
CHAPTERS

DYNAMICAL CONDUCTIVITY OF QUANTUM WIRE SYSTEM

In this chapter, we present a calculation of longitudinal and transverse macroscopic 

as well as microscopic dynamical conductivity for quantum wire system using formalism 

reported in chapter II. The macroscopic and microscopic longitudinal conductivity is 

computed to study conduction in different wave vector and frequency regime for quantum 

wire system in diffusive regime. The transverse polarizability cannot be defined for one 

dimensional system and it is found that quantum wire system does not support the 

propagation of transverse electric modes. The dynamical microscopic conductivity of 

quantum wire system is determined by both momentum and energy transfer processes. 

Screening of electric field due to electron-electron interaction takes place at finite value of 

momentum transfer along the direction of a wire. Plasmons in quantum wire system cannot 

be excited for negligibly small value of momentum transfer along x-direction

5.1 Introduction

Primary motivation m the study of semiconductor nanostructures have been to 

understand how the size of a semiconductor niatenaj influences its electronic properties. 

Interesting and size dependent spatial properties exist in these materials when their size is 

small as compared to the scale length of the election hole pair (the exciton Bohr-radius). In 

this limit, called as strong confined regime, the electron and hole wave functions experience 

3D-quantum confinement due to the nanostructure boundary Quantum mechanical phase 

coherence (characteristics of microscopic objects) can be maintained over a distance of 

several microns in QWS. Elastic impurity scattering does not destroy the phase coherence 

and the effects of quantum interference can modify the properties. Quantum interference 

becomes more important when dimensionality is reduced The electron-electron interaction 

introduces a purely quantum mechanical correlation between the motion of electrons, which 

can result in a significant change in the properties of QWS at low temperature. The quantum 

size effects results from modulation of density of states in the channel of width compared to 

Fermi wavelength QWS have high mobility, large Fermi wavelength (Ap~40nm) 

comparable to size of wire, electron mean free path is quite large (exceedingly 10 pm)
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The resistivity rises with the decrease in temperature in the low temperature regime, 

which is related to weak localization, can be quite pronounced in QWS. Long range 

correlation in diffusive motion of electrons is purely quantum mechanical interference 

corrections persists over phase coherence length. The quantum interference effect leads to a 

large change in several properties. Another important effect observed in QWS is weak 

localization. Weak localization is a quantum effect caused by the coherent back scattering, 

where an electron with initial momentum k is finally scattered into opposite state-k 

elastically. When weak localization is induced and controlled by potential structure, the 

efficiency of QWS device is enhanced. Localization process depends on the shape of 

potential and resulting electron states.

Interaction effects such as Coulomb blockade, single electron tunneling oscillations, 

Wigner-type crystallization etc. play a crucial role in the understanding of the electrical 

transport properties of QWS. Coulomb blockade resulting from energy change of the 

Coulomb oscillation for which electron-electron interaction plays an essential role. The 

suppression of tunneling between the peaks by Coulomb repulsion is known as Coulomb 

blockade. Many processes contribute to the electron relaxation (Coulomb interaction, 

impurity scattering, phonon emission etc.). In QWS, the LO phonons emission is most 

efficient one, while carrier-carrier Coulomb interaction is drastically reduced with respect to 

the bulk due to the reduced efficiency of carrier-carrier scattering. Semiconductor 

nanostructures make it possible to investigate the electron-phonon interaction beyond the 

bulk approximation. In this regime, strong quantum-size effects influence the electronic and 

vibrational states and their coupling. Other phenomena like quantum Hall effect, phase 

coherence length, conductance quantization, magnetic focussing, magnetotransport have 

been observed in QWS because of their interesting electrical transport characteristics due to 

their coherent ballistic electrons.

Collective electronic excitations in quantum wires has been observed by far infrared 

transmission spectroscopy [1-4] and resonant inelastic light scattering [5-7], At low 

frequencies Q1D plasmons have been found, while at high frequencies, not only the 2D 

intersubband excitation, but charge density modes have been observed. These modes 

originate from a coupling of lateral and vertical electron motion. It has recently been 

proposed [8] that modulated Q1D systems might support current driven plasma instabilities 

at much lower threshold velocities than in 3D systems. The plasmon dispersion relation for 

the unmodulated case in closely linked [9,10] to the dimensionality and depends on the



width, but is insensitive to the geometry. It has been shown that, unlike the intersubband 

plasmon and electronic eigen energies, the intrasubband plasmon frequencies is only 

marginally dependent on the wire shape. Hwang and Das Sharma [11] have calculated the 

coupled plasmon-phonon modes in 1D GaAs based QWS in mean field approximation. They 

used the theory to obtain inelastic scattering rate of QW electrons as a function of their 

energy. They found that ID plasmon phonon mode coupling effect is stronger than that in 

two and three dimension and mode coupling is stronger on 1D quantum wire at all electronic 

density in contrast to higher dimensions.

