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Chapter 5

ANN BASED STEERING 
CONTROL OF SEMILINEAR 
DISCRETE TIME SYSTEM

5.1 Introduction

In Chapter 4, derived the steering control for the continuous time-invariant semi- 
linear system. In this chapter, we investigate the the controllability results for the 
discrete semilinear dynamical system in the finite dimensional space, since the main 
aim of this worMs to emphasize the realization of the steering control using Artificial 
Neural Networks for the automated semilinear dynamical system.

The continuous time variant semilinear system in the differential form is represented 
as

x(t) — A(t)x(t) + B(t)u(t) + f(x(t),u(t))
:c(0) = (5.1.1)

Suppose the system (5.1.1) becomes the part of the automated process in which the 
change in the system are at the discrete times and remains constant in between.

Then representation of such a system would be
x(k + 1) = F(k)x(k) + G(k)u(k) + fd(x(k), u(k))
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a;(0) = Xo (5.1.2)
where, F(k)nxn, G(k)nxm are time dependent matrices and F(k) is non-singular for 
all k. The state x(k) E X C Rn, u(k) € U Q Rm is the control input to the system 
and fd : Rn x Rm —> Rn is the nonlinear function. The system (5.1.2) is in the discrete 
semilinear form.

For the semilinear system given by (5.1.2), we want to obtain sufficient conditions on 
the nonlinear term such that the system is controllable. To proceed for it, we first 
investigate the local controllability results about the equilibrium and then give the 
conditions on the nonlinearity that allows us to extend the domain of controllability.

In our analysis, we will employ the Inverse Function Theorem and Implicit Func­
tion Theorem (refer Chapter 2 Theorems 2.4.1 and 2.4.2) to establish the existence 
of controller. The implementation of steering controller is done using feed-forward 
Artificial Neural Network, with the help of MATLAB.

5.2 Controllability: Discrete Semilinear System

For the linear systems, local controllability and global controllability are equivalent 
whereas, for nonlinear system they are not the same and global controllability is hard 
to establish. However, in our approach we will first prove local controllability of 
the semilinear system and then expand the set of controllable states, almost to the 
complete state space. Without loss of generality, we will assume the equilibrium state 
as (0,fi) to simplify the derivation.

Controllability of Associated Linear System :

The linearized system corresponding to the nonlinear system (5.1.2) about the equi­
librium solution (0,0) is given by

x(k + 1) = (F(k) + F0)x(k) + {G(k) + Go)u(fc) (5.2.3)
where, Fq = ^ | (o,o) and Go — ^ | (o,o) -

As stated in Chapter 2, the system (5.2.3) is controllable if and only if n rows of 
matrix function $(ko, k + 1)(G(£) + Go) are linearly independent, where,

$(k0,k+i)= nV(i) + F0)
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For the sake of simplicity we take u(k) as scalar for each k in our system.

The state of the system (5.1.2) after n steps can be given as:
n

x(k + n) — 4>(fc 4- n, k)x(k) + $(& + n, k + m)G{k T m — l)u(A; + m — 1)
m=1 

n
+ ^ <h(k + n,k+ m)fd(x(k + m — l),u(k+ m — 1)) (5.2.4)

m=1

= Fp[x(k), ■■■, x(k + n — l),u(k), • • •, u(k + n — 1)]
Using (5.2.4) and taking derivative of Fp w.r.t. = k,- ■ ■ ,k + n
get

dx(kFn) ... _
0u(* + n-l) ~G(k + "~l) + G«

dx{k + n) _ dx(k + n) dx(k + n — 1) 
du(k + n — 2) du{k + n — 1) du(k + n — 2)

Hence,
2) =-P(fc + n-!)(?(* + »-2)

+jFoG(A; + ti — 2) + F(k + n — l)Go + FqGq 
= *F(A: n — 1 ,k n —■ 1 )(G(A; + n — 2) + Go)

Similarly,
~~|u(|f~ = F(k + n ~ !)''' F(k)G(k ~ X) + F°F(k + n - 2) ■ • ■ F(k)F(k - 1)

+ • • • + F£~2F(k)GQ + Fg.]G0

= $(fc + n - 1, k)(G(k - 1) + Go)

(5.2.5) 
— 1 at (0,0) we

Defining Un(k) = [u(k),u(k + !),-•• ,u(k + n — 1)], we get the Jacobian matrix as

r-. x(k+n)_dx(k + nj
= dUn(k) (5.2.6)

It can be shown easily that the rank of the controllability Grammian of the linearized 
system (5.2.3) and the rank of the Jacobian matrix (5.2.6) are the same. That is, 
if the linearized system is controllable then the Jacobian matrix Dwill have n
linearly independent rows. Therefore, the rank of is*n if linearized system is
controllable.
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Local Controllability of SemiLinear System :

We now state a theorem which establishes the local controllability of the nonlinear 
system (5.1.2).

