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Chapter 1

INTRODUCTION

1.1 Introduction

In this chapter we elaborate upon jthe motivating factors that influence this work, the 
literature review and the outline and organization of the dissertation.

1.2 Motivation & Scope

’’Artificial Neural Networks” (ANN) is one of the pillars of Soft Computing, the 
heuristic approach that allows to]add intelligence to the dumb entities like comput­
ers. In today’s world of automation, one is interested in making systems smart and 
intelligent so that the human intervention is as less as possible. One such application 
arena is ’Control Systems’. ! * '

' r !
Controllability problem is one of the fundamental problems in ’Control System the­
ory’ in which we are looking for aiSteering Control that drives a.system from a given 
initial state ,to a desired final state in a prescribed time interval. It was first intro­
duced by Kalman [44]. Observability is another property associated with dynamical 
system. It is, the dual of controllability. In observability we completely determine the 
state of the system by using the observations.
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For linear systems, numerous necessary and sufficient conditions for controllability 
are established for finite and infinite dimensional systems. However, the nonlinear 
system such as semilinear needs'to be analyzed for various types of nonlinearity. 
Though there are results to check whether a system is controllable or not, but not 
much algorithms are available in literature for the actual computation of the steering 
controls, which is very important in automated applications.

In this thesis, our main objective, is to implement Artificial Neural Networks (ANN) 
algorithm for the actual computation of steering controls, both for linear and non­
linear systems. This is an application of the Artificial Neural Network as a function 
approximator.. The use of Artificial Neural Networks as a function approximator, 
resulted from the following facts: ,

• Cybenko[22] and Hornik [33] proved that the muiltilayred Neural Network is 
f universal ‘approximator. It can approximate any continuous function defined on

compact set. i

• The Back-propagation algorithm used for the training of the feedforward Neural 
Networks with the hidden layers.

The Neural Networks implementation of controller is tempting because.it can be im­
plemented as Very Large Scale Integrated (VLSI) circuits for the automated systems.

In the real practical situations when there is the lack of the model for the system,, the 
ANN can be trained with the help of Input-Output pairs without fitting any kind of 
model to the system. The role of'Neural Network as a controller can be extended to 

■ the adaptive ones when they are integrated with the plant. In this case, they train 
Themselves when they encounter new I/O pairs.

The theory; of jNeural Networks has got extensive attention recently and has been 
proved to be a very efficient tool in many of real life applications like Speech Recogni­
tion, Pattern Recognition [82], Data Mining, Time Series Prediction [20], Biosciences 
etc. ’ '
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1.3 Literature Review

In 1960’s Kalman [44] introduced !the concept of controllability for finite dimensiqnal 
linear systems, which is subsequently extended by many researchers to nonlinear sys­
tems (refer Joshi and George [36]; Sontag [71]) and to infinite dimensional systems ( 
refer Triggiani [75], Pritchard and El Jai [60]). In 1989, Cybenko [22] has proved the 
universal approximation property of feed-forward Neural Networks. This property 
has been further investigated by Hornik [33], Mhaskar [52] and others. Sontag .[70], 
Narendra and Levin [57] have proved results related to the controllability and observ­
ability property for recurrent neural network and their ability to act as controllers, for 
the dynamical: systems. ,

The dynamics of Hopfield Neural; Networks (HNN), a type of Recurrent Networks 
has been found to be that of a control system and thus we study controllability, ob­
servability and stability properties of Hopfield type Neural Networks. Meyer-Base [51] 
has studied the hyperstability of such Hopfield Model. ;

Further, we extend the controllability results by Narendra and Levin [57] for the 
semilinear systems. For the implementation of controllers for linear and semilin- 
eax systems, we make use of multilayered feed-forward neural networks with Back- 
propagation learning algorithm. We also investigate the continuous time semilinear 
system for controllability results and simulate steering controllers for them using Neu­
ral Networks.

In our investigation of controllability property of semilinear dynamical systems, we 
use various tools from functional analysis. Functional analysis has b.een firmly estab­
lished as one of the fundamental' disciplines of pure mathematics. It serves as the 
analytical tool for applied mathematics and their realizations in various sciences. It 
has greatly stimulated the growth of control theory. Though .there has been a con­
siderable development in the theory of nonlinear functional analysis, not much of it 
has been devoted as an application to System Theory. In our work, we make use 
of tools of analysis like Banach fixed point theorem, Schauder’s fixecl point theorem, 
Grownwal’s inequality, Inverse function theorem, Implicit function theorem etc. to 
investigate the existence of steering controls and computation of steering controllers.
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1.4 Dissertation &; Organization

In our thesis, we take up following problems:

Problem 1 : Stability, Controllability and Observability of 
Hopfield Type Neural Networks

After obtaining a mathematical model of Hopfield Type Neural Networks as contin­
uous semilinear dynamical control system we analyze its qualitative properties like 
existence and uniqueness of solution, stability, controllability, observability, etc.

