83



Computed GER(q,qz,m), real part of cl'g(q,qz,m) as a function of @ shows two peaks
whose positions are approximated by o~qvp] and o~qvg. The important point to be seen is
how interlayer interaction affects peak positions and peak heights on inclusion of second
layer in the unit cell. The vpy and vEy are determined by ngj, ng2, my and my, respectively.
Therefore, the shape of peaks and separation between them is governed by the carrier
densities and masses of the charge carriers in two layers of a unit cell. The broad feature of
two peaks in clj, which correspond to single excitation peak are sifilar to that of single
particle excitation peak observed in ol reported 1 chapter [II. Like GE(q,qz,m),
c}g(q,qz,w) has no peak and it decreases monotonically and reduces to a very small value
for large . Unlike the case of cth(q,qZ,m), interlayer interactions do not significantly

. T . I . .
contribute to o2R(q.q2.0) and for ®—0, contribution from interaction goes to zero.

We have computed cl'ge(q), electronic part of cli(q,qz,oa) for =0 and q,d=0 for
GaAs DSSL. For computation we used following values of parameters: m1=0.07 me, m2=0.7
me, ng1=ng2=1012 em-2 g,=10.9, d{=600 A. dr=500 A. dg (width of undoped layer)=100
A. 01,0736.57 meV. oT0=33.845 meV and y;=v7=1.0 meV. Our results are plotted in Fig.
4.1. Figure shows that o*é_e(q) which involves intralayer interactions has largest value for
qd—0, which the O'g_e(q) shows maximum value at atound qd=3.5 The shape and position of
peak c’ée(q) is determined by my, mj. ngj, ngy, d and dg. The behaviour of ctje(q) in
small g-range (qd < 5) depends on my, m2. ng|, ngy, d and dg. It is found that when the layer

are of same type, 69e(q) always increases on increasing effective mass of charge carrier.

Behaviour of GER(q,qz,m) with qd at non-zero o values is found similar to of
cﬁR(q,qz,(o) with @ at fixed qd. This suggests that the behaviour of Gk(q,qz,m) with one out
of q, q; or © keepmg other two quantities fixed 1s of similar nature. [t can therefore. be
concluded that q, q; and © all are equally important variables in determining macroscopic
conductivity of a type-Il superlattices. Frequency dependent macroscopic dynamical
conductivity should be computed by averaging over q and q; but not by taking qd—0 and
qzd—0 limit to make a comparison between theory and experiment. It is found that
maxmmum peak height m csLjR of DSSL is obtained when ng| 1s close to ngp and dg is very
close to d/2, whereas maximum peak height is obtained when ng| and dg are not very close to

ngo and d/2. respectively.

L
Our computed 69R(q.qz,®)/04 is plotted as function of q at q,d=0 and ©=0 m Fig.
4.2(a) and as a function of © at q,d=1.0 and qd=2.0 in Fig 4.2(b) for GaAs DSSL and DHS

The DHS consists of one electron layer and one hole layer, whereas DSSL is multilayered
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Fig. 4.3 The o5&(q)/oy for DHS is plotted as a function of qd for
ds=df2 (solid line) and ds=d/4 (dotted curve) at ®=0 and q,d=0.
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Fig. 4.4(a)

The obr(q)/oy for CSSL (dash
(solid line curve)

-dash curve) and DSSL

is plotted as a function of qd for ©=0 and g,d=0,
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Fig. 4.4(b) The or(q)/o4 for CSSL(dashed curve) and DSSL (solid

line curve) is plotted as a function of  at qd=1.0 and q.d=1.0.
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structure. For large value of d (d—o0), unit cells become decoupled and DSSL reduces to
DHS. The change in d causes a change in Coulomb interaction because of change in layering
effect and effective dimensionality. As can be seen from the Fig.4.2(b), opssiL<opHs when
® is close to zero and w>qvp], whereas opgsL>opHS for © close to qvp). The
macroscopic conductivity of DHS 1s larger than that of DSSL for qd<2, whereas for qd>2,
opSSL>ODHS. Difference in opgsy, and opps over different q and o regimes is caused by
change in Coulomb interaction with q and ®. Coulomb interaction in DHS is weaker as

compared to DSSL for small q values.