THEOREM 5.2.1 If the linearized system (5.2.3) is controllable then the semilinear 
system (5.1.2) is locally controllable around the equilibrium state (0,0).

Proof: Define a map H : R2n —> R2n by H(x(k), Un{k)) = (x(k), x(k + n)). We will 
show that there exist an mapping if = II~X such that (x(k), Un(k)) = if(x(k),x(k + 
»).), whenever (x(k),x(k + n)) lie in the neighborhood of the equilibrium (0,0). Thus 
Un(k) = if \u (x(k),x(k -f- n)) will drive the system (5.1.2) from the state x(k) to 
x{k + n) for any k, where if |« (Xi,Xf) is the projection of if(xi,Xf) on the control 
space. The Jacobian matrix of the matrix H at (0,0) is given by

I O '
r-.x(k-\-n) r~,x(k+n)
Ux{k) UUn(k) .

where, I is an identity matrix of order n. Also is of rank n because the
linearized system is controllable . Therefore, the Jacobian matrix D(q$)H is full rank 
2n. Hence given any two states x, and Xf, an input sequence Un(k) = if |„ (x,, X/) 
will drive the system from Xi to Xf in n steps. For ar,- and Xf lying in the neighborhood 
Vx of origin and by continuity of fa and if, the system is transferred from xH and Xj 
without leaving Wx.

. The following corollary is immediate consequence of the above theorem.

COROLLARY 5.2.2 If the linear system x(k + 1) — F(k)x(k) + G(k)u(k) is con­
trollable then the system is (5.1.2) is locally controllable around the equilibrium state 
(0,0).

The above result holds for the non-zero equilibrium point with slight modifications.

Mixtank Revisited :

Recall that the mathematical representation of the mixtank phenomenon (refer Sec­
tion 4.2) is given as:

x(t) = Bu(t) + f(x(t), u(t}) (5.2.7)
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where,

X{t) V(t)
C(t) u{t) = Qi(t)

Q2(t)

And the nonlinearity f(x(t),u(t)) is given as:

1 1 
0 0'

f(x(t),u(t)) = (Ci—C{t))Qi(t) , (C2~C(t))Q2(t) 
V(t) ^ Vft) .

The linearization of (5.2.7) at the equilibrium point (3600,15) in continuous form is 
given by

x(t)
' -0.0042 0 x(t) + 1.0000 1.0000 '

0 -0.0083 -0.0017 0.0008 u(t)

That is,

witha;(£o) = %o-

x(t) = ALx(t) + BLu(t), x(t0) = x0

(5.2.8)

(5.2.9)

where, Al =
' -0.0042 0 i Bl = 1.0000 1.0000 '

0 -0.0083 -0.0017 0.0008

Assuming, that the system (5.2.7) forms part of a automatized process due to which 
the valve settings of the inlets change at discrete instants only and remain constant in 
between. If these instants are separates by time period T = 1 seconds, i.e. taking the 
sampling period to be 1 seconds then the equivalent linearized discrete-time system 
is given by

x(k + 1) = Fx(k) + Gu(k), x(0) = xq (5.2.10)

where,

and

P _ eALxST

G — f e^rBidr. 
Jo

Thus, F =
' 0.9958 0 0.9979 0.9979 '

0 0.9917 __j Gr -0.0017 0.0008



Chapter 5 80

The state of the system (5.2.10) at time k is given

x(k) = F2x o + Unu(k)

where, Un = [G|GF] given as

Un = 0.9979 0.9979 0.9938 0.9896
-0.0017 0.0008 -0.0017 0.0008

is the controllability matrix for the discrete linearized state.

We see that the first two columns of Un axe linearly independent hence the sys­
tem can be steered in two steps from the deviated state x0 in the neighborhood of 
equilibrium to the equilibrium xx = (3600,15) as desired by the phenomenon and 
have the consistent concentration of the mixture at the desired consistent flow rate.

The control signal at time k is given by

u(k) = U~l{xx - F2x0).

