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Chapter 4

ANN BASED STEERING
CONTROL OF SEMILINEAR -
CONTINUOUS TIME SYSTEM

4.1 Introduction

In this chapter, we develop the steering control for the continuous semilinear systems
and implement it using Artificial Neural Network. To justify the need for such ANN
steering control, we take up the first problem, form Chemical Industry. We start
with the modeling of mixing tank process, which is a subprocess for many chemical
processes.

The mixing tank subprocess is mathematically modeled into a continuous time-
invariant semilinear dynamical system. For this model we first develop a local con-
troller, as traditionally done in case of nonlinear systems and demonstrate its imple-
mentation using a multilayered feed-forward NN.

In the following sections we derive the steering control for a general semilinear dy-

namical system and apply it to the mixtank problem for the controllability. The
stmulation results for the ANN controller are provided in the last section.
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4.2 Mathematical Modeling of Mixtank Process

Consider the process of synthesis of Ethyl Acetate. It has three major sub-processes:

e mixtank: In this subprocess the fresh and recycled Acetic Acid is mixed thor-
oughly and outputted.

a reactor: Here the ethanol is mixed with Acetic Acid in the ratio 2:3 which
produces Ethyl Acetate.

a separator: It separates the produced Ethyl Acetate and the unused Acetic Acid
to be recycled.

Figure 4.1: A mixtank sub-process

To produce Ethyl Acetate, Ethanol and Acetic Acid are required in 1:1 mole propor-
tion but. practically it is mixed in the ratio 2:3 hence, some portion of Acetic Acid
remains unused which is recycled into the process as shown in the Figure 4.1.

Assume that the fresh Acetic Acid and recycled Acetic Acid are fed in the mixing
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tank with the concentration Cy, C, and at the rate of Q1(t) and Q5(t), respectively,
which are continuously mixed by the stirring rod. The outflow from the mixing tank
is at the rate Q(t) with the concentration C(t). It is assumed, that stirring causes
" perfect mixing so that the concentration of the solution (Acetic Acid) in the tank is
uniform throughout and is same as that of the flow coming out of the tank. Also, it
is assumed that the density of the solution in the tank remains constant. Let V'(t)
be the volume of Acetic Acid in the tank at time ¢, which is assumed to be nonzero
for all ¢.

Now, considering the dynamlcs of the phenomenon, observed from time t = &y, the
mass balance and mole balance equations are:

4y - Q)+ Q) - Q)

dCHV (@)

05— Ci@u() + GQut) - CHR) (42.1)

The outflow Q(%), is characterized by the turbulent flow relation

Qt) = ky/h(t) = k,/-‘%(fl ! (429

where, h(t) is the head of the liquid in the tank, A, is the cross sectional area of the
tank and k is a constant.

Putting (4.2.2) in (4.2.1), the system becomes

O — Quo) + @ute) — by 2
dc(t) _ Qx(t) _ Qz(t) .

le.

[ g” {0 0] [gzgﬂ [ (200100 Eﬁ@))@zm } | (4.2.4)

The above equation can be put in the standard form:

i(t) = Bu(t) + f(a(t), u(®)) (4.2.5)
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z(tp) = zo
0= 2] w0-[88] 2[5 3]

and the nonlinear function f(z(t), u(t)) is gi\}en by

‘where,

% ) (0]
f(il?(t): u(t)) = f ({ C%g } > [ gzgg }) { (01,0(:)))(21@) \_{—(;2‘~C((t)))Q2(t) } (426)

The equation (4.2.5) represents the dynamics of state for the phenomenon. It is
the contimious time invariant semilinear dynamical system. Here, we are concentrat-
ing only on the state equation, whereas, in general, the system may also have the
associated output equation.

