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GENERAL FORMALISM OF LOW DIMENSIONAL SYSTEMS

In this chapter, we present a general formalism of conductivity in real space by 

employing Maxwell’s equations for different hinds of low dimensional systems, in a unified 

manner. Calculated conductivity takes into account the screening effects due to electron- 

electron interactions. Our general formalism is applied to calculate dynamical conductivities 

of three-dimensional, two-dimensional and one-dimensional and layered free electron gas for 

all values of wave vector and frequencies. It is found that screening effects become less 

significant on reduction in dimensionality. Our calculations reproduces well known long 

wavelength results on three-and-two dimensional free electron gas. Formalism presented in 

this chapter will be used to calculate collective excitations, optical properties and d.c 

conductivity of various types of low dimensional systems, in forthcoming chapters

/

2.1 Introduction

LDS have extensively been investigated both theoretically as well as experimentally 

over a period of more than three decades because of their fundamental and technological 

interests [1-5]. These systems have attracted a great deal of recent interest in context of high 

temperature superconductivity in cuprates which are highly anisotropic and exhibit Q2D 

behaviour [6]. Artificially prepared semiconductor structures such as SLs. QWS and the QDS 

form an important class of LDS on which much of the research work has been done including 

several extensive reviews and books [4,5]. Theoietical research on LDS has largely been 

motivated by fabrication of materials in which charge carriers can be confined in 2D planes, 

ID wires and OD dots under real experimental conditions [7-10].

The 2DEG can be realised at inversion layers in semiconductor devices, whereas 

Q2DEG can be realised in modulation doped semiconductor superlattices and quantum well 

structures Important aspects ot 2DEG, Q2DEG and Q1 DEG which have been studied in past 

include collective excitations [11], light scattering [12,13], many body effects mainly 

focussing on inelastic electron-electron scattering [14-16], screening of hydrogen like 

impurities [17] and the propagation of electromagnetic waves [18-20], Large literature
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exists on collective excitations in 2DEG and Q2DEG dealing elaborately with all kinds of 

effects which can arise in a real superlattice or quantum well structure [11]. Response of a 

system to an electromagnetic field comprises of several dynamical processes in a system. It 

involves single particle and collective excitations, energy loss, optical processes and 

conduction of charge carriers. Dynamical conductivity, which describes the response of a 

system to an electromagnetic field, has been a fundamental problem of condensed matter 

physics from view point of study of collective excitation, optical properties, charge 

transport and relaxation processes The aim of this chapter is to present a calculation of 

dynamical conductivity for different types of LDS.

There have been several efforts to calculate and to understand dynamical 

conductivity of LDS, which significantly differs from the dynamical conductivity of isotropic 

3D systems [21-30], High frequency conductivity, memory function and relaxation time for 

electron impurity and electron phonon scattering have been studied for semiconductor 

superlattices [25-31]. Recently, longitudinal as well as transverse conductivities have been 

calculated for a periodic structure of metallic sheets to study theTongitudina! and transverse 

plasmons in high temperature superconductois [18] We here report a generalised 

formalism (properly incorporating the screening effects arising from electron-electron 

interaction) of longitudinal and transverse dynamical conductivities. The general formalism 

of dynamical conductivity is applicable to solids of full translational reduced symmetry and 

also of the reduced dimensionality General formalism of conductivity is used to calculate 

dynamical conductivitv of 3DFEG. 2DFEG and 1DFEG, LEG and QWS, The mam aim of 

this chapter is to demonstrate that macroscopic and microscopic dynamical conductivities 

can be related in a closed form and they can be e,\pi essed in terms of density response 

function and dielectric response function in real space where reduction in symmetry and 

dimensionality can be handled more accurately and conveniently It is demonstrated that 

the present formalism is correct and it reproduces the well known results on 3DFEG and 

2DFEG The conductivity of LEG differs from that of isotropic 3D or 2D system 

Development of general formalism of conductivity is given in sec 2.2 In sec.2.3, we report 

an unified calculation of conductivities of 3DFEG, 2DFEG and 1DFEG. Section 2 4 deals 

with calculations of conductivity in LEG Summary of this chapter is given in sec 2.5
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2.2 General Formalism

Maxwell's equations can be combined with the equation of continuity to derive a 

self-consistent integral equation relating macroscopic conductivity, a(r,r\co) and 

microscopic quasi-conductivity, cr(r,r',©) for an electromagnetic field. Continuity equation 

can be written as [21 ]

V. Jind(r,co) = icopincl(r,co), (2.1)

where Jjn(j(r,©) and Pind(r-C°) are induced macroscopic current density and the induced 

charge density at position vector r. © is the frequency of the applied field. The J(r,©) is 

related to macroscopic field, E(r,a) and external field, Eext(r,o)) through o(r,r',©) and 

o(r,r',©), respectively in the following manner [22].