The dynamical system representing Hopfield type Neural Networks, which is a type 
of recurrent Neural Network, with n neurons is given by (refer A. Meyer-Base [51])

Pi
dxj(t)

dt = -x.
n(t) + J2 Wijfjixjit)) + hit)

i=i
n

Vi = YLfor i = 1,2,
i=i

,n

where ar»(t) is a state of the ith neuron at time t, Wy is the connecting strength or 
the synaptic weight between the ith and jth neurons, pi > 0 is the time constant, 
hit) is the external input applied to the ith neuron at time t, fhs are the activation 
(transfer) functions, C\j are the ijth element of the observation matrix.

The above equation, using state space representation can be written as
Ht

. — = Ax + Bu + HFix) 
dt

y — Cx

(1.4.1)

(1.4.2)

where, A =

—di 0
0 -a2

0
0

and B is the diagonal matrix of order n given

diciCJ (U] , 0,21
0 0

...,an) and a* = i for * = 1.2 > •••! n.
0 Oi Wi 2

O2W21 0
... OiWi„ '
... d2H^2n

■F{x) =

' A(*i) ‘
fz(x2)

. OnHnj (InlCn2 0 . fn{%n) .
l
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where, x = [®i,a?2,...,®»]T; u(t) = [Ii(t),I2(t),...1In{t)]T]y = [yi,

The dynamical system represented by (1.4.1) is semilinear system. Existence and 
uniqueness of solution of (1.4.1) has been proved by using generalized Banach Con­
traction principle. The asymptotic stability and BIBO stability of the system is 
proved using the Gronwal’s inequality. The system is shown to be controllable under 
suitable assumptions on the nonlinear functions like Lipschitz continuity and bound­
edness conditions. In all the results related to HNNs, the activation function which 
gives rise to nonlinearity is assumed to be sigmoidal which satisfies boundedness and 
Lipschitz continuity. Under similar assumptions the observability of the system is 
also proved.

Problem 2 : ANN based Steering Control of Semilinear Con­
tinuous Time System

We consider the continuous semilinear system given by the differential equation 

x(t) = A(t)x(t) + B(t)u(t) + f(x(t),u(t))

x(0)=x0 (1.4.3)

where, A(t)nxn is the system matrix, which is assumed to be continuous for all t, 
B(t)nxm is the control matrix. The state x(t) G X C RA, u(t) G U C Rm is the 
control input to the system and / : I?" x Rm —> RJ1 is the nonlinear function which 
is Lipschitz continuous and bounded.

Complete controllability of the continuous time semilinear system is established for 
the Lipschitz continuous and bounded nonlinearity (refer Joshi and George [36]). 
For the continuous semilinear system, we implement the steering control using Neu­
ral Networks in the phase manner as follows:

• Firstly, we simulated the 1-step Neural Network controller for the continuous 
time linear system using the mathematical definition for the minimum norm 
controller.

• Next, the n-step controller for the linear system is simulated using Neural Net­
works.

• Finally, the steering control for the semilinear dynamical system is computed 
and implemented using Neural Networks using the coupled iterative equations 
given below starting with arbitrary (x°(t),u°(t)) ■
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un+l(t) = B*eA*(tf~t')W~~1(0, tf) (x} - eAtfx0 - J*f eA^-s)f(xn(s),un(s))ds^

- (1.4.4)
and

xn+1 (t) = eAtxo + f eA^~T^Bun(T)d,T + f eA^~T^f(xn(T),un(T))dT (1.4.5) 
Jo Jo

The convergence of the above iterative scheme is guaranteed by Banach Contraction 
principle.

In the next phase, all the above mentioned controllers are implemented using Neural 
Networks considering only the I/O data. Hence, the computation of controllability 
Grammian and its inverse is eliminated and the capability of Neural Network to act; 
as controller is explored.

As an application of Neural Networks controller for semilinear dynamical system 
we took up the chemical subprocess: mixing tank, of the process of synthesis of Ethyl 
Acetate.

