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Chapter 4

ANN BASED STEERING 
CONTROL OF SEMILINEAR 
CONTINUOUS TIME SYSTEM

4.1 Introduction

In this chapter, we develop the steering control for the continuous semilinear systems 
and implement it using Artificial Neural Network. To justify the need for such ANN 
steering control, we take up the first problem, form Chemical Industry. We start 
with the modeling of mixing tank process, which is a subprocess for many chemical 
processes.

The mixing tank subprocess is mathematically modeled into a continuous time- 
invariant semilinear dynamical system. For this model we first develop a local con
troller, as traditionally done in case of nonlinear systems and demonstrate its imple
mentation using a multilayered feed-forward NN.

In the following sections we derive the steering control for a general semilinear dy
namical system and apply it to the mixtank problem for the controllability. The 
simulation results for the ANN controller are provided in the last section.
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4.2 Mathematical Modeling of Mixtank Process

Consider the process of synthesis of Ethyl Acetate. It has three major sub-processes:

• mixtank: In this subprocess the fresh and recycled Acetic Acid is mixed thor
oughly and outputted.

a reactor: Here the ethanol is mixed with Acetic Acid in the ratio 2:3 which 
produces Ethyl Acetate.

a separator: It separates the produced Ethyl Acetate and the unused Acetic Acid 
to be recycled.

Figure 4.1: A mixtank sub-process

To produce Ethyl Acetate, Ethanol and Acetic Acid are required in 1:1 mole propor
tion but. practically it is mixed in the ratio 2:3 hence, some portion of Acetic Acid 
remains unused which is recycled into the process as shown in the Figure 4.1.

Assume that the fresh Acetic Acid and recycled Acetic Acid are fed in the mixing
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tank with the concentration C\, C2 and at the rate of Qi{t) and Q%(t), respectively, 
which are continuously mixed by the stirring rod. The outflow from the mixing tank 
is at the rate Q(t) with the concentration C(t). It is assumed, that stirring causes 
perfect mixing so that the concentration of the solution (Acetic Acid) in the tank is 
uniform throughout and is' same as that of the flow coming out of the tank. Also, it 
is assumed that the density of the solution in the tank remains constant. Let V(t) 
be the volume of Acetic Acid in the tank at time t, which is assumed to be nonzero 
for all f.

Now, considering the dynamics of the phenomenon, observed from time t — to, the 
mass balance and mole balance equations are:

^- = Qi(t) + Q2(t)-Q(t)

- cmt) + C2Q2(;l) - C(t)Q(t) (4.2.1)

The outflow Q(t), is characterized by the turbulent flow relation

Q(t) = kjm = k^& # (4.2.2)

where, h(t) is the head of the liquid in the tank, Ac is the cross sectional area of the 
tank and A; is a constant.

Putting (4.2.2) in (4.2.1), the system becomes

dC(t) = [d - + [02 - o(t)f2(t)
dt V(t) V(t)

i.e.

r m ]
'll' Qi(t)

+. C(t) . 0 0 . Q2{t) (Cl
V(t) V(t)

(4.2.3)

(4.2.4)

The above equation can be put in the standard form:

x(t) — Bu(t) + f(x(t),u(t)) (4.2.5)
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x(t0) = Xq

where,

x{t) = V(t)
C(t) u(t) Qi(t)

Qt{t) B = 1 1 
0 0 ’

and the nonlinear function f(x(t),u(t)) is given by

f(x{t),u(t}) = f f m' Qi(t)
L c(t) j > . Qz(t) / [

-ky/m
(Ci-CmQdt) , (d2-C(t))Q2(t)

V(t) ~l~ V(t)
(4.2.6)

The equation (4.2.5) represents the dynamics of state for the phenomenon. It is 
the continuous time invariant semilinear dynamical system. Here, we are concentrat
ing only on the state equation, whereas, in general, the system may also have the 
associated output equation.