5.3 Simulations - Discrete Linearized :

1. 5-Step ANN Steering Controller :

The steering control for the system (5.2.10) is implemented using Neural Network 
NNU with the architecture AWf^0,20,10 as shown in the Figure 5.1. All the nodes in 
NNU have tan-sigmoidal as activation function. We use Back-propagation algorithm 
to train NNU. Using the definition for steering control (4.3.10), 25 input-output pat­
terns are generated:

Input: The arbitrary initial state, in the neighborhood of the equilibrium (3600,15).

Output: The control signal which steers the given initial state to the the final state, 
the equilibrium at t = 1.

The patterns are so generated that the steering is done in 5-steps, each of dura­
tion 0.2 seconds.

The training for NNU converged in 173 epochs, as shown in Figure 5.2.



Chapter 5 81

Multi-layered Neural Network as Steering Control

X w, •-> w, u/t,
s' / \N i

*' %- t4--jrdV VO*1) O,

*2

\ >c s--.-' x V7V-. _.v-■. ,*V V,<'v '■y «/"■•»! * \ ,—,

v T^-Nv, : ,/-'V
i // ----*'r

l ■ / / V -/
vV;r-"

Figure 5.1: The ANN steering control with two hidden layers hi and /12 having 30 
and 20 nodes respectively and an output layer O with 10 nodes.

Performance is 9.84164e-011, Goal is 1e-010

10 s

10’“

0 20 40 60 80 100 120 140 160
173 Epochs

Figure 5.2: The convergence of training of NN^2,3020,10)

The verification shows the approximation of steering control by NNU to the accept­
able error. For example, for the initial state (3580,14) the control signal by NNU at
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each time step is:

-391.0984
427.0424

-391.6453
427.0149

-391.9524
427.3864

-393.5645
427.2683

-394.4029
427.5064

The evolution of the state components (V(t), C(t)) due to the control signals at these 
time steps is:

l.Oe + 003 * 3.5842 3.5880 3.5923 3.5947 3.5981 
0.0142 0.0135 0.0145 0.0131 0.0149

The Figures 5.3 and 5.4 shows, the trajectory for the volume V(t) and the concen-

36001-

3598 •

3596 -

3594 •

3592 •

3590 -

3588 -

3586 -

3584 -

First state component: Volume 
-------- 1------------- 1-------------1-------------r

-O- By formula 
• NN steered

35801 F

Figure 5.3: The trajectory for volume steered by formula and NNU

tration C(t) of the state variable for the initial state (3580,14) to the steered final 
state (3598.1,14.9).

For computation refer Appendix-A (Program : nnMTD_5.m ).

2. Closed loop 2-step controller: The above simulation result shows the simulation 
of 5-step controller using ANN, the results are not compromisable. Our aim is to 
implement the Steering Controller in the form of Neural Network so that it can be
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Second state component: Concentration

-O- Byformulal 
♦ NN steered

V

4.5 5 5.5

Figure 5.4: The trajectory for concentration steered by formula and NNU

installed on VLSI chip and hence can be embedded in an automated plant.

To have an elficient Artificial Neural Network Steering Control we train the ANN 
with the architecture jV| 10204 using Back-propagation algorithm. The training pat­
terns are generated using definition for the 2-step controller where, the state is brought 
to the equilibrium in two steps each of 0.5 second.

The training converged in 7340 epochs. The trained NN works in the following man­
ner for different initial states (see Appendix-A : program NNgDMT.m):

• For the initial state (V(0),C(0)) in [3575,3625], [10,20] the state is steered to 
the equilibrium (3600,15) in 2-steps.

Example-1 : As shown in the Figure 5.5, for the initial state (3595,15), the 
2-step control signal by NNU is

‘ -44.6530 -45.1512 '
62.1867 62.5868

3575.5 3600 
15 15

The steered state is given by
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Steering of state components by 2-step Controller

Figure 5.5: The steering produced due to single ‘2-step control signal.

• For the initial state (V'(O), (7(0)), slightly far from the equilibrium, the state is 
steered to the equilibrium (3600,15) in more than 2-steps, in multiple of 2. In 
this case, the steered state is repeatedly feedback to the network to produce the 
control signal until the state reached is equilibrium.

Example-2 : The Figure 5.6 shows steering of the initial state (3580,14), 
due to the two consecutive 2-step control signals by NNu are

‘-239.7477 -242.0961 -43.7331 -44.1990 ‘
264.8041 266.5858 58.9593 59.3268

The steered state is given by

3590 3599.6 3598 3600 
14.5 15 15 15

• For the initial state that is far from the equilibrium the signal for the divergence 
of the state is given.
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Figure 5.6: The steering produced due to multiple 2-step control signal.