[n order to see how separation between two layers in a umt cell affects the
conductivity, we computed cth(q) for different value of d. Figure 4.3 shows a plot of
GER(q)/cd versus qd for two values of dg (d/2 and d/4) at q;d=0 and ©=0 i GaAs DSSL. As
is seen from figure, GER(q) is largest for dg=d/2 at all g-values. However, effect of change in
dg reduces on increasing q, and for very large value of qd. 0',§_R(q) is almost independent of
change in dg. The effect of change in dg on GIQR 1s similar in both DSSL and CSSL2.

We have computed thZR(q,qz,m) as a function of @ for gd=1 0 and q,d=1 0. then as a
function of qd at »=0 and q,d=0 taking same values’of m|, ma. ng| and ngy for both CSSL2
and DSSL. However. for DSSL used €] j=e20= 10.9 and for CSSL2 g (=12.4 and €19=14 4,
in order to see the effect of inhomogeneity in dielectric background on GL;)_R(q,qZ‘w). Our
computed O‘QQR(q,(]Z.(D)/’ a4 is plotted as a function ot © m Fig.4.4(b) and as a function of gd
in Fig. 4 4(a). The G%)_R(q,qz,m)/crd of DSSL. which offers same background for electrons
and holes, 1s larger than that of CSSL2. where background of electrons is different than that
of holes. at all g-values when (,d=0 and w=0. as 1s seen m Fig. 4.4(a) However,
cyER(q.qZ,(u/Gd of CSSL2 is larger than that of DSSL for o close to qvpy for fixed qd and
qzd as 1s seen in Fig.4 4(b). The difference between ctf:_R(q,qz,u)) of DSSL and CSSL2
sigmficant and it is almost same for all q-values This suggests that the difference in
dielectric background of a hole layer and of a electron layer significantly affect the

macroscopic conductivity.
4.32 Microscopic conductivity

The microscopic conductivity of system having two lavers of charge carriers 1s given
by Eqs.(4.29) and (4 30), where the effects of screening are icorporated in £3(q.qz.0).
Solution of £2(q,qz.w)=0 for w as a function of q and qzd gives frequency of longitudinal

collective excitation modes (plasma oscillations). Propagation of plasma oscillations (with
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and without retardation effects) in several types of CSSL2, DSSL and DHS have been
discussed by several authors for different wave vector regimes [20-26,50,51]. In view of this,
we here discuss only the propagation of TE modes whose frequencies are given by zeroes of
F2(q,q92,0). Fa(q,92,®) consists of structure factors U;j(p,qz), which involves Wij(p.gz)-
Therefore, Ujj(p,qz) for the case of w/c>q involves sin(pd) and cos(pd), which are
sinusoidal function. For a given value of q and q,, F2(q,q,,w)=0 can therefore be satisfied
for more than one value of ®. This suggests that there can exist several TE mode, for one
value of qd and q,d, in a DSSL, CSSL2 and DHS. Solution of F(q,q2,0)=0 for ® as a

function of q for -1<cos(qzd)<l provides several bands of frequency of TE modes.

We have computed m21(q,qz), real part of o for which Fy(q.qz.0)=0, fof two lowest
bands of TE modes which are linked with each other via interlayer interactions. Our resuits
are plotted in Fig.4.5 for InAs/GaSb CSSL2 whose parameters are as follows: m=0.026 me,
m)=0.3 me, ng|=ng»=0.7x1012 cm-2, g;,=12.4, e10o=14.4, d]=650 zg;, do=650 A and
71=v2=1.0 meV. Similar to thle case of plasmons (TM modes) in CSSL2 [51], there exist
adjoining two bands of TE modes, linked through interlayer interactions and one of the two
bands is narrow. Further, like the case of plasmons, lower and upper edge of broad TE mode
occur at cos(qzd)=1 and cos{q,d)=-1. whereas that of narrow band appear at cos{q,d)=-1 and
cos(qzd)=1. respectively. However, unlike the case of plasmons: (i) the narrow band appears
above the broad band and (ii) frequency of none of TE modes goes to zero as qd tends to
zero. 11 a CSSL2. As can be seen from figure. 072¢(q.qz) is almost proportional to g for qd>1
at all values of cos(qzd). The approximate values of ©31(q.qz) for q—0 are obtamned by
making an expansion of Fa(q.qz.»). For qd<<1 and pd<<l. Hji(p)= Cij(p)= Hii(q)=
Cij(q)=1. where