The nonlinear function given by (4.2.6) is Lipschitz in the neighborhood of equi
librium (®0 >«())• This can be shown as below:

Expansion of the nonlinear function / using the Taylor’s series expansion up to the 
linear term is given by

/(x + 8x,u + 8u) — /(x, u) = 5f = w-8x + w~8u
(73/ (7ti

That is,

VV’7®/
(Cx—C(t))Qi(t) _ (C2-C(t))Q2(t) 

V2(t) V2(t)

0
Qi(t)+Q2(t) 

V (t)

8x +
0

V(t)

0
C2-C(t)

V{t)
8u

The value of 8f, at some x(t) = x —
by

Sf
x=h-VA~C \2-Jv)

(Ci-C)Qi _ (C2-C)Q2 
v2 V2

(V,C) and u(t) = u — (QuQ'i), is given

0
Q1+Q2

V ,
8x + 0 0

Ci-C Ch-C 
V V

8u
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Since, || da || and j| <4 || are finite for V 0, Sf is bounded. By our assump
tion, in the mixing tank process V(t) is nonzero' for all time t, therefore bounded 5f 
implies that the nonlinear function / in the system (4.2.5) is Lipschitz continuous 
w.r.t. both the arguments. ' '

The equation (4.2.5) represents the dynamics of state for the phenomenon. It is 
a continuous time-invarient semilinear dynamical system. Here, we are concentrating 
only on the state equation, where as in general, the system may also have the asso
ciated output equation.

When the volume and the concentration are at equilibrium state, the system runs 
in the stable mode. If the equilibrium state is slightly perturbed we want to change 
the inflow rates Qi, Q2 so as to bring the state to the equilibrium. If this is possible, 
we say that the system is controllable to the equilibrium state. Since, the system 
(4,2.5) is highly nonlinear, we first linearize it about the equilibrium (Xo,uo) and 
investigate the controllability of the linearized system.

-k f f \y , ( (C1-C)Q1 (C2-C)Q2
\2WJ + V2

Ci — C ' 2
V

V2
Q i + Q2 j

+ c2-c
V

2\ 5

60

•JaZ V2y/v) (Cl-C)Qi _ (C2-OQ2 

V2 V2

Q1+Q2

V

0,
c,-c

V. -

0
C2-C
V

4.3 Controllability of Linearized Model

The linearization of (4.2.5) at the equilibrium point (x0; u0) is given by
x(t) = ax(t) + (B + b)u(t) (4.3.7)
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where, a M. I
9®l(xo,«o)

6=^1
9“l(xo,«o)

In our case, for system (4.2.5),

df
dx (*o,«o)

x=K (.
Va^

(Ci-C(t))Qi(t)
vHt)

_ (C2~C(t))Q2(t)
vm

o
Qi(t)+Q2(t)

V(t) (ko,mo)

Let an — (iTv)’ ^en equilibrium — 9.i±9z _ 2an and —_ (£z

Hence,
df
dx

On 0

(®o,ho)
0 2on

Also,
df r 0 0 ' r 0

01
du — Ci-C(t) C2-C(t) — 61 bo

(xo,uo) L v(t) V(t) J (xo,uo) u2

where, 61 = —y— and 62 = ^7V °.

Define,

Al — a — au 0 
0 2an

and
Bl — B + b- 1 . 1 

h 62

Thus, the linearized system is of the form

x(t) = ALx{t) + BLu(t)

x(to) = x0 = Vo
Co

The controllability matrix for the linearized system (4.3.8) is given by:

UL = [Bl\AlBl] -
1 1 an &11

61 62 2on6i 201162

=QQ2 =.yT ~

(4.3.8)



Chapter 4 62

The above given controllability matrix is of full rank when C\ and C% axe different. 
That is, when the concentrations of the inflows are different. Hence, the linearized 
system is controllable.

Let — to) be the state transition matrix of the system (4.3.8) given by

$/,(t ~ to) =

Then the solution of the system (4.3.8) is given by

x(t) = #x,(f - t0)x0 + [ <PL(t - t)Blu(t)<It
Jto

The controllability of linearized system indicates the local controllability for our semi- 
linear system (4.2.5) (refer Kalamka [40]).

Numerical Experiment :

We consider the following values for the parameters in our model:

k — 1 
Ac = 4
Qio = 10 liters/sec 
Q20 = 20 liters/sec 
C\ = 9 g-moles/litre 
C2 ==18 g-moles/litre

where, Q10, Q20 are the inflow rates at time t0, C\ and C2 are the respective concen
trations at time to and Vo is the volume of the mixture in the tank at time to-

For these values of parameters, the matrices Ai and Bl defined in (4.3.8) are com
puted as

r -1 1
VZzTwm

(9-15)10 (18-15)20
L 36002 36002

0 ' 
10+20
3600 J

=
' -0.0042

0
0

-0.0083

Bl = B + b — 1.0000
—0.0017

1.0000 ' 
0.0008

and
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Thus, the linearized system (4.3.8) becomes,

x(t) =
' -0.0042 0 x(t) + 1.0000 1.0000 '

0 -0.0083 —0.001T 0.0008 u{t) (4.3.9)

The system represented by equation (4.3.9) is linear time invariant continuous dy
namical system in Rz. The equilibrium state for (4.3.9) is (3600,15).