Citrin [12] found that intrinsic radiative lifetime of an axially symmetric GaAs/ 

GaAl | _xAs quantum wire is longer than radiative lifetime of a quantum well with 

comparable width because the lateral confinement in QWS imposes the decrease in excitonic 

coherence length, Zheng and Das Sarma [13] calculated Coulomb scattering lifetimes of 

electrons in two subband QWS within framework of RPA using dynamical dielectric 

function. They have found that the scattering rate of two subband QW is different from that 

of one subband QW. Liang [14] has studied the size effect on exciton-phonon scattering in 
QW. Electron mobility p = ex/m*. is related to the relaxation time of the exciton-phonon 

scattering where m* is the exciton mass. At first x decreases with decrease in well width. 

After reaching its maximum, x increases as well width decreases further. Studies on electron 

scattering due to confined and extended acoustic phonons for Q1D quantum wire embedded 

within bulk AlAs [15] has shown that the deformation coupling between electrons and 

confined phonons is extremely small in comparison with that between electron and extended 

phonons. The scattering rate is found to decrease because of confined phonon emission. The 

most efficient energy relaxation process or excited electron gas in quantum wires is to emit 

LO phonons.

As the system size changes from larger than the electron phase coherence length to 

smaller than the elastic scattering length, the system goes through the universal conductance 

fluctuation region into ballistic transport region [16.17], In the ballistic transport region 

quantization of conductance has been carried without an external magnetic field [18,19]. 

Numerical analysis of experimental results for ballistic electron wave propagation from a 

quantum point contact to a quantum wire have been reported [20], It is found that transport 

characteristic of system depend on subject's shape. Numerical results show that for soft 

confinement, rounded corner model and magnetic Held could suppress the oscillations. Using 
electron beam lithography, the high mobility (IxIO^ cm^/vs) of 2 to 10pm long quantum



wire has been reported [21]. The quantized conductance in long wire is given by 
2k0e2/li,[22] where kD is the correlation exponent that depends on the strength of the 

interaction. Transport through a clean ID wire of [23], interacting electrons connected to 

semi infinite leads, is investigated. The d.c. conductance is found to be entirely determined 

by the properties of the leads. The influence of local defects on the d.c. transport in 

mesoscopic QWS of finite width has been investigated. From the results for the conductance 

and conductance fluctuations of narrow quantum wire with disorder, it is found that the 

conductance quantization is easily destroyed by strong scattering. Conductance fluctuations 

in narrow quantum wires are not universal (as in metallic regime) but can be independent of 

the wire length over a short range of lengths [24],

The aim of this chapter is to present a model calculation of dynamical macroscopic 

as well as microscopic conductivities of QWS using the formalism reported in chapter II. The 

macroscopic conductivity is computed to study the conduction in different wave vector and 

frequency regime, for QWS in diffusive regime. Our calculation are applied to GaAs/AlAs 

QWS Propagation of Plasmons and transverse electnc (TE) modes is studied by calculating 

longitudinal and transverse microscopic conductivity, respectively. It is concluded that 

propagation of TE mode in QWS is not possible Modeling of QWS is given in sec. 5 2, 

whereas calculation of macroscopic and microscopic conductivity is reported in sec. 5.3. 

Results from our calculations are discussed in sec. 5 4 and finally we conclude our work in 

sec. 5.5

5.2 Modeling of QWS

For our theoretical calculation, we model QWS prepared from GaAs/AlxGa]_xAs 

structure as ID sequence of quantum wires along with y-direction embedded into a host 

media of dielectric constant, s^. The quantum wires consist of a strong epitaxial confinement 

in z-direction on which a weak confinement is imposed in the perpendicular (x-direction). 