Jlnd(r,co) = Ia(r,r',co) E(r',ffl) dr'. (2.2a)

= Ia(r,r',co) EcU(r',o)) dr'. (2.2b)

Similarly, pjncj(r,©) can also be related to total potential, 0(r.©) and external potential. 

^extC1'-®) through polarization function a(r.r'.©) (response function in absence of Coulomb 

electron-electron interaction) and (3(r,r\©) (density response function in presence of 

Coulomb electron-electron interaction).

Pmd(*%®) = J (3(r,r',C0) <J)cxl(r%co) dV. (2.3a)

= Ja(r,r',0) <j>(r',to) d3r'. (2.3b)

On combining Eqs.(2.2a), (2.3a) and (2.1). one gets

V.V' a(r,r',o)) = icoe2 a(r,r',co). (2.4a)

Similarly, Eqs.(2.2b). (2.3b) and (2.1) gives

V.V' a(r,r',co) = icoe2 (3(r,r',co). (2.4b)

33



The o(r,r',co) describes conductivity in absence of screening effects, whereas 8(r,r',G>) is the 

conductivity including screening effects arising from Coulomb electron-electron interactions. 

Equation (2.4a) and (2.4b) are applicable to 3D, 2D, and ID systems. For 3D system, where 

r and r' are treated as 3D vectors. Eq.(2.4a) and (2.4b) have solutions [32]

a(r,r',co) = - (icoe2/47t) I a(r,r",co) /1 r"-r'| dr" (2.5a)

and

a(r,r» = - (icoe2/47i) J(3(r,r",co) /1 r"-r'l dr". (2.5b)

For a 2D system, solutions of Eqs.(2.4a ) and (2.4b) are given by [32]

<t(p,p',(q) = - (icoe2/27t) J Ini p-p"! a(p",p',o) d2p" (2.6a)
and

a(p,p?,co) = - (icoe2/27i:) J Ini p-p"! P(p",p',to) d2p", (2.6b)

where p, p' and p" are 2D vectors Equations (2.1) to (2.6) are valid for both longitudinal and 

as well as transverse fields [21]. Any solution of Eqs (2.4a) and (2.4b) does not exist in ID. 

However, a solution can be obtained for a quantum wire of finite transverse width.

2.21 Longitudinal Conductivity

On application of a longitudinal electromagnetic field. pmc|(r.co) can be related to the 

induced potential. <j>jnd<r.co) in following manner;

<l>ind(<*,CD) = -f V(r,r') pmd(r\(D) dV, (2.7a)

< 1! C
D lO •ti (2.7b)

is the Coulomb electron-electron interaction Equations (2.3) and (2 7), with the use of

<t>(r,CD) ~ <l>ext(r»co) + <j>ind(r,co), (2.8)

result in the following integral equation [21]



aL(r,r',co) = pL(r5r?*®)-JlaL(r,r„(D) V(r„r2) pL(r2,r',©) d3r, d3r2,

(2.9)
where L stands for longitudinal component of field. The current density for bound electrons, 

Jb(r,co) can be given by [22]

Jb(r,co) = 9P(r,©)/<3t, (2.10)

where P(r,co) is the electric polarization. Combining Eqs.(2.1) and (2.10), one gets

V.P(r,cD) = -pb(r,co). - (2.11)

Pb(r,co)is the charge density of bound electrons. We combine Eqs.(2.11) with Maxwell's 

equation

V.D(r,o>) = 47cpi(r,co) (2.12)

to get

E(r,co) = -(4iri/co) J(r,co), (2.13)

where D(r,co) is the electric displacement vector and pkr.co) is the charge density of free 

electrons. Equation (2.13) can be written as

E(r,co)-Eovt(r,co) - -(47ci/o>) Jmd(r,u)). (2.14)

Equation (2.14) and (2.2) can be transformed to

Eext(r,ca) = J s(r,r",co)E(r",oo) d3r" (2.15a)

and

E(r,©) = Je‘1(r,r",©)Eext(r",©) d3r", (2.15b)

where we define

e(r,r',co) = 5(r-r') + (47ui/co) a(r,r',o)) (2.16a)

and
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8_1(r,r',o)) = 8(r-r') - (47ii/co) cf(r,r',co). (2.16b)

Here e(r.r',a) and er^r.r'.ra) are longitudinal dielectric response function and inverse of 

dielectric function within linear response theory, respectively. This demands

JE‘‘(r,rff,©) 8(r",r\co) d3r"= 8(r-r') (2.17)

which results in

6-L(r,r,,o))=cL(r,r,,co)-JjGL(r,r1,£o)V(r1,r2)c3kL(r2,r',(o) d3r{d3r2.