The optimal control for the system (4.3.9) (refer chapter 2) is given by

u(t) = - eAL(-t0^x{T)) (4.3.10)

where, the controllability Grammian W(to,T) for the system (4.3.9) is given by

W(t0,T)= fTeA^t0-^BLBleA^t0~T)dT

The controller given by (4.3.10) steers the initial state xq to the desired final state Xf 
in finite time T. The steered state for all time t € [0, T) is given by

x(t) = eAL^'t~t°>XQ + [ eAi41 2 3 4-T)Bu(r)dr 
Jt 0

Using these definitions for the state x(t) and the steering control u(t), we proceed to 
implement the controller using Artificial Neural Networks for the system (4.3.9).

Neural Network Controller :

In general, the following steps are used for computation of the controller using Neural 
Networks:

1. First, generate the input-output pairs. Input : [ Initial state (perturbed state), 
final state (Equilibrium state)]; Output : Optimal steering control, using the 
theoretical definition of the optimal controller given by equation (4.3.10).

2. Define suitable multiple layer Neural Network NNU, which will act as controller.

3. Randomly select 80 % of the data for the training of the network NNU. The
training of the Neural Network is done using the Back-propagation algorithm
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4. Test the remaining 20 % of the data by comparing the output generated by 
NNU with the computed desired output u, if the error is large goto step (2) 
with the changes in architecture.

5. Once the Neural Network is trained with the acceptable error. It generalizes 
very efficiently, i.e. for any given small deviated state the Neural Network 
controller steers the state to the desired equilibrium state In few steps. ■

The Multi layered Neural Network as Steering Central for the Mixtank process

Figure 4.2: The ANN steering control with two hidden layers hi and h2 having 10 
and 5 nodes respectively and an output layer O with 2 nodes.

For our system (4.3.9) we designed the ANN steering control NNU using the archi
tecture iVlVf)10>5)2 as shown in the Figure 4.2. The training patterns are generated 
by randomly varying the state components in the pre-specified range, volume V(t) 
between (3550,3650) and concentration C(t) between (10,20). Remember that the 
equilibrium is (3600,15). The perturbed initial states lie in the neighborhood of the 
equilibrium.

Since, presently the system is in the continuous form to verify the performance of 
control signal produced by the Neural Network we design another Neural Network 
NNX with the architecture NN$ti0)5)2 to depict the state dynamics.

NNX is trained using the input as (Initial perturbed state ,Control) and output as 
the final state. Once both the networks are trained, they hre placed in series. We
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give initial perturbed state to NNU which produces the steering control signal which 
in turn is given as input to NNX to produce the final state as equilibrium state.

This simulation strengthens the following facts:

1. The control and state are inversely related dynamics and they can be placed in 
a closed loop form for implementing the adaptive controller in the automated 
plant.

2. The Neural Networks can learn from the I/O pairs and thus, the mathematical 
modeling of the phenomenon can be avoided.

3. Observe that the computation of the control signal using formula requires com
putation of the inverse of Grammian, which is itself a costly affair in terms of 
time. The Neural Network controller would require spending such this time 
only once, that is, while training the network.

The Networks placed in series: NNU - Controller, NNX - State Dynamics

(3580, 14)

Perturbed
state

NNU
(-125 12.143.36)

NNX
Control

(3600, 16)

Stable
State

Figure 4.3: The ANN steering control and state network placed in series to validate 
the ANN control signal.

The working of the NNs in series is as shown in the Figure 4.3 for the initial perturbed 
state (3580,14). For details see Program nnctrlc.m in Appendix-A. In the following 
section, we derive the steering control for the semilinear system (4.2.5).
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4.4 Controller for continuous Semilinear Dynami
cal System

Now, we consider a general time-invariant semilinear dynamical system

x(t) — Ax(t) 4- Bu(t) + f(x(t), u{t)).

®(0) = *o (4.4.11)

where, Anxn is the evolution matrix, Bnxm is called the control matrix. The state 
x(t) 6 Rn, u(t) € Rm is the control input to the system and / : Rn x Rrn —* Rn is 
the nonlinear function dependent on state as well as control. For the system (4.4.11) 
we investigate the global controllability of the system and use Neural Network to 
implement the steering control.