The confinement in z direction is much stronger than the confinement in y direction. In terms 

of energy scales the energy level separation is about few meV in y direction, while in z 

direction it is of the order of 0.01 eV. In the low regimes if the 2D electron density is not to 
high(ns<5 x 10'1 cm'-) we can assume that electrons are always in the lowest subband in z 

direction. Delta function type confinement is assumed along z-axis. The confining potential 

within a quantum wire is assumed to be of infinite potential type. A free particle motion for 

an electron is assumed along x-direction with effective mass, m£ and tight binding wave



function along y axis. Tight binding part of the wave function consists of envelope functions 

which vary over width of wire along y-axis.

The single particle wave function and energy eigen values for QWS are given by

4>k(r) = exp(ik,x) I ^(y) 4>(z) (5.1)
Ky

and

Ek= fi2 kx/2mk + EJ5 (5.2)

where <J>jkyCy) corresponds to electron motion along y-axis in jth subband. <j>(z) represents the 
confinement along z-axis. Wave function 4>(z) is strongly confined within thin layer, we take 

U(z)l 2-»S(z). kx and ky are components of wave vector in x-and-y directions, 

respectively. Ej represents the energy levels (mini-bands) along y-axis. The single particle 

wave function comprises of free electron wave function for motion along x axis and tight 

binding wave function along y-axis. Tight binding part of wave function consists of envelope 

function which vary over width of wire along y axis. We confine ourselves to quantum limit 

and take cj)j^(y) in following form

<j)ik(y) = Z exp(ikviid) U.(y-nd), . (5.3)

where n is the wire index and d is the length of the unit cell along y-direction. The Uj(y-nd) 

is an envelope function confined to jth subband in nth wire. For modeling a quantum wire as 

an infinite potential well of width (a) along y-axis. U()(y) can be taken of following form

U0(y) = (2/a)i/2 sin[7c(y/a+1/2)]. (5.4)

In following we consider intrasubband transitions (j=0).

5.3 Formalism and calculations

*

Motion of electrons in QWS is essentially restricted to ID and QWS exhibit Q1D 

electronic properties We first consider the case of macroscopic conductivity of QWS
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5.31 Macroscopic conductivity

As is reported in chapter II, the 2D macroscopic conductivity is given by

a^p.p',©) = - (icoe2/27t) Iln| p-p"! aL/T(p",p',co) d2p", (5.5)

where p=(x,y) is 2D vector. On performing continuous Fourier transformation along x-axis, 

which is considered as the direction of motion of electron. Eq.(5.5) reduces to

CTL/r(qx>y>y» = -(icoe2/2qx)Jexp(-iqx | y-y"| )aL/r(qx,y",y',G)) dy".

(5.6)
qx is the wave vector along x-direction. As was mentioned before, electrons are mainly 

confined to their respective wire (non-tunnelling). Equation (5.6) can be rewritten in terms of 

wire indices in the following forms

aL(qx,l,r,co) = -(itoe2/2qx) JJ c4(qx,©) exp(-iqx | (i-l')d+y-y' |)

IUo(y)l2K(y')l2dydy\ (5.7)

where use of a^(qx,l,r,co)=aL(qx,co)8|i' has been made. Suffix I has been dropped in 

Eq.(5.7) because of the fact that a^'(qx,o) cannot be defined for a ID system. Electric field 

and wave vector cannot be perpendicular to each other in a ID system. With the use of 

following discrete Fourier transform

f(qx,qy,co) = Z f(qx,U',co)exp[-iqv(l-l')d] (5.8)

we get

CTL(qx?qy,0))=[(y-ico)e2/2qx]a^(qx,co )lJ(qx,q>)-(ico/4tc)(sfa-1), (5.9)

where

U(qx,qy) = H(qx)-C(qx) [1-S(qx,q5)| (5.10)
and

S(qx)q>)= sinh(qxd)/[cosh(qxd)-cos(qyd)]. (5.11)
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The structure factors H(qx) and C(qx) are obtained from Eq.(3.17) and (3.18) on 

replacing q by qx and L by a. The qy takes discrete values due to confinement of electron 

motion within a quantum wire along y-axis, whereas qx is a continuous variable. At zero 

temperature, aL(qx,©) is given by [25]

ae(qx5®)=(nw^qx) ln{ [©(co+iYHEqx-qxvF)2]/[(D((0+iY)-(Eq+qxvF)23},

(5.12)
where Eqx=ti2q2/2mx and vF=7tniti/2m* is ID Fermi velocity, nj is number of electrons per 

unit length. For the case of qx« nn\!2 (Fermi wave vector in ID) and qxVF<<;|co+iyl, 