The nonlinear funétion'given by (4.2.6) is Lipschitz in the neighborhood of equi-
hbrmm (:(;Q,uo) ThlS can be shown as below:

Expansmn of the nonhnear functlon J using the Taylor’s series expansion up to the
linear term is given by

‘ f(_z+5:n,u+§u)-f(:1: u)~5f—3f f&u

3
That is,
5- | . vz—‘lk_c 21/1V(t) 0 + 0 0 5
I=1 _cromed Y Glopmen _atian e L
: V2(D) ZI0) 70)

The value of 6f, at some z(t) = z = (V,C) and u(t) = u = (Q1,Q2), is given

by
=k {_1 0 0 0
of = }: (cl—c*)czl( %) Qs ~ Qe 0z + G0 @0 su
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Let
. 7= (5v7) 0
e = | (@-0)8 "~ ((a-C)@x _itQs | - -
Bz V2 1%
and -
0. 0
dy = [ C1-C  Cp=C }
V.-V
Now,

1 () + (125020500 (59
and . ~ - |
a H-@ lI= ((91;—61)2+(93§£)2)5

Since, || d, || and || dp || are finite for V' #. 0, §f is bounded. By our assump-
tion, in the mixing tank process V(t) is nonzero for all time ¢, therefore bounded 6 f
implies that the nonlinear functlon f in the system (4. 2 5) is Lipschitz continuous
w.r.t. both the arguments.

The equation (4.2.5) represents the dynamics of state for the phenomenon. It is

" a continuous time-invarient semilinear dynamical system. Here, we are concentrating
only on the state equation, where as in general the system may also have the asso-
ciated output equation.

When the volume and the concentration are at equilibrium state, the systefh runs
in the stable mode. If the equilibrium state is slightly perturbed we want to change
the inflow rates (21, @2 so as to bring the state to the equilibrium. If this is possible,
we say that the system is controllable to the equilibrium state. Since, the system
(4 2.5) is highly nonlinear, we first linearize it about the equilibrium (zp,ue) and
investigate the controllability of the linearized system.

4.3 Controllability of Linearized Model

The linearization of (4.2.5) at the equilibrium point (%o, up) is given by
(t) az(t) + (B + bu(t) (4.3.7)
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] = 9 — o
where, a 33;] (zom0) b= % (zom0)’

In our case, for system (4.2.5),

-k 1
of _ VA \ 2\ /v 0
oz _G=CcO)AE) | (C-C)@al) _ A®+Q®) |
(20,u0) _ V2(1) V) V() {zo,u0)

Let ayp = »J-A—’E-: (5—}/7), then at equilibrium —91592 = 24,; and — (01;2)91 - (02;,23‘?2 =

Hence, .
of - [ an 0 }
0% (o) L 0 20m
~ Also,
ou =| a-c@) C:-C) = ,
Ou (o,u0) IV(t) 2V(t) (xo,u0) b b

where, bl = Cl;C and b2 = g%}g

Define,

1 an 0 ‘
AL“GW{ 0 2&11]

and

1.1
Bp=B+b= [bl bg]'

Thus, the linearized system is of the form

#(t) = Aga(t) + Bru(t) (4.3.8)

ﬂm=%=[2]

The controllability matrix for the linearized system (4.3.8) is given by:

_ _ 1 1 aiy (4531
U, = [BLIALBL] - I: b by 2anb 20,1.1[)2 :|

§

i
i
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The above given controllability matrix is of full rank when C) and C; are different.
That is, when the concentrations of the inflows are different. Hence, the Imea,nzed
system is controllable. :

Let @, (t — o) be the state transition matrix of the system (4.3.8) giveﬁ by |
(I)L(t . tO) — eAL(t—tO) ‘ » l

Then the solution of the system (4.3.8) is given by
, . o ‘
a(t) = By (t — to)ao + / @4t —7)Bu(r)dr

The controllability of linearized system indicates the local controllablhty for our semi-
linear system (4.2.5) (refer Kalamka [40]).

Numerical Experiment :

We consider the following values for the parameters in our model:

k=1

A, =4

Q10 = 10 liters/sec
Qa0 = 20 liters/sec
Cy = 9 g-moles/litre
Cy = 18 g-moles/litre

where, Q10, Q20 are the inflow rates at time tg, C; and C, are the respective concen-
trations at time ty and V; is the volume of the mixture in the tank at time 4.