To produce Ethyl Acetate, Ethanol and Acetic Acid are required in 1:1 mole pro­
portion but, practically it is mixed in the ratio 2:3 say hence, some portion of Acetic 
Acid remains unused which is recycled into the process. The fresh Acetic Acid and 
recycled Acetic Acid are fed in the mixing tank with the concentration Ci, C2 at 
the rate Qi(t) and Q2(t) respectively, which are continuously mixed by the steering 
rod. The outflow from the mixing tank is at a rate Q(t) with concentration C(t). 
It is assumed, that steering causes perfect mixing so that the concentration of the 
solution (Acetic Acid) in the tank is uniform throughout and is same as that of the 
flow coming out of the tank. Also it is assumed that the density remains constant. 
Let V(t) be the volume of Acetic Acid in the tank at time t. Then the mass balance 
and mole balance equations are (refer Gopal [30]):

~p- = Qi(t) + Q2(t)-Q(t)

= ClQl(t) + C2Qi® ~ (L46)

where, C\, Co are the concentration and Q-Jt) and Q2{t) are the flow rates of the 
influent. The outflow Q(t), is characterized by the turbulent flow relation
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where, h(t) is the head of the liquid in the tank, Ac is the cross sectional area of the 
tank and A; is a constant.

The above equation can be put in the standard form:

x(t) = Bu(t) + f(x(t),u(t)) (1.4.8)

where,
'll'

0 0 ■■

And f(x(t),u(t)) is given as:

x(t) V(t)
C(t) :u(t) Qi{t)

Q*{t) , B

f(x(t),u{t)) -kJ7 ■
(Ci—C(t))Qi[t) , (C2-C(t))Q2(t) 

V{t) ^ V(t)

Equation (1.4.8) represents semilinear dynamical system in which the nonlinearity 
/ satisfies the Lipschitz continuity and boundedness conditions required for the lo­
cal controllability around the equilibrium (x0, u0), the desired steady, concentration 
and flow rate. For the realization of controller for the automated plant we train a 
feed-forward neural network with the suitable architecture. The simulation results 
are found to be promising.

Problem 3 : ANN based Steering Control of Semilinear Dis­
crete Time System

We study controllability properties of a discrete-time semilinear system given by

x(k + 1) = F(k)x(k) + G(k)u(k) -I- f(x(k),u(k)) (1.4.9)

x(0) = x0 (1.4.10)
where, F(k)nxn, G(k)nxm are time dependent matrices and F(k) is non-singular for 
all k. The state x(k) £ X C Rn, u(k) £ U C Rm is the control input to the system 
and / : Rn x Rm —> Rn is the nonlinear function. For the system (1.4.9) we obtain 
the steering control by implementing Neural Networks algorithms.

In [57], Narendra and Levin analyzed controllability of discrete nonlinear systems, 
using similar techniques we extend the results for the discrete time semilinear sys­
tems. In many real life applications we often encounter semilinear systems as ap­
proximations of highly nonlinear systems. For the semilinear system, (1.4.9) we show
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the existence of the controller in the neighborhood of the stable equilibrium in the 
open loop form as well as feedback form. The controller thus established brings the 
system to the desired final states in the neighborhood of the initial stable equilibrium 
states in n-steps. Finally, using contraction the controllable states are then extended 
to almost complete state space.

Implementation of the steering controllers, in the different forms, for system (1.4.9) 
is done using feed-forward Neural Networks algorithms in which the training is done 
using simply the I/O pairs.

Problem 4 : ANN implementation of Zonal Controller for 
Parabolic Semilinear Dynamical System

We consider one dimensional parabolic heat equation given by the form 

dv p—-Ay = J2gi(x)ui{t) + f(y) in Q x (0,T) 

y(x, 0) = 0 in

y(£, t) = 0 in dQ x (0, T) (1.4.11)

where, O is a bounded domain in R. Equation (1.4.11) represents a system excited 
by p zone controls (&i, gi)i<i<p with gt G L2(Qt) and Q,t C f2. We shall assume that 
fli fl Qj = (f> for i 7^ j.

Define the linear operator A : E = L2(Q) -+ by Az = Hz with D(/l) =
Hq (fl) fl H2(Q) and B : [iii, 'u2,..., up] —* y)f=1 gilt*. Using these definitions, the equa­
tion (1.4.11) can be written as the following abstract differential equation on infinite 
dimensional space E

z = Az + Bu + F(z), 0 < t < T, z(0) = 0 (1.4.12)

where, u € L2(0, T; {/), B G L(U, E) with U = Rp, F is a nonlinear operator defined 
through /. Here, A generates a strongly continuous semigroup (S(t))t>o on E and B 
is a bounded linear map.

For the system (1.4.12), suppose that (<j>m) are eigenfunctions of A with corresponding 
eigenvalues (Am) of multiplicity one. Let An = diag{ Ai, A2,..., A„}, Bn G L(RP, Rn), Bn 
(Bij) 1 < i, j < n with

Bij =< gj,(pi >r,2 (Qj) .
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Let zn € Rn be the finite dimensional approximation of z in state space L2(O) and 
Fn be the finite dimensional projection of F onto Rn. Then a finite dimensional 
approximation of the system (1.4.12) is given by

Zn — An^n d~ Rn^1 FyJ^^n)

2»(0) = 0. (1.4.13)

The finite dimensional theory is used to obtain steering control for the system, and 
which is implemented using feed-forward ANN.