(2.18)

Equation (2.18) can be transformed to

aL(r,r\co) = J [e'!(r,r",G))aL(r",r',®') d3r" (2.19)

Equation (2.5) and (2.16a) can also be written as

eL(r,r',co) = 5(r-r') + fV(r,r") aL(r",r',co) d3r". (2.20)

The macroscopic and microscopic conductivities are contributed by the free and 

bound charges. Hence o is sum of oe (electric part) as well as crj (ionic part). The crMr.r'.co) 

is obtained from Eq.(2 5a) on replacing a(r.r'.co) by aL(r.r'.co). Evaluation of aMr.r'.eo) 

and &L(r, r',co) basicallv depends on calculation of aL(r,r'.co), electronic polarizability, 

which involves relaxation tune, t for scattering of a charge carrier from impurity potentials, 
lattice vibration etc. To find accurate expressions for a^r.r'.to) and t for different scattering 

mechanisms in LDS is a real theoretical task which would be attempted in our future work. 
There have been several approaches to evaluate aj^r.r'.co) depending upon the 

approximations made to incorporate various kinds of interactions and scattering 

mechanisms in a real solid. A simple approach which works well in case of 3D isotropic 

system is self-consistent Hartree approximation. It yields [23]

a^(ry,w)=I/Jf(Ek4-f(Ek)]/Ek.-Ek-h(ffl+i/T)}«])k(r)()>*k(r,)<|)k<r,)<l>Ic'(r),
e KK

(2.21)
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where and ^(r) are the single particle energy and wave function, respectively in 

the state k. f(E0 is Fermi distribution function. Here, x has been introduced, as a parameter, 

in a phenomenological manner.

2.22 Transverse Conductivity

For a transverse electromagnetic field, we combine Maxwell's equations

VxE + (l/e)3B/3t = 0 (2.22a)

and

VxB = 4tiJ/c + (1/c) 3E fdt (2.22b)

to obtain [22]

V2ET(r,co) = (47tico/c2) JT(r,co) + (co/'c)2 Er(r,co). (2.23)

J in Eq.(2.l2b) is defined as

J = Jf+3P/3t, (2.24a)

where Jf and 3P/9t are the contributions to the current density by free charges and bound 

charges, respectively [22], Equation (2.24a) can also be written as

J = (ac+a,)E, (2.24b)

where ae is the conductivity due to free charges (electronic) and <jj is ionic conductivity due 

to bound charges. Equation (2.23) is well known Helmeholtz equation whose solution is

E1(r,r,,co) = (ico/c2) jG(r,r",co) J(r",r',co) d3r", (2.25)

with

G(r,r',co)=exp(ikl r-r'l )/| r-r'l, (2.26)
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where G(r,r',co) is proper Green function and k=:co/c. Making use of relation E(r,co)= 

Eext(r,o)) + E[ncj(r,ft)) and Eq.(2.2) in Eq.(2.23), one gets

Eext(r,oo) = f F(r,r",co) E(r",©) d3r" (2.27a)
and

E(r,0)) = jF“'(r,r",0))Eex[(r",{0) d3r", (2.27b)

where we define

F(r,r',co) = 5(r-r') - (ico/c2) jG(r,r",(o) o(r",r',co) d3r" (2.28a)

and

F-,(r,r\a>) = 8(r-r') +(i©/c2)jG(r,r",co)a(r",r',co) d3r". (2.28b)

We recognise F(r,r',co) and F~' (r.rfto) as transverse response function and inverse of 

response function within linear response theory, respectively. This leads to

a1(r,r',co)=ar(r,r,.a))+(ico/c2)IIa1(r,r1,co)G(r1,r2,CD)Gr(r2,r,,0)

dr, dr2, (2.29)
which can be transformed to

G^^r'jCO) = fF'1(r5»*"5©)(7T(r",r',(j)) d3r". (2.30)

In Eqs.(2.23) to (2 30) suffix T stands for transverse components of field. F(r,r',co) 
can be related to sT(r,r'.Co). transverse dielectric response function which is defined in 

manner analogous to eGr.r'.co) given by

sT(r,r',co) = b(r-r') + JV(r,r") o£(r",r» d3r". (2.31)

The aj(r.r'.co) is density-response function for a transverse Held. aJ(r,r',co) can be 

correlated to current-current correlation function. f^(r,r',co) [21] ;