For these values of parameters, the matrices Ay and By, defined in (4.3.8) are com- .
puted as

, -1 1
A =a= (9._15?{?025368%-15)20 1<())+20 } - { —0.(())042' —0 8083 }
T Ee00% . T 3600¢ 3600 ’

and

BL:B+6:[ 1.0000 1.0000]

—0.0017 0.0008
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Thus, the linearized system (4.3.8) becomes,

#(t) = (43.9)

~0.0042 0 10000 1.0000
0 ;0.0083}""“)“*'[—0.0017 0.0008 | U9

The system represented by equation (4.3.9) is linear time invariant continuous dy-
namical system in R2. The equilibrium state for (4.3.9) is (3600, 15).

The optimal control for the system (4.3.9) (refer chapter 2) is given by
u(t) = —Be LT OW " (to, T) (o — e o Dg(T)) ' (43.10)

where, the controllability Grammian W(tp, T") for the system (4.3.9) is given by

T .
Wi(to,T) = [ ettom) By BreAitear

o

The controller given by (4.3.10) steers the initial state xo to the desired final state z¢
in finite time T. The steered state for all time ¢ € [0, T is given by -

t
a(t) = etz / 428" Bu(r)dr
to

Using these definitions for the state z(t) and the steering control u(t), we proceed to
implement the controller using Artificial Neural Networks for the system (4.3.9).

Neural Network Controller :

In general, the following steps are used for computation of the controller using Neural
Networks: :

1. First, generate the input-output pairs. Input : [ Initial state (perturbed state),
final state (Equilibrium state)]; Output : Optimal steering control, using the
theoretical definition of the optimal controller given by equation (4.3.10).

2. Define suitable multiple layer Neural Network N Nq, which will act as controller.

3. Randomly select 80 % of the data for the training of the network NN,. The
training of the Neural Network is done using the Back-propagation algorithm
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4. Test the remaining 20 % of the data by comparing the output generated by
NN, with the computed desired output u, if the error is large goto step (2)
with the changes in architecture.

5. Once the Neural Network is trained with the acceptable error. It generalizes
very efficiently, i.e. for any given small deviated state the Neural Network
controller steers the state to the desired equilibrium state in few steps. -

The Mutti layered Neural Network as Steering Control for the Mixtank process

Figure 4.2: The ANN steering control with two hidden layers h; and hy having 10
and 5 nodes respectively and an output layer O with 2 nodes.

For our system (4.3.9) we designed the ANN steering control NN, using the archi-
tecture NN 145, as shown in the Figure 4.2. The training patterns are generated
by randomly varying the state components in the pre-specified range, volume V(¢)
between (3550,3650) and concentration C(t) between (10,20). Remember that the
equilibrium is (3600, 15). The perturbed initial states lie in the neighborhood of the
equilibrium.

Since, presently the system is in the continuous form to verify the performance of
control signal produced by the Neural Network we design another Neural Network
NN, with the architecture NN§ 15, to depict the state dynamics.

NN, is trained using the input as (Initial perturbed state ,Control) and output as
the final state. Once both the networks are trained, they 'éa;\e placed in series. We
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give initial perturbed state to NNU which produces the steering control signal which
in turn is given as input to NNX to produce the final state as equilibrium state.

This simulation strengthens the following facts:

1. The control and state are inversely related dynamics and they can be placed in
a closed loop form for implementing the adaptive controller in the automated
plant.

2. The Neural Networks can learn from the 1/O pairs and thus, the mathematical
modeling of the phenomenon can be avoided.

3. Observe that the computation of the control signal using formula requires com-
putation of the inverse of Grammian, which is itself a costly affair in terms of
time. The Neural Network controller would require spending such this time
only once, that is, while training the network.

The Networks placed in series: NNU - Controller, NNX - State Dynamics

(3580, 14) (-125 12.143.36) (3600, 16)
NNU NNX
Perturbed Control Stable
State

state

Figure 4.3 The ANN steering control and state network placed in series to validate
the ANN control signal.

The working of the NNs in series is as shown in the Figure 4.3 for the initial perturbed
state (3580,14). For details see Program nnctrlc.m in Appendix-A. In the following
section, we derive the steering control for the semilinear system (4.2.5).
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4.4 Controller for continuous Semilinear Dynami-
cal System

Now, we consider a general time-invariant semilinear dynamical system

z(t) = Az(t) + Bu(t) + f(z(t),u(t)).
z(0) = zo (4.4.11)

where, A,xn i8 the evolution matrix, B,wm is called the control matrix. The state
z(t) € R, u(t) € R™ is the control input to the system and f : R* x R™ — R" is
the nonlinear function dependent on state as well as control. For the system (4.4.11)
we investigate the global controllability of the system and use Neural Network to
implement the steering control.