Example-3 : The Figure 5.7 shows the divergence of the state for the ini­
tial state (3500,10).

3. ANN Controller trained without using definition:

We demonstrated above the realization of ANN controller for the discrete linearized 
mixtank problem in which the I/O patterns used for the Neural Network training 
were generated using the definition for controller.

Practically, it may happen that for a system we do not have the suitable mathe­
matical model. We only have control inputs and their respective responses from the 
system. Hence, definition for the computations of control signal and state cannot 
be applied. Our next simulation demonstrates the use of ANN as controller to the 
system when it does not have the mathematical representation for controller.

For the simulation in this case, we generated I/O pairs for the arbitrary control input 
to the system and the corresponding state and trained the network NNud with the 
architecture NN%20 15 10 2. The ANN gives the control signals that brings the state to
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The state diverges for initial state (3500, 10)

The control signal by ANN controller trained without using definition

(3580. 14)
MNUD

(-457.39,612.28)
Discrete

(3600, 15)

Perturbed Control
System Stable

Statestate Signal

Figure 5.8: ANN Controller for Linearized Discrete, I/O generated without definition

the equilibrium for the perturbed state in the small neighborhood of the equilibrium.

For the larger deviations the controller fails to produce the proper signal (refer pro­
gram: arb-u_NN.m in Appendix-A). For example, for the initial state (3580,14), 
NNUd produces output signal (—457.39,612.28) which when given to the discrete sys­
tem steers the system to the equilibrium (3600,15).

The above simulation results demonstrates the application of Neural Network to act 
as steering control in the Automated systems.
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5.4 Feedback Controller

In the feedback controller setup, we look for a control which can be represented in 
terms of the state. We have the following result for the feedback controller establishing 
local controllability of system (5.1.2).

THEOREM 5.4.1 If the linearized system (5.2.3) is controllable, then the nonlinear 
system (5.1.2) is controllable in a neighborhoodVx of the origin, with a feedback control 
of the form u(k) = h(x(k)) which steers any state xo <E Vx to the origin in at most n 
- steps.

Proof : The local controllability of the nonlinear system is guaranteed by Theorem 
5.2.1 and the Inverse Mapping Theorem implies the existence of the controller u(k) € 
Wu for every initial and final states x'0, xj € Wx where, Wx x Wu is neighborhood of 
(x = 0, u = 0). Moreover, we get a unique sequence of controller

u(k) = hk{xo,Xf) k — 0,1, • ■ • ,n — 1.

which steers the system from xq to Xf in n - steps. If we choose xj to be zero, without 
loss of generalization, then the controller is u(k) = hk(xf). '

Applying the inputs for A; = 0,1,2, • •:, n — 1 to the system started with a;(0) = 
xo € Vx C Wx, we get the next state as

xi = F(0)a:o + G{0)ho{xo) + fd(x 0, h0(x 0)) (5.4.11)

and successively,

Xk+i = F(k)xk + G(k)hk(x0) + fd(xk, hk(x0)), for k = 1,2, • • •, n - 1 (5.4.12)

Because x(0) = x$ G Vx C Wx and Xf = 0 the Implicit Function Theorem guarantees 
that hk(.) are continuous function of x(k) for all k < n.

Now assume that, the system is initiated at x\ i.e. a;(0) = x\ where, x\ is the 
state that is reached by the system from the state ®(0) = xQ on 1st step by applying 
the input ho(*o) • Since Xi € Wx the sequence of inputs u(k) = hk(xi) will drive it 
to origin in n - steps. On other hand, the original input sequence u(k) = hk+1(x0) 
will drive it to the origin in n — 1 - steps. But as the origin is an equilibrium 
state the system will remain at the origin with zero input. Thus the input sequence 
(hi(xo), fpjfxo), • - •, hn-i(xo), 0) will also drive aq to the origin in n - steps.
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Also, from Theorem 5.2.1 for any x € Wx, the input sequence that steers the system 
to the origin in n - steps is unique and thus we get h0(xi) must be equal to hi(x0). 
The same reasoning, applied to each of the x,, i = 2,3, ■ • •, n — 1 when the system is 
started from xo, we get ho(xi) = hfixo).

Thus for any initial state x E Vx, the system:

x{k +1) = F(k)xk + G(k)ho(xk) + fd{xk, ho(xk))

will be steered to the origin in at most n - steps.

Hence, Theorem 5.4.1 gives the sufficient condition for the existence of feedback con­
troller for the system (5.1.2).