W,(p.q,) = pd/[ 1-cos(q,d)+(pd)2] (4.43)
and
Wi(p.a,)-W,(pa)W,(p,q,) = (pd)/[2-2c0s(q,d)+(pd)’].
(4.44)

The Wii(Q.qz) and Wij(g.qz) are obtained from Eqs.(4.43) and (4.44) on replacing p by q.
Solution of F2(q,q,.0)=0 with the use of Uijj(p.qz) and Ujj(q.qz), calculated using Egs.(4.43)
and (4.44), yields
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Fig. 4.5 A plot of w2(q,q;) as a function of q for -1< cos(q.d)<1.
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03(q,q,) = [-B £ (B2-4AC)"] / 24, (4.45)

where A, B and C are defined as

A = (d/4¢H [6,,610-1 -6 1], (4.46)

B = (d*/4c*) [atB-gp0t €, B] -(d4c?) [ete, -1, (4.47)

C = 2-2c08(q,d)+H(qd+H(dYAc) (atB)H(d/4chap (4.48)
with

o = (4mn, e/ mld)s (qd)*/ [2-2cos(g,d)+(qd)’] (4.49)
and

B = (4nng,e*/m,d) (qd)?/ [2-2cos(q,d)+(qd)?]. (4.50)

Equation (4.45) with plus sign on right hand side gives upper band and it gives lower band

of Fig 4 5 when there 15 negative sign on right hand side.

The characteristics of TE modes for real and imaginary wave vector values. which
have been discussed i chapter I for the case of type-l superlattices. have also been observed
for DSSL, CSSL2 and DHS. On maiung comparative study of TE modes in tvpe-1 and type-
[l superlattices for real and imaginary value of q and qz. we have not find any new thing to

be reported 1n this chapter.

4.4 Conclusion

We have computed G%/T(q‘qz,e)) and 8%/7‘((1,(;2,@)) for DSSL, CSSL2 and DHS. The
G%/T(q,qz,e)) is the sum of G'L/T(q,qzﬂw) and si:,q‘(q,qz,w). o] /T(q.q7.0) contribute to
ob/T(q,q,,®) for all values of q and qz. while ci'_/T(q,qZ,m) contribute only when g=0.
Unlike the case of cég(q,qz,m), interfayer interactions do not contribute significantly to
GER(q.qZ,(o) and for cv—0 contribution from interlayer interactions is zero. In DSSL, CSSL2

and DHS interlayer mteractions play an important role in determining peak positions and

a1



peak heights. The shape of the peak, position and behaviour of the peak is also governed by
ngl, Ng2, m, m7 and d in DSSL, CSSL2 and DHS The broad feature of the two peaks in
cé'R(q,qZ,m), which correspond to single particle excitations are similar to that of single
particle excitation peak in 6R(q,qz.®) reported in chapter Il It is found that for d—>o, unit
cells of DSSL become almost decoupled and DSSL reduces to DHS. Change in d causes a
change Coulomb interaction because of change in layering effect and effective
dimensionality. Therefore, difference in opjg and opgg over different ® and q regimes 15
caused by the change in Coulomb mteraction with q and o. GER(q,qZ,(o) is largest for dg=d/2
at all g-values and the effect of change in dg reduces on increasing q in a DSSL. The
clg"R(q,qZ,m) of DSSL, which offers same background for electrons and holes, is larger than
that of CSSL2, where background of electrons is different from that of holes at all g-values,
where same value of ngj. ngp, my and my 1s taken for both DSSL and CSSL2. This suggests
that the difference in dielectric background of electron and hole layer significantly affect the
macroscopic conductivity. The propagation of TE modes where frequencies are given by
zeroes of F2(q,qz,0) has been discussed. Solution ot F2(q,qz.0)=0 for ® as a function of q
for -1< cos(qzd)<! provides several bands of frequency of TE modes. Two adjoining lowest
bands of TE modes are found to be similar to those of plasmons (TM modes) in CSSL2.

Unlike the case of plasmons, narrow band appears above the broad band and frequency of

none of TE mode goes to zero as qd—0

q2
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