The solution of (4.4.11) can be given as
¢ ¢
o(t) = ez + /e et Bu(r)dr + /0 e f(z(7), u(r))dr (4.4.12)

where, e is the state transition matrix for the linear part of the system. We first
prove the existence and uniqueness of solution of (4.4.12).

-

LEMMA 4.4.1 If the nonlinear function f in the system (4.4.11) satisfies Lipshitz
condition ’
| f(z1) = f@2) IS ap | 21— 22 || V21,22 € R",u € R™

then, for each fized uw € L*([0,T]; R™ there exists unique solution given by (4.4.12)
for the system (4.4.11).

Proof: Let the solution of the semilinear system (4.4.11) be as given before,
t t
z(t) = e*zy + / eAt=) Bu(r)dr + / At f(z(1), u(r))dr (4.4.13)
0 0
Define an operator Q : C([0,T]; R*) — C([0,T}; R*) as

(Qz)(t) = e*xp + /0 ’ A7) Bu(r)dr + /0 * Ale=) Fz(T),u(r))dr (4.4.14)
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Thus, for fixed u we get
I (Q)(®) — (@e2)(®) | =l eAC {f(ax(r), u(r)) — Flaa(r), u(r))} dr |
< Jo IeAe= ] f(w1(T),U(T)) = f(za(7),u(n)) [l dr
< aafy Il f@a(r),u(r) = fl@a(r), u(r)) || dr

Whére,
s = max | e |
Thus,
| @0 — (@)(®) | < aaa | 32(r) = 32(r) n dr

< g0t || 21— 1 [logoayre)

Hence; _

1(Q21) — (Q22) lleqoaam = sUPreppmy | (@21)(8) — (Q22)(t) ||z

< ape.T || #1 — 21 |leqorirm

Similarly,

| (@21 — Q%z) (1) I= || Q(Qz1)() — Q(Qz2)(t) |~
< aate f5 || (Qza)(1) — (Qez)(7) || dr
<aZa2 i T — 22 leqoryrm dr

< a%02Z || 21~ 2 loqoayam)

3
| (@~ Qas)(0) 1< el s Il 21 =22 llogomm

In general,

| @a: - @2)0) < 2% 2y g ooy

As 7 tends to infinity the quantity @A—‘:%Qr— tends to zero. That is, there exists
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some r such that the Lipschitz constant (ﬁ’—‘%ﬂ@: of Q" is less than 1 and hence Q" is
a contraction mapping for some r > 1.

Therefore, by the generalized Banach contraction principle there exists a unique so-
lution to the system (4.4.11).

We want to prove the existence of steering controller for the system (4.4.11). We
say that the system (4.4.11), is controllable if there exists the control function wu(t)
defined in L%([0;T]; R™) such that for any given initial state, zo at time ¢ = 0 and
any desired final state zy, the solution of the system (4.4.12) satisfying z(0) = z, also.
- satisfies (T} = zy, with this u(t).

‘We assume that the linear system is controllable and hence the Grammian matrix
- W(0,T) is invertible. Therefore, we define a control given by

u(t) = B*e"TOW (0, T) (xf — gy — /0 ! eAT-9) f(a:(s),u(s))ds) (4.4.15)

Substituting this control in (4.4.11), it follows easily that z(to) = o and z(T") = =.

From Lemma. 4.4.1 for every u € L*([0,T]; R™) there exists a unique solution z
. for (4.4.12).

We define an operator
 PIX([0,TR™) - C(0,TR™)
given by »
(Pu)(t) = e*zg + /Ot A7) Bu(r)dr + /01t e fa(7), u(r))dr. (4.4.16)
The operator P assigns the unique solution z, corresponding to the control v €

.L*([0,T); R™). We now prove that the operator P is Lipschitz.