Eq.(5.12) reduces to

a‘rD(qx5©) = - [n,q2/mx©(co+iY)]. (5.13)

For d->0, Eq.(5.9) with the use of Eq.(5.13). gives 2D dynamical conductivity. By taking 

qx-»0 and qy=0, we obtain long wavelength 1D conductivity which is given by

<y1D((D)= [n,e2/ nix(Y-i(o)], (5.14)

which is the Drude formula of ID conductivity. As longitudinal and transverse parts of 

conductivity are equal in long wavelength limit. Eiq.(5.14) can also be used to describe
T

c>] p(<o) which is independent of qv
\

5.32 Microscopic conductivity

The longitudinal and transverse microscopic conductivity of QWS are obtained from 

Eqs.(2.18) and (2.29) by taking 5-function type confinement along z-axis. We Fourier 

transform Eqs.(2.18) and (2.29) with respect to x and then take 5-function type confinement 

along z-axis. We obtain

SL(qx>y>y'>®> = vL(qx,y,y',(o) - IfaL(qx,y,yb©)V(qx,yhy2)
/

SL(qx>y2»y'>©)dyidy2 (5.15)

and
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ST(qx,y,y',co)= °T(qxJ>/>©)+ (i©/c2) JJST(qx,y5ys,0>)

G^yi^aO^qx^y'^Myi dyz, (5-16)

where

V(q*,y,y') = 2e2 k0(|qx(y-y')l) (5.17)

and

G(qx,y,y',co) = 2ko(|px(y-y')|) ■ (5.IB)

with

Px = (qx-®2/c2) i/2 (5-19)

ko(|qx(y-y')l) >s the zeroth order modified Bessel function, which diverges as -ln|qx(y-y')| 

when qx goes to zero. Further, Eqs.(5.15) and (5.16) can be written in terms of wire indices I

and !' in following form:

r
aL(qx,l,r,0)) = aL(qx,U',co) - 2 aL(qx.co) IJJdy dy'aL(qx,l,l",co)

i"

|U0(y-Pd)| k(i(|qx(y-y')|)|U0(y'-l'd)| (5.20)

and

a^q^M',©) = a1(qx,l,l',co)+(2ico/c2) l|dyJdy'aT(qvl,l",(o)

|U()(y-l"d)|k0(|px(y-y')|)|U0(y,-rd)|. (5.21)

With the use of discrete Fourier transform with respect to 1 and I', Eqs.(5.20) and (5,21) 

reduces to

aL(qx,qr«) = CTL(qx5qv,co)-aL(qx,(o)V(qx,q,)GL(qx,q>,ffl) (5.22)

and

aT(qx,qy,co) = crT(qx,qv,co)' + CTT(qx,qy,co)G(qx,q_v,co)al(qx,qv,(D),

(5.23)
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where

V(q„qy) = 2e2S JIk0(|qJ,(l-l')d+y-y'|) exp[-iqy(l-l’)d] |U0(y)|2

U„(y')|Jdydy' (5.24)

and

G(q„qy,<D) = (2io>/c2) I flk„(|py(l-l’)d+y-y'|) exp[-iqy(l-l')d]

|U„(y)|2U„(y)|2dydy\ (5.25)

Equations (5.22) and (5.23) can be transformed to

Sow(qX5qy>®) = ^ow(qx5qy5o>)/ Wq*»qy>®) (5-26)

and

Sjw(qx,qy,®)= «yQw(qx»qy»o))1 Fow(qvqv®)> (5-27)

where

SQw(qx»q>»®) = £b+ ai(qx,©)V(qx,qy) (5.28)

and

fqw (qx»qy»©)= l~ c^w(qx»qy»®) G(q„qy,&). (5.29)