/

c£(r,r\0) = (V.VVco2) f(r,r» - (ne2/mar) V25(r-r'), (2.32)
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where, n is number of electrons per unit volume. Equations (2.5a) and (2.18) describe 

generalised longitudinal dynamical conductivity, whereas Eqs.(2.5a) and (2.29) describe 

generalised transverse dynamical conductivity. These equations being in real space are 

applicable to all kinds of systems including the systems of lower symmetry and low 

dimensionality such as thin film, quantum wire and quantum dot. Also, our 

formalism can be used to compute dynamical conductivity for all values of wave vector and 

frequency for a LDS The clear advantage of the present formalism over other existing 

theories of dynamical conductivity is the evaluation of a and a in terms of polarisation 

function which can be computed rigorously for a LDS for all frequencies including low 

frequency regime where several interesting features are observed experimentally.

2.3 Conductivity of 3D, 2D and ID free electron gas

In this section, we report a unified formalism of dynamical conductivity for 3DFEG, 

2DFEG and 1DFEG. in a dielectric medium of dielectric constant, sq. which is valid for all 

values of wave vector and frequency. Fourier transform of Eqs.(2.5a), (2.18) and (2.29) for 

3DFEG. 2DFEG and 1DFEG yields

CT^(qs,G)) =: >®e2 ctsir(qs,(0)/q2s- (i®^) (e0-l), (2.33)

tfsD(qs^)= tfsD(q.s,©)/ esaCqs.®). (2.34)

&SD(qs><») = asD(q.s>c£)) / FSD(qs,co), (2.35)

e£(qs>&0 = e<) + VSD(qs) a^(qs,co) (2.36)

FsD(qs^»)=: 1 - (ico/c2) + WSD(qs,co) 4J(qs,co). (2.37)
The first term on right hand side of Eq.(2.33) is conti ibuted by the electrons, whereas second 

term is contributed by dielectric background, ci^fqs.co) represents electronic polarizability. 

The suffix S takes values I. 2 and 3 for 1DFEG, 2DFEG and 3DFEG. respectively Vgp(qg) 

is Fourier transform of bare Coulomb potential and WgpCqs) >s Fourier transform of proper 

Green function. For 3DFEG, 2DFEG and 1DFEG is given by

V3D(q3) = 47ie2/q23, (2.38a)



(2.38b)W3D(q3,ffl) = 4*e2/pZ3>

V2D(q2) = 27ie2/q2, (2.39a)

W2D(q2,co)= 27ie2/p2, (2.39b)

ViD(qi) = 2e2ln(l/q,6) (2.40a)

and

W1D(qi,co) = 2e2 ln(l/p,6). (2.40b)

The pi, P2 and p3 are obtained from PS^tqVc^/c^)]^, w|iere q], q2 and q3 are ID. 2D 

and 3D wave vectors, respectively The b, in Eq.(2.40), is transverse dimension of sample 

confining 1DFEG. To demonstrate the correctness of our real space formalism of 

conductivity in a simple manner, vve discuss Eqs.(2,23) to (2.40) for long wavelength limit of 
aL/T(qg)C0) [n |ong wavelength limit, «s[)(qS-0))~a_SD(q S'03) f°r qSvFS<<:i co+iyi and 

they are given by [33,34]

(q&5(0) = - ns q* /m>(co+iy)# (2.41)

where vp§ is Fermi velocity The 113 is number of electrons per unit volume, no is 

number of electrons per unit area and n is number of electrons per unit length. On 

substituting Eq.(2 31) into Eq.(2.29) and neglecting ionic interactions, we recover the 
formula for Drude conductivity (o^)

Osd(©) = ns e2 /iiie(y-io)). (2.42)

The electric current is confined to 2D and ID for 2DFEG and 1DFEG, respectively. 

Substitution of Eqs.(2.38) to (2.40) into Eq.(2.36) suggests that Istd! > le2Dl > IslDi> at 

given values of co and y in long wavelength limit. Also, syp is independent of q3 , 

whereas S2p and sjp reduce to unity, resulting in T=g-L/T ancj

ctL/T»3-L/Ti for qg >0. It is interesting to find that screening effects are reduced on the 

reduction of dimensionality of the system. The effective current in a system involves both 

<TSD(qS»®) and &gp(qg,co). Our analysis suggests that effective current increase on reducing 

the dimensionality of a system. On combining Eiqs.(2 33) to (2.41), well-known long 

wavelength results on dynamical conductivity are obtained which are frequently reported 