The solution of (4.4.11) can be given as

x(t) = eAtxo + [ BuMdr + [ f{x(T),uM)dr (4.4.12)
Jo Jo

where, eAt is the state transition matrix for the linear part of the system. We first 
prove the existence and uniqueness of solution of (4.4.12).

LEMMA 4.4.1 If the nonlinear function f in the system, (4.4-11) satisfies Lipshitz 
condition

II /(®i) - f{x2) ||< a® II - x2 || yx1,x2 eRn,u<=Rm
then, for each fixed u € L2([0, T); Rm there exists unique solution given by (4-4-12) 
for the system (4-4-H)-

Proof: Let the solution of the semilinear system (4.4.11) be as given before,

x(t) = eAtx0+ f eA^~r^BuMdr + f eA^~T^ f(xM,u(r))dT (4.4.13)
Jo Jo

Define an operator Q : CffO, T]; Rn) —> C([0, T]; Rn) as

(Qx)(t) = eAtx0+ f eAy~T^BuMdr + f ej4lt-ir)f[x{r),u{T))dr 
Jo Jo

(4.4.14)
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Thus, for fixed u we get

II (Qxi)(t) - (Qx2){t) II =|| /o eA(t~r} {/(xi(r), u(t)) - f(x2(r), u(r))} dr ||

< Jo II &A(t~T) llll f(xi(.T)’u(T)) - /O2(t),«(t)) || dr

< (xaSo II f(Bi(T),u(r)) -/(®2(r),«(r)) || dr

where,

Thus,

ii At
ola = max ete[o,T) 11

II (Qxi)(t) - (Qx2){t) || < aAax $ || Xi(r) - Xi(r) dr

Hence,

< aAaxt || xi. — x\ ||o([o,

|| (Qxl) - (Qx2) ||C([0,T];ii-) = SUPtgJO/r] II {Qx\){t) - (Qx2)(t) llijn

< aAaxT || xi — x\ ||c'{[o,T,};r?”)

Similarly,

|| (Q2xi - Q2x2)(t) ||= || Q(Qxi)(t) - Q(Qx2){t) ||a»

< aAaxfo || (Qxi)(r) - (Qx2)(t) || dr

< aA®l fo r\\xi~ x2 ||c([o,T];n«) dr

< r II “ *2 l|c([0,T];ii«)

<y>3
II (Q3X! - Q2x3)(t) II < || xx - ||a([o,r];^)

In general,

|| {QTXi - QrX3)(t) || < (aAaf)r || a* - X2 ||c([0,T];Rn) •

As r tends to infinity the quantity (aA'^r^ tends to zero. That is, there exists
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some r such that the Lipschitz constant of Qr is less than 1 and hence Qr is
a contraction mapping for some r > 1,

Therefore, by the generalized Banach contraction principle there exists a unique so
lution to the system (4.4.11).

We want to prove the existence of steering controller for the system (4.4.11). We 
.say that the system (4.4.11), is controllable if there exists the control function u{t) 
defined in L2([0, T]; Rrn) such that for any given initial state, x0 at time t — 0 and 
any desired final state Xf, the solution of the system (4.4.12) satisfying x(0) — x0 also 
satisfies x(T) = Xf, with this u(t).

We assume that the linear system is controllable and hence the Grammian matrix 
W(0,T) is invertible. Therefore, we define a control given by

u(t) = B*eA*{-T-t)W~1{0, T) (^xf - eATx0 - J* eA(-T~s)f(x(s), u(.s))dsj (4.4.15)

Substituting this control in (4.4.11), it follows easily that x(t0) = x0 and x(T) — Xf.

Erom Lemma 4.4.1 for every u € L2([Q,T}] Rm) there exists a unique solution x 
for (4.4.12).

We define an operator

P:L2([0,T];Hm) G([0,T];i?TO)

.given by

(Pu)(t) = eAtx0 + / eA^~T^Bu(T)dr + [ eA^~T^f(x(r),u(T))dT. (4.4.16)
Jo Jo

The operator P assigns the unique solution x, corresponding to the control u € 
L2([0, T]] Rm). We now prove that the operator P is Lipschitz.