Equation (5.24) and (5.25) can be simplified by first carrying out summation over I and I' and 
then performing integration over y and y' The Bessel function ko(qx| y-y'l) can be 

represented in several ways. Li and Das Sarma evaluated V(qx,qy), using periodic boundary 

condition along y-axis by assigning finite size to QWS [25] However, their results do not 
yield correct limiting value for d—>0 and d—>oo. One of the form of ko(qxl y-y'l) which 

correctly reproduces 2D results for d-»0 is

oo

ko(qJ y-y'l) = Jdt exp(-| y-y'l Vt2+q2) / Vt2+q2. (5.30)
O

We solve Eq.(5.24) using (5.30) to get

oo

V(q„qy) = 2e2 jdtUO,,^)/^,
o

where

K= ^2"+qx

(5.31)

foq

(5.32)



and

U(X„qy) = H(AJ-C(X.) [l-S^q,)]. (5-33)

U(5tx,qy) and S(A.x,qy) are obtained from Eqs.(5.IO) and (5.11), respectively on replacing Xx 

by qx. For the case of d-»0, H(Xx)sC(A.x)=l and S(X,x,qy)= 2A.x/(Lx+qy)d, which on 

substituting into Eq.(5.31) yields

v(qx>qy)= 2ite2/qd, (5.34)

where q=q2-fq2 Substitution of Eq.(5.l3) and (5.34) in (5.28) gives correct value of 2D 

dielectric function for the case of qy=0 and qd«l. Similarly, G(qx,qy,©) is obtained from 

Eq.(5.25), using Eq.(5.30)

•BO

G(q„qy,0) = (2ico/c2) J dt U(4,qy) /t„
j o 3

(5.35)

where

Xx= #+px2. (5.36)

For d-»0, G(qx,qy.co) is given by

G(qx,qv,0)) = 27ri(o/pc2d. (5.37)
\

On substituting Eqs.(5.37) and (5.14), we get

F(q.xjtj) = l + 27i(n,/d)e2/mxpc2. (5.38)

F(qx,©) given in Eq.(5 38) can never go to zero for any value of qx and to. This suggests that 

transverse electric modes cannot propagate in a 2D system of charge carriers [26]. This 

argument can be extended to conclude that TE modes can also propagate in a Q2D system or 

QWS. right hand side of Eq.(5,29) can never be zero. In next section, we discuss our results 

on macroscopic as well as microscopic longitudinal dynamical conductivity. To evaluate 

microscopic longitudinal conductivity for an arbitrary value of d, we use method suggested 

by Li and Das Sarma [25] to calculate V(qx,qv). With the use of periodic boundary condition 

along y-direction by assigning finite size (L) to QWS along y-axis. V(qx,qy) is given by [25 ]

V(q„qy) = (2e2/d)jdy jdy' I U0(y)l2 S(q.y-y') I U„(y')l2 (5.39)
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with

S(q,y-y')=2:exp[-i(qy+2jil/dXy-y')]/[c£+(q)+2)tl/d)2]1'2, (5.40)
L*

where I is an integer. Equation (5.40) can be simplified with the use ot envelope function for 

ground subband i.e. Eq.(5.4) to obtain

V(qx,qy) = (64n4e2/d) X [l-cos(qya+27ila/d)] / (qya+27ila/d)2 x 

(a/d)/[4-n:2-(qya+27tla/d)2]2[(qxa)2+(qya+27ila/d)2]2. (5.41)

The generalized dielectric function of QWS can be obtained from Eq.(5.28) by using 

Eqs.(5.12) and (5.41). The collective excitation spectrum of QWS are studied by solving 

SQwlqx^y’®)”®- The microscopic conductivity of QWS is given by Eq,(5.26) by making 

use of Eq.(5.28) and (5 9).

5.4 Results and discussion

Our main results on dynamical conductivity of QWS are given by Eqs.(5.9) and 

(5.26). We have computed the real part of cyQw(q\,qy.co) and'aQ\y(qx,qy,co), as real Part 

of them correspond to physically measurable quantities. For computation of our results we 

model GaAs/AIxGai_xAs QWS m terms of following values of parameters: mx=G.068 me, 

d=78 nm. a=39 nm, eb=12.5 and ni=0.872xi()6 cm'2 As is shown in previous section, 

Eq.(5.9) reduces to Drude formula of ID conductixity, Eq.(5.14). for qxd«l. qyd-»0 and 
qxvF<<=i o>+M ■ For o)=0, Eq.(5.14) gives

<J|D= (n1e2/dmiy). (5.42)

We plot our computed ReaQw(qx^qy-®)- real part of OQ^(qx,qy,<n) as a function of 

oo in Fig. 5.1 for different combinations of qxd and qyd values (i) qxd=0.01 and qyd=0,001, 