LEMMA 4.4.2 Suppose that the nonlinear function f satisﬁes)the Lipschitz condi-
tion

| flz,w) — flze, u2) 1< 0 || 31— 2 || v [ uz —u2 || (4.4.17)
then, the operator P defined in (4.4.16) satisfies the following condition

| Puy — Pug [|< o || 1 — 2 |22

where, ay, i a constant defined in the proof.

1
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Proof: We consider the operator P as given before
’ .ot ' &
(Pu)(t) = e*tzo + /0 A" Bu(t)dr + /0 A7) f(a(r), u(r))dr

Let uy, up be two control functions and %1, To be its corresponding unique solutions
of (4.4.11). : '

Then, we have Pu; = x1 and Pug = zo.

Therefore, || (Pu1)(t) — (Puz)(®) I=]l 21(2) — z2(¢) ||

=l Jo 2 B(ur(7) — ua(7)) + Jo €44 {F(@a(7), wa(7)) — f(@a(7), ua(r)) } dr |
< Jo I eE B ua(r) —ualr) |+ J5 11 €@ I f(@a(r), ua(7)) = f(za(7), ua(r) || dr

< anb f3 | wi(7) = ua(7) || +ea i | f(ml(’}),ul(T)) = flz2(7), uz(7)) || dr
where, A
ap = mox {3‘4‘ and b=|| B | .

Therefore,

| 1(6) = 22() I (b + ) [ | 0a() — o) | +oaee [ 1 a(r) = 2(r) | dr

Using Gronwal’s inequality we get,

I (@)®) ~ @)(0 1< (g o) [ N nfr) ~walr) dr (£419)

" Using Cauchy Schwartz inequaiity we get,

Rl ) —uo(r) [ dr < (§F1d0)° (T 1 wa(r) = walr) [ dr )]
<Y fw - | |

Therefore, putting it in (4.4.18) we get,

I 21(8) — 2at) 1< 4°= (ab + @) (1) || w1 — 2 |12

o
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sup || @)(8) = (22)(®) 1< €42 (ob + (1) | w1 — w2 |12

Thus, . .
| Puy — Puy ||< e24%T (aub + a /() || us — s |12 (4.4.19)

Putting, ap = e@a%T (o b 4 au)ﬂT) we get

| Puy — Pug ||I< ap || w1 —ug |12

Thus, P is an operator from L2([0, T]; R™) to C([0, T]; R™) satisfying the condition
given by equation (4.4.19).

Let X = L2([0,T}; R™) and U = L*([0,T]; R™).

Define the following operators

1L Ky: X — X as (Kiz)(t) = [ eAt-7z(r)dr

2. N:U —U as (Nu)(t) = f(a(t),u(t)) = F((Pu)(t),u(t))
3. Ky: U — X as (Kou)(t) = [£eAC-DBu(r)dr

4 Lo:U— X as (Low)(t) = B*eA" T-DW-1(0,T)
5KyXaX%m@®=ﬁ¢W%mwA

The operé,tors K, K, K3 and L, are bounded linear operators and N is the nonlinear
Nymytski operator (refer Joshi and Bose [35]).

For t € [0,T, the bounds of the operators can be found as:

| Ki||< 4T || z ||= k1 || z || where, ky = asT.

| K2 ||€ aaTh ||z ||= k2 || = || where, ko = kqb.

I Le |< boaw = oy (say) where, w =] W || and || B ||=|| B* |, | T ||=l| e#T || .

i
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| Esll<aaT |zl=kllz]|.
The operator N is Lipschitz as shown in the following;

1 (V) (8) — (V) (@) | =] F((Pur)(®), 1 (8)) — F((Pua)(®),uat) |

<oy || Pur — Pug || +o || ug —up ||

< opog || ur —ug || o || ur —ug ||}

<ay || uy—ug |

where, ay = Qp0t; + Gy

~ With the operators defined by (1), (2), (3), (4) and (5) the pair (:c u) glven by
equations (4.4. 12) and (4.4.15) can be written as follows:

z(t) = e*xo + (Kau)(t) + (K1 Nu)(t) B (4.4.20).
u(t) = Le(zf — eTxo)(t) — (LKsNu)(t) : (4.4.21)

Deﬁne an operator M:U - U as,
Mu = L(z; — e*Tzg) — L.K3Nu . (4.4.22)

Before, proving our main result for controllability of system (4.4.11), we prove that
the operator M is Lipschitz.