[1,11,24].
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2.4 Conductivity of layered electron gas

In a modulation doped GaAs/AlxGai_xAs superlattiee, electrons are confined to 

narrow GaAs layers. Also, dielectric constant of GaAs does not differ much from that of 

AlxGai_xAs. Therefore, GaAs/AlxGa|_xAs superlattice can be modelled as LEG embedded 

into a homogeneous dielectric medium of dielectric constant sq. Further simplification can 

be made by assuming that the thickness of an election layer is small enough to treat it as a 

2D plane. The Eqs.(2.5a), Eq.(2.18) and Eq.(2.29) undergo continuous Fourier transform in 

x-y plane and a discrete Fourier transform, with respect to layer indices, along z-axis. We 

obtain

^LEG(q5qz^Hi®e2/2q)a^(q,(o)S(q,qz)- (ia>/47c) (s0-1), (2.43a)

&LEG(q>qz>®) = tfLEG(q,qz,CD) / SLEG(q,qz,©), (2.43b)

&LEG(q>qz>®) = o[EG(q,qz,a>) > F(q,q,,oo) (2.43c)

and

F(q>qz>®) = [l-(co2d/2c2p)S(p,qz)[cTEO(q5qz,<^)-l L (2.44a)

where

stSjCq.q/.©) = So + (2rce2/q) aj£(q,ca) S(q,q7) (2.44b)

with

S(q,qz) = sinh(qd) / [cosh(qd)-cos(qzd)], (2.45a)

S(p,qx) = sinh(pd) / [cosh(pd)-cos(q/d)] (2.45b)

and

p =[q -(032/c2)],/2. (2.45c)

The q and qz are wave vector components along x-y plane and the z-axis, respectively

Equations (2.43a) and (2.43b) are valid for ail values of q, q7 and o> including case of 

qvF<|(0+iy |, where Drude theory of conductivity is not applicable. Also, Eqs.(2.43) to (2.45) 

include the possibility of charge transfer along z- axis for non-zero values of qz. The points



in the plane of q, qz and <», where Sleq shows peaks describing the condition for self- 

sustaining TEM waves. Equation (2.43c) includes the possibility of propagation along both 

x-y plane as well as z-axis and ours are more rigorous and accurate results on conductivity of 

LEG as compared to those reported earlier [18]. In order to show that our results are correct 

and they reproduce existing calculations in various limiting cases, we consider long 

wavelength limit of our results.

In case of qz=0 and q-->0 (in-plane conduction in the long wave length limit) 

neglecting ionic interactions Eq.(2.43a) goes to

<JlEG(cq) = n2 e2/me(y-i©)d - (2.46)

which reduces to Eq.(2.42) on defining dc>L£G(C0) ~ °2D(C0)- d is the length of unit cell 

along z-axis. Further, for d-*0, Eqs.(2.43a) to (2.43c) reduce to Eqs.(2.33) to (2.35), 

respectively for the case of $=3, as they should, because for d->0 electron layers merge 

with each other and LEG behaves like a 3DFEG. However, in general Eqs.(2.43c) differs 

from ctjd(c13>®>- Also, our Eqs. (2.43b) and (2.43c) differ from the expressions of 

longitudinal and transverse conductivities of LEG given by Shi and Griffin [18], which in 

our notation are given as

^LEG(q,qz,©) = a2LD(q,co) / eLEG(q,qZ)0)) (2.47a)

and

= aTD(q,Q>)1 (1+( ©2/©2-c2q2) [e^q^©)-!]}.

(2.47b)

Equations (2.47a) and (2.47b) have been obtained using definition of current density as 

current per unit length. These equations do not correctly describe electromagnetic wave 

propagation along z-axis.

2.5 Conclusion

General formalism of a^^r.r'jOO) and |ias been developed. Wave

vector and frequency dependence of conductivities for 3DFEG. 2DFEG. 1DFEG. LEG and 

QWS are calculated using our general formalism. Explicit results in long wavelength limit of



our calculation are given. Our calculation shows that I S3 j}| >| S2dI >i s j dI , at given values of 

co and y in long wavelength limit. Also, 830 is independent of q3, whereas 82D and 81D 

reduce to unity, resulting in = c?LG’_ a\Jl=^LfT ancj 0L/T>>0L/T for qs-^-0. Our 

calculated dynamical conductivities of LEG and QWS can significantly differ from Drude 
theory of conductivity for qvp<| co+iyi. Calculated opEG includes the possibility of 

propagation of collective excitations along both x-y plane as well as z-axis and it is more 

rigorous as well as accurate as compared to the transverse dynamical conductivity reported in 

past.
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