LEMMA 4.4.2 Suppose that the nonlinear function f satisfies the Lipschitz condi
tion

|] f(xx,Ui) - f(x2, u2) ||< a* II Xi - x2 II +au |j ux - u2 || (4.4.17)

then, the operator P defined in (4.4.16) satisfies the following condition

|| Pui - Pu2 ||< ap || «i - u2 ||l2 

where, ap is a constant defined in the proof.
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Proof: We consider the operator P as given before

(Pu){t) — eMxo + / eA^~BBu(r)dr + [ eA^r^ f(x(T),u(r))dT 
Jo Jo

Let ui, u2 be two control functions and Xi, x2 be its corresponding unique solutions 
of (4.4.11). . . -

Then, we have Pui = X\ and Pu2 = x2.

Therefore, ]| (Pui)(;/;) - (Pu2)(t) ||=|| Xi(t) - x2(i) ||

=11 So eA{t - u2(r)) + /„*eA{t r) {/(a:i(r),ui(r)) - f{x2{r),u2{T))}dr ||

< Jo II eA(t~r) llll B llll ~Mt) II +Jo II eMt~T) llll /(a:i(r),«i(r)) - /(^(r),^)) || dr

< aAbfg || «!(r) - u2{t) || +aA$ || /(®i(r),«i(r)) - /(rE2(T),u2(r)) || dr 

where,
aA = max eAi and b =|| B || .

t€[0,T].

Therefore,

|| a?i(t) - x2(t) ||< (aAb + au) j ]| «i(r) - u2(r) ]| +aAax || xi(r) - x2(r) || dr

Using Gronwal’s inequality we get,

II 0n)(t) - (x2)(t) ||< eaAaxT(aAb + au) f || i^r) - u2(t) || dr (4.4.18)
J o

Using Cauchy Schwartz inequality we get,

Jo II uiiT) - M-r) II dT < (fo ldr)2 (la II “i(r) - Mr) II dr f
<\f{T) II tti - u2 ||

Therefore, putting it in (4.4.18) we get,

II xi(t) - x2(t) ||< eaACXxT(aAb + au)iJ(T) || «x - u2 \\L2
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sup || (*i)(0 - (®2)(*) H< eaAa^{aAb + au)^f{T) |j Ul ~ «2 ||i2

Thus,
|j P«i - Pu2 ||< eaAaxT(aAb + au)^J(T) || ux - u2 \\L2 (4.4.19)

Putting, ap = eaAaxT(aAb + au)^(T) we get

| Piii - Pti2 ||< Ctp || Ui - U2 ||i2

Thus, P is an operator from L2([0, T]\ Rm) to C([0, T}; Rm) satisfying the condition 
given by equation (4.4.19).

Let X = L2([0,T]; Rm) and U = P2([0,T]; Iin).

Define the following operators

1. Kx : X —» X as (Kxx)(t) = Jq eA^~T^x(r)dr

2. N : U -> U as (Nu)(t) = f(x(t),u(t)) = f((Pu)(t),u(t))

3. K2‘.U-*X as (X2u)(t) = J^ eA^Bu{r)dr

4. Lc : P -*> X as (Lcu)(t) -

5. X3 : X —» X as (Kix)(t) = Jq eA^~T^x(T)dT

The operators ify, X2, X3 and Lc are bounded linear operators and X is the nonlinear 
Nymytski operator (refer Joshi and Bose [35]).

For t G [0,T], the bounds of the operators can be found as:

II K\ ||< aAT || x ||= kx || x || where, kx = aAT.

II K2 ||< aATb || x ||= k2 || x || where, k2 = kxb.

II Lc ]|< baAw = ai (say) where, w =)| W~x || and j| B ||=|| B* ||, || eAT ||=|| eA*T || .
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|| K3 ||< &aT || x ||= ki || x || .

The operator N is Lipschitz as shown in the following:

11 (NUl)(t) - (Nu2)(t) || =|| /((i^Xt), «,(*)) - f{(Pu2)(t)Mt)) II
< ax || Pui ~~ Pu2 || +au || ui - U2 ||

< apax || ui - «2 || +a„ || ui — u2 ||}

< aN || ui - u2 ||

where, cxjf — otpOcx + o.u.

With the operators defined by (1), (2), (3), (4) and (5) the pair (x,u) given by 
equations (4.4.12) and (4.4.15) can be written as follows:

x(t) = eMxo + (K2u)(t) + (KiNu)(t) (4.4.20)

u{t) = Lc(xf — eATx0)(t) - (LcK2Nu)(t) (4.4.21)

Define an operator M : U —> U as,

Mu = Lc{xf — eATxo) — LcKsNu (4.4.22)

Before, proving our main result for controllability of system (4.4.11), we prove that 
the operator M is Lipschitz.