Extending the set of controllable states :

Let fh(x(k)) = F(k)x(k) + G(k)h(x(k)) + fd[x(k), h(x(k))\ and Fh(.) = /£(.). The­
orem 5.4.1 states that there exists feedback controller that makes the neighborhood 
of the origin Vx, n - step stable. That is, for all x <E Vx. Fh(.) = 0.

Since Fh(.) is a continuous function we can obtain a larger Wx D Vx such that 
for all x € Wx,

|| Fh(x) - Fh(0) |j=|i Fh(x) - 0 ||<j| x || . (5.4.13)

Thus, for any x £ Wx by contraction mapping theorem

The following example, illustrates how gradually the domain of controllability can be 
increased using the contraction.

EXAMPLE 5.4.2 Consider the first order system

x(k + 1) = x{k) + u(k) -I- au2(k) + bx2(k) (5.4.14)

where, a and b are scalars.

For the system represented by (5.4.14) we gradually proceed for the robust controller 
having the largest possible set of controllable states.
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Stabilizing the system using linear controller :

The linearized system around the equilibrium (x = 0, u = 0) is given by

Sx(k + 1) = 8x(k) + Su(k) (5.4.15)

For the system (5.4.15), u(k) = —x(k) will stabilize it at origin. Applying this linear 
feedback-law to the nonlinear system (5.4.14) we get an autonomous system given by

x(k + 1) = x(k) — x{k) + ax2(k) + bx2(k) ■

That is,
x(k + 1) = ax2(k) + bx2(k)

which is stable in the interval (—^5, ^). Thus u(k) acts as the feedback controller 
for the linearized system, although for small neighborhood of origin.

Stabilizing the system (5-4-14) tising nonlinear controller :

Theorem 5.4.1 guarantees the existence of 1 - step feedback local controller Ui(k) = 

h[x(k)] for the original system (5.4.14).

That is, x + u\(x) + (x + b)v%(x) = 0 (5.4.16)

Solving for tq we get u\(a;) = 
val (—oo,

this control law is defined on the inter-

Extending the set of controllable states for the nonlinear controller :

To extend the range of nonlinear controller instead of controlling the system to zero 
in one step we choose a contraction coefficient p and design the controller to move 
the system from x to px in one step when x > To achieve this, we need to
determine «2 so that,

x + ^2(2;) + (a. + b)ul(x) = px (5.4.17)

And again solving for u2 we obtain, u2
-X+iv/l-4(o+6)(l-p)a:

For a given p this control
law will stabilize the system (5.4.17) on the interval (—00, approaching
(—00,00) as p —> 1. Thus, combining the two control laws we get, a global law

„(*(*)) = ( if*6|f“’4<±S)]
( U2{x) otherwise
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EXAMPLE 5.4.3 Consider the system given by

Xi(k+1) — u(k) — x2(k)u(k)
x2(k + 1) — —xi{k) + 0.5a;i {k)x2(k) (5.4.18)
xz{k + l) = x\{k) — x2(k) — u2(k)

Solution : Thesystem (5.4.18) can be written in the form x(k+1) — Ax(k) + Bu(k) + 
f(x(k),u(k)) where,

1ooo

' 1 ' -a:2(k)u(k)
-10 0 ,B = 0 andf(x(k),u(k) = 0.5xi(k)x2(k)

,- h-1 i h-
* o 0 u2(k)

We can see that the linear part of (5.4.18) satisfies the controllability condition 
rank = [.B\AB\A2B] = 3 as,

rank
10 0 
0-10 
0 11

— 3

hence, as stated by the Theorem 5.2.1 the system (5.4.18) is approximately control­
lable and by the Theorem 5.4.1 its feedback controller exists. The nonlinear controller 
u(k) — —sin(xi(k) + Xs(k)) for the system stabilizes the system to the equilibrium.

We provide here the simulation of above system. The system has controllable lin­
ear part hence it is locally controllable. For it a feedback nonlinear controller is 
simulated in using feedforward Neural Network .