(ii) qxd=().l and qyd=0.001 and (iii) qxd=0.1 and qvd=0 1. As expected the behaviour of 

ReaQ\y(qx.qy,co )/o} d for first case is similar to that of (:p- fy^+to^). For y»co and co-xO, 

ReaQ\y(qx,qy,co) reduces to Drude conductivity, whereas for RecrQ\y(qx,qy,co)
shows l/oo2 dependence. For case (ii) and (iii), ReaQ\y(qx,qy.co) shows a peak which
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Fig. 5.1 Plot of ReaQW(q„,qy,u)/cr,0 versus oj for qxd=0.01 &

q,d=0.001 (full curve), q„d=0.1 & qfd=0.001 (dash-dash curve) and 

9x^=0.1 & qvd=0.1 (dot-dot curve).
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Fig. 5.2 The RedQW(qxlqvlU))/a1D is plotted as a function of 6) for 

qxd-1.0 & qyd-ir (dot-dot curve), qxd= 1.0 & qyd=ji/2 (dash-dash 

curve) and qxd=2.0 & qyd=7t (solid line curve).
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corresponds to single particle excitations. As is seen from figure, the position of peak shifts 

toward higher ©-values, peak height decreases and half width of peak increases on 

increasing qxd at given qyd-value. Peak position, half width of peak and height of peak 

represent frequency, inverse of single particle scattering time and amplitude of excitation, 

respectively of single particle excitation mode excited by longitudinal component of field, at 

given value of qx and qy. On increasing wave vector (qx or qy) single particle excitation 

peak becomes broader and small, suggesting that these excitation can disappear for very 

large value of qx and qy (qxd»l and qyd»l). It is found that peak position is independent 

of qy, whereas peak height reduces and half width of peak increases on increasing qy. The 

qx-dependence of peak height and half width has been found to be weaker in case of 

cos(qyd)=l, as compared with that for cos(qyd)=-1.

Our computed ReaQ\y(qx,qy,©)/a] jy is plotted as a function of © for (i) qxd=1.0, 

qyd= 71 (ii) qxd=1.0, qyd=7t/2 and (iii) qxd=2.0 and qyd=7t in Fig. 5.2. ReoQ\y(qx,qy,©) 

shows a well defined symmetric peak which corresponds plasma oscillations (collective 

excitations) in QWS. We notice that if qxd is kept fixed the peak height reduces and peak 

position shift towards higher ©-values on changing cos(qyd) from -1 to 1. Under the case of 

single particle excitations, half width of peak in ReaQYV(qx-qyi©) is independent of qx and 

qy. This is because of independence of y, which determines the half width of peak in 

ReaQwCqx’Qy’®)’ 011 changing qx and qy. Figure also suggests that maximum conductivity 

is achieved along the wire, where qyd ->0. at all values of qxd.

The behaviour of height of peak in RecjQ\y( qx,qv,ffl) versus © for fixed qxd-values 

on changing qyd has been found similar to that of Re crQWTqx^y® >• except that the peak 

position of ReCTQ\y(qx,qy,co) depend more strongly on qyd. We notice that 

ReaQwftlX’Qy*® ‘><< ReaQw(qX'cly>®) because of screening effects which are incorporated 

in ReaQw(qx,qy,©). To learn more about peak position which corresponds to plasma 

frequency, we solved eQ\y(qx,qy,w)=0 for © as a function of qx and qv. Solution of

sb + o£(qx,0))V(q„qv) = 0 (5.43)
gives

<»p(q».q,) = {[A(qs,qJ)o>2-ra_2]/[A(q„q>)-l]}ln. (5.44)
where



(m
eV

)

q*d

Fig. 5.3 The intrasubband plasmons of QWS as a function of qxd 

for three values of qyd: cos(qyd)=1 (solid line curve). cos(qyd)=0 

(dashed curve) and cos(qyd)= -1 (dotted curve)

110



A(qx,qy) = exp[7iqx/m**V(qx,qy)] (5.45)

and

©± = [qxvF ± i/2nC]. (5.46)

In long wavelength limit (qx-»'1 and qy-»0). Eq.(5 46) goes to

©P ~ qxa ©0| ln(qxa)|1A, (5.47)

where

(5.48)

Computed cop(-qx,qy) as a function of qxd for -1 <cos(qyd)< 1 is plotted in Fig. 5.3. It is 

interesting to note that, unlike the case of a superlattice, cop(qx,qy) goes to zero for all values

that 2D piasmon band of a superlattice. Similarity between the band of cop(qx,qy) (which 

consists of ID piasmons) and the band of 2D plasmons of a superlattice is that the upper and 

lower edge of cop(qx,qy) occur at eos(qyd)=l and cos(qyd)=-l, respectively, where upper and 

lower edge piasmon band of superlattiee appear at cos(q2d)=l and cos(q2d)=-l, respectively. 