LEMMA 4.4.3, If f satisfies Lipschitz condition

II f(xi, Hi) - f(x2, U2) II< II xx - X2 II +au || ux - u2 ||

for all xi,x2 € Rn and ui,u2 E Rm then, the operator M defined by (4-4-22) is 
Lipschitz.

Proof: We know that

Mu = Lc(xf — eATxo) — LcKzNu

1

i
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Therefore
|| Mm - Mu2II =|| LcKzNm - lck3Nu2 II

< Oiiki II Nm - Nu% II

< onk\OLN || m — «21|

= Oim 1 Ul ~U2\\

where, am = ankiotN-

Thus, M is Lipsehitz with the constant am.

Now, we give our main result regarding the controllability for the system (4.4.11) in 
terms of the solvability of the pair (x, u) given by the equations (4.4.20) and (4.4.21).

THEOREM 4.4.4 The nonlinear system (4-4-11) is controllable under the following 
assumptions:

1. Linear system (4-3.10) is controllable.

2. The nonlinear function f in the equation (4-4-H) is Lipsehitz continuous.

3. The Lipsehitz constant am of operator M less than 1.

Further, the control can be computed using the iterative scheme:

un+1 = Mun

starting with arbitrary u°.

Proof: Under the hypothesis the operator M is contraction and hence by Banach 
Contraction Principle it has unique fixed point which can be iteratively computed by

un+1 = Mun = Lc(xf - eATx0) - LcKaN((Pu)n(t),un(t))

starting with arbitrary it0.

The sequence of control converges to the required control which steers the initial 
state £0 to Xf.
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Along with the controller the steered state can be computed iteratively as

xn+1(t) = eMx0 + t eMt-T)Bun(T)dT + / eA{t.t)/(a:n(r), «n(r))dr
Jo Jo

Hence, the proof. •

Thus, for computation of the steering control for the semilinear dynamical system 
we solve the coupled iterative equations starting with arbitrary (x°(t),vP(t))

un+l{t) = (xf - eAtfxq - £ eA(tf-s)f(xn(s),un(s))ds^J

(4.4.23)
and

(t) = eAtx0 + f eA{t~T)Bun(T)dr + [* eA^f(xn(T), un(r))dr (4.4.24) 
Jo Jo

The process is repeated until the prescribed accuracy is reached.

REMARK 4.4.5 The condition S. in the above theorem can be relaxed if the nonlin
ear function f is uniformly bounded. In this case we can use Schauder’s fixed point 
Theorem instead of Banach Contraction Principle to prove the theorem. However, we 
do not have iterative procedure for the computation'of control.

In the following, we revisit the Mixing tank problem now in the semilinear form.

Mixtank Process represented in Semilinear form :

The mathematical representation of the Mixtank problem in the semilinear form is

'll' r Qi(t) +
0 0 Q?.(t) (Ci—C(t))Qi(t) . (C2-C(i))Q2(t)

L V(t) 1 V(t) J
x{t0) = x0 (4.4.25)

The nonlinear function /, in the system (4.4.25) is Lipschitz except at the zero vol
ume which is avoided as per our initial assumption. But observe that the linear part 
of the system given by (4.4.25) is not controllable as A is zero matrix, therefore the
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mixing tank problem is not globally controllable. Thus, the system (4.4.25) is only 
locally controllable around the equilibrium (3600,15), as shown before with the local 
steering control implemented using Artificial Neural Network.

However, in the latter chapters we will see the systems which can be steered to 
the desired state by the ANN controller defined for the system in the semilinear form.

4.5 Summary

In this chapter, we obtain mathematical model for a Chemical the subprocess: mixing 
tank of a chemical plant that synthesizes Ethyl Acetate. The mathematical model 
give rise to nonlinear time invariant dynamical system, for which local controllability 
is established. The optimal local controller for the mixtank process is implemented 
using Multilayered feedforward Neural Network, trained using Backpropagation algo
rithm. The simulation results are implemented and tested using MATLAB and are 
found to be well acceptable. After, developing the results for the controllability of 
the system in the semilinear we investigate the mixing tank problem for the global 
controllability and find that the system is not controllable in the semilinear form.