The feedforward Neural Networks with the configuration iVj’10 x were used to train the 
state components and iVf i01 was used for training it to act as an artificial feedback 
controller. The training performances of each NNs are as shown in the following figure.
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................. '

? v 1 ;

-wm* 4:v ;«*• •vS**. ;, -a-

’‘a; t- • - ... - .‘3:

S'

; -t* [ _ ........... :

a’ JOS -B99' ;-3» .-^403.,; , -V-tffiBJ: :*»;,• '

The convergence of error in training the Neural Networks

Figure 5.9: The convergence for the state near equilibrium



Chapter 5 92

Once the training of the system and the controller was completed, the performance 
of the simulator was verified for the initial state (-0.01,0.5, -0.4). The successive in­
puts from the simulated neural networks controller [-0.2059, -0.0752, -0.0478, -0.0428, 
-0.0421, -0.0419] brought the system to the state (-0.0087, 0.0094, -0.083), the state 
near to the equilibrium, which can be seen in Figure 5.9.

However, it is observed that when the system is initiated form state (4,15,2), the

-TherstatBSvan4eontrollerFctoedtic>t;c«nverge^>f?the

Figure 5.10: The divergence for the state far equilibrium

state far from equilibrium, it diverges as shown in the Figure 5.10.

Mixtank Revisited - Discrete Semilinear form :

The discretized semilinear form of dynamical system representing Mixtank formula­
tion is obtained by taking sampling time as 1 second. Using this sampling factor we 
get the equivalent discrete form as

x{k + 1) = Fx(k) + Gu(k) + fd(x(k), u(k))

z(0) = Xo ’(5-4.19)
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That is,

' V(k + 1) ' '10' ■ V(k) '
+

' i 1' ' Qi(fc) ' +C{k+ 1) 0 1 L c(k) l 0 0 . Q2(fc) .
-i/¥

(9—C(t))10 , (18-O(t))20 
V{t) -t- ■ V(t) .

The rank of the controllability matrix Un for the above system is 1. Hence, the 
linear part of discretized system (5.4.19) is not controllable. Therefore, the discrete 
semilinear system is not controllable.

Illustrative Example: ANN controller for the semilinear sys­
tem :

To demonstrate the ANN controller for semilinear discrete system consider the system 
given by

x{k +1) = Fx{k) + Gu(k) + fd{x(k),u(k))

#(0) = x0

That is,

xi(k + 1) 0.9958 0 xi{k)
+

'• 0.9979 0.9979 ' • Mk)

x2(k +1) 0 0.9917 x2(k) -0.0002 0.0001 _ u2(k)

+ (9—aaft)) 10 , (18-g2(t))20 
*i(t) si(t)

(5.4.20)

The controllability matrix for linear part of system (5.4.20) has rank 2 and the non­
linear function is lipschitz except at zero. Therefore, the semilinear discrete system is 
controllable except at zero. The state and the steering control for the system (5.4.20) 
can be computed using the coupled equations

ui+1(k + l) = Un
3= 1

(5.4.21)

and
„*+i (* + !) = Fnx o + J2 Fn~jGu{k) + J2 Fn-jf(xi,ui) (5.4.22)

i=x i=i

Our aim is to steer the perturbed state of the system (5.4.20)to the state (3600,15).
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For the system (5.4.20), it is observed that the coupled equations converges with 
the accuracy 0.01 in 6 iterations, hence the 6-step steering controller is implemented 
using the feedforward neural network having architecture NNf151212.

The training patterns are generated using the coupled equations (5.4.22) and (5.4.21), 
for the state and controller in the discrete form.

The steering of the state due to signal by 6-step NN steering controller for discrete semilinear system

(3580, 14)
NNUDSL

Perturbed
state

6-step

Control
Signal

Discrete
Semilinear

System

(3600, 15)

Stable
State

6-step control signal: 0.9968 ■654.473 -685.182 -685.325 ■685.297 -685.294
0.9972 682.3191 706.6499 706.5944 706.5912 706.5915

State at each step: 
1.0e+QC3 *

3.58 3.5777 3.6096 3.6034 3.6032 3.6032
0.014 0.0138 0.0154 0.0154 0.0154 0.0154

Figure 5.11: The 6-step ANN controller

Once ANN is trained to act as 6-step controller. It is verified for different perturbed 
states in the neighborhood of the point (3600,15), and is found to steer the initial 
state to the desired state (3600,15).

For example, for the initial state (3580,14) the 6-step control signal is produced 
which when given to the system steers the state (3603,15.4), near to the equilibrium 
(3600,15) as in Figure 5.11. The steering of the state components is as shown in the 
Figure 5.12.

5.5 Summary

In this chapter we developed the controllability results for the semilinear discrete 
dynamical system, first by linearizing it and then extending the domain of control­
lability to almost complete state space. The mixtank process problem revisited, this 
time in the discrete form. For this form of the mixtank problem the local steering 
control is realized using Artificial Neural Networks.
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