Problem 5 : Controllability of Parabolic Semilinear Dynamical 
System Using Spatial discretization and its ANN Implemen­
tation

The one dimensional semilinear parabolic differential equation investigated for the 
control of temperature distribution is given by

dU d2U
^ a~dtf ~ C{U ~ U^ + 9^ 0 < re < L, t > 0 (1.4.14)

where, U = U(x,t) is the state of the system representing the temperature distribu­
tion along the bar, here t is time and x is the longitudinal coordinate measured from 
one end. Uoo is the temperature of the surroundings used as control input. Using 
another variable y — U — Ui the equation (1.4.14) becomes,

^ ~ Cy + CVocit) + f(y) (1.4.15)

with the homogeneous boundary and initial conditions (dy/dx)(0,t) = 0, y(L,t) = 0 
and y(x, 0) = 0. The system (1.4.15) is analyzed for controllability property by 
converting it into system of ordinary differential equations using spatial discretization 
technique. The spatial discretization of system is done by dividing the spatial variable 
x into n equal parts of length A®, giving us

^ = -(2cr + C)yi + <r(yi-i+ yi+i)+ Cyoo + /(yi), * = l,2,...,n + 1 (1.4.16)

where a = a/Ax2, i =- 1 indicates the end x = 0 and i = n + 1 indicates the right 
end x = L of the rod. The boundary conditions used at two ends are y0 — Vi and 
Vn+I = o, respectively.
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The equation (1.4.16) can be put in the form

C^ = Ay + Bu + f(y) (1.4.17)

where, yt) = [j/i,y2, ...,y„]r € Rn and u(t) = y^ € R.

Also, the evolution and control matrices are given as

A =

—(<7 + 0 <7 0
a -(2cr + C) o

0

0 a -(2<t + C)

e Rn

B = C[l,-,l]r € Rn and / = (/i,/2,...,/n) where, /* = /(&). Here the boundary 
conditions are applied so as to make A non-singular.

System (1.4.15) is analyzed for boundary control as well as distributed control, which 
are simulated using feed-forward Neural Network.

The thesis consists of seven chapters. The out-line of the thesis with brief contents is 
as follows :

Chapter 1 gives the overall introduction to the thesis. In Chapter 2, we give the 
preliminaries required in the work viz. brief about Neural Networks, necessary con­
cept of control systems theory and nonlinear functional analysis.

In Chapter 3, we investigate the stability, controllability and observability properties 
of Hopfield Neural Network (HNN). The mathematical model of HNN is semilinear 
dynamical system, in which the nonlinearity depends upon the type of activation 
function, which is used in the nodes of the network. We assume that the activa­
tion function is of the sigmoidal type (e.g. t l^j. In this chapter, to establish the 
solution of the dynamical system depicting the HNN and its asymptotic and BIBO 
stability, controllability and observability, we have employed various tools from func­
tional analysis. In fact, many NNs are found to be represented by similar form.

In Chapter 4, we investigate the controllability of the continuous time semilinear 
dynamical systems. We give the ANN implementation results for the linear and non- - 
linear dynamical ’systems. To support the theory, we consider the subprocess, mixing
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tank of the process of synthesis of Ethyl Acetate, for which the Neural Network con­
troller is also simulated.

In Chapter 5, we study the local controllability of semilinear discrete time dynamical 
system using the inverse mapping theorem and the implicit mapping theorem from 
analysis. The nonlinearity in the system is assumed to be Lipsehitz continuous. In 
the later section, we show how the domain of controllable states can be extended to 
the whole state space using contraction. Numerical illustration is given to substanti­
ate the theory. Also, the simulation results of the NN controller using MATLAB are 
incorporated.

Chapter 6 deals with the zonal control of semilinear parabolic dynamical systerh. 
The analysis is done by converting the partial differential equations into ordinary dif­
ferential equations in suitable infinite dimensional spaces. Later on, after projecting 
the abstract system on finite dimensional spaces, we obtain steering control and its 
ANN implementation is carried out.

In Chapter 7, the parabolic dynamical system is again investigated for establishing 
the controllability, this time by using the technique of spatial discretization. We con­
vert the system into a system of ordinary differential equation and obtain a steering 
control, both in the distributed as well as boundary control cases. These controllers 
are finally simulated and implemented using ANN.

1.5 Summary

This chapter gives the overview of the complete dissertation after giving the influen­
tial factors and a note on the existing work for it. In the next chapter, we give the 
brief note on the Artificial Neural Networks (ANN) and highlight upon the prelimi­
naries required for the development of the work.