LEMMA 4.4.3 If f satisfies Lipschitz condition
| flr,wa) — Flzz,u) < o || 21— 22 | +on [ us —un ||

for all 1,22 € R* and uy,ups € R™ then, the operator M defined by (4.4.22) is
" Lipschitz.

Proof: We know that
Mu= L(zs — e*Txy) — L.KsNu
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Therefore,
| Mu; — Muy || =|| L.KsNuy — LKsNug ||

< aky || Nug — Nuy ||
< akyay || uy — vz ||

= O | ur —us ||
where, o, = oqkiay.

Thus, M is Lipschitz with the constant a,,.

Now, we give our main result regax“din‘g the controllability for the system (4.4.11) in
terms of the solvability of the pair (z,u) given by the equations (4.4.20) and (4.4.21).

THEOREM 4.4.4 The nonlinear system (4.4.11) is controllable under the following
assumptions:

1. Linear system (4.3.10) is controllable.
2. The nonlinear function f in the equaiz’on‘ (4.4.11) is Lipschitz continuous.

8. The Lipschitz constant o, of operator M less than 1.

Further, the control can be computed using the iterative scheme:
u™t = Mu"

starting with arbitrary u°.

Proof: Under the hypothesis the operator M is contraction and hencé by Banach
Contraction Principle it has unique fixed point which can be iteratively computed by
™ = My = L(z; — e*Tzp) — LK N((Pu)™(t), u™(t))

starting with arbitrary u®.

The sequence of control converges to the required control which steers the initial
state zp to z;.
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Along with the controller the steered state can be computed iteratively as
i t
2" t) = oo + [ ACIBU(r)dr + [ A f(a(r), uw(r))dr
Hence, the proof.

Thus, for computation of the steering control for the semilinear dynamical system
we solve the coupled iterative equations starting with arbitrary (z°(t),u%(£))

t
u""’l(t) — B*eAw(tfmt)W-d(O, tf) (IL'f - eAtfxO _ / ! eA(tf_s)f(:En(s),un(s))ds)
0 !

(4.4.23)
and ’

t t ‘ -
& (t) = oo+ [ AIBU(r)dr + [ A @ (), ) (4424)

The process is repeated until the prescribed accuracy is reached.

REMARK 4.4.5 The condition 8. in the above theorem can be relazed if the nonlin-
ear function f is uniformly bounded. In this case we can use Schauder’s fixed point
Theorem instead of Banach Contraction Principle to prove the theorem. However, we
do not have iterative procedure for the computation of control.

In the following, we revisit the Mixing tank problem now in the semilinear form.

Mixtank Process represented in Semilinear form :

The mathematical representation of the Mixtank problem in the semilinear form is

: 1 17 @) —ky/ 28
t) = c
(t) [ 0 0] [Qz(t) + (©-0)01(0) 1, (G0N0

x(to) = T (4425)

The nonlinear function f, in the system (4.4.25) is Lipschitz except at the zero vol-
ume which is avoided as per our initial assumption. But observe that the linear part
of the system given by (4.4.25) is not controllable as A is zero matrix, therefore the
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mixing tank problem is not globally controllable. Thus, the system (4.4.25) is only
locally controllable around the equilibrium (3600, 15), as shown before with the local
steering control implemented using Artificial Neural Network.

However, in the latter chapters we will see the systems which can be steered to
the desired state by the ANN controller defined for the system in the semilinear form.

4.5 Summary

In this chapter, we obtain mathematical model for a Chemical the subprocess: mixing
tank of a chemical plant that synthesizes Ethyl Acetate. The mathematical model
give rise to nonlinear time invariant dynamical system, for which local controllability
is established. The optimal local controller for the mixtank process is implemented
using Multilayered feedforward Neural Network, trained using Backpropagation algo-
rithm. The simulation results are implemented and tested using MATTLAB and are
found to be well acceptable. After, developing the results for the controllability of
the system in the semilinear we investigate the mixing tank problem for the global
controllability and find that the system is not controllable in the semilinear form.