However, for qxd-»0. EQ\y(qx.qy,co) goes to g|,, which suggests screening of field 

diminishes and plasmons cannot be excited in a QWS for negligibly small momentum 

transfer along the direction of a quantum wire.

We next discuss our results for static case (to-»0) of ReaQ\y(qx.qy,to), for different 

values of qyd (0. 0 01. 0 1) RecTQ\y(qx) reduces to ctid for qx-»0 and qy=0 Looking at 

Fig. 5.4 we find that behaviour of ReCTQ\y(qx,qv) with qxd for given value of qyd is similar 

to that ReaQ\y(qx,qy) versus to at fixed qxd. Re(7Q\y(qx.qy) shows a peak when qxd and 

qyd are roughly equal. The peak become smaller and broader on increasing qyd. This 

suggests that momentum transfer which is represented by qx and qv and energy transfer 

coming th,rough co play equally important role m determination of ReaQ\y(qx.qy.£D). 

Therefore, to determine correct dynamical conductivity, one must allow all momentum 

transfer processes to take place. Negligibly small value of Reo-Qv/(qx,qy) for qx^-^O at non

zero \alue of qyd suggests that current mainly flows along the direction of the wire of QWS, 

for finite momentum transfer. We further find that ReaQ\y(qx,qy)« ReaQ\y(qx.qy) for clx(l 

not close to zero and ReaQ\y(qx,qy) ~ RecrQ\y(qx,qy) when qx->0 because of 

disappearance of screening effects for qxd—>0.

of cos(qyd) when qxd-»0. Also, the width of band of a>p(qx,qy) is smaller as compared to
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Fig. 5.4 The ReaQW(qx,qy)/CT10 is plotted as a function of qxd for three 
values of qyd.
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Fig. 5.5 A plot of RecrQW(qxlqy)/cj1D (full curve) and ReaQW(qx,qy)/cj1D 

(dotted curve) versus qyd for qxd=2.0
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Figure 5.5 exhibits the computed Re0Q\y(qx,qy) and ReoQ\y(qx,qy) as a function 

of qyd for y=0.1 meV, qxd=2.0 and n|=0.872xl06 cm'2. Both ReoQ\y(qx,qy) and 

ReaQ\y(qx,qy) show oscillatory behaviour on increasing qyd, which is characteristic of 

periodic structure of QWS along y-axis. The oscillations in Re<JQ\y(qx,qy) are greatly 

smoothened out suggesting that screening effect not only reduces the magnitude of 

longitudinal conductivity but also weakens qy dependence of it. Our results, presented in this 

chapter, lacks the comparison with experimental results. So far our knowledge goes, no 

experimental results on wave vector dynamical conductivity exist in literature.

5.5 Conclusion

A calculation of Re0Q\y(qx,qy,<») ar|d Re0Q\y(qx,qy,co) has been performed using 

the formalism given in chapter II. It is shown that aJ(qx,(o) cannot be defined for QWS and 

TE mode cannot propagate in QWS. Expressions for Re0Q\y(qx,qy,tt)) and 

Re0Q\y(qx,qy,oo) which are valid for all values of qx, qy and co are obtained. Our analysis of 

ReogwCqx^y*03) suggests that both momentum transfer and energy transfer play equally 

important role in determining the dynamical macroscopic conductivity of QWS. It is also 

found that screening of electric field due to electron-electron interaction disappears for 

negligibly small value of momentum transfer along a direction of a quantum wire (qxd-»0). 

However, for qxd not close to zero. Re0Qy/(qx,qv.co)« Re0Q\y(qx,qy,co) for all values of 

qx, qy and co Unlike the case of a superlattice, plasmons cannot be excited in a QWS for 

qxd—»G. for any value of qyd
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