List of Figures and Tables

Chapter-1 Introduction

Figure 1.1:	Qualitative curve of the energy loss of an ion in the material as a	function of
	the ion energy, shown on a log-log scale.	12
Figure 1.2:	Typical effects of ion irradiation which include electronic	excitation,
	phonons, ionizations, ion pair formation, radical formation	and chain
	scission.	15
Figure 1.3:	Polarization in dielectric (macroscopic view).	21
Figure 1.4:	(a) Electric dipole (b) Alignment of a dipole (c) Final dipole alig	nment with
	field.	22
Figure 1.5:	Electronic polarization.	24
Figure 1.6:	Polarization mechanisms versus frequency in dielectric material.	26
Figure 1.7:	Dielectric constant vs frequency and temperature A clear ca	st phenolic
	resin, B plasticized PVC, E polymethyl methac	ylate, F,
	polychlorotrifluoroethane, G nylon, H neoprene, I plasticized eth	ylcelluloze,
	L polyurethane foam.	29
Figure 1.8:	Dielectric tangent vs frequency and temperature A clear cast phe	nolic resin,
	B plasticized PVC, C polyvinyl chloride, D unplasticized	I PVC, E
	polymethyl methacrylate, F, polychlorotrifluoroethane, G	nylon, H
	neoprene, I plasticized ethylcelluloze, J epoxy cast resin, K silic	one rubber,
	L polyurethane foam, M polystyrene.	30
	· .	
Chapter-2		
Figure 2.1:	Schematic diagram of IUAC Pelletron accelerator.	53
Figure 2.2:	Schematic diagram of beam lines at IUAC Pelletron facility.	54
Figure 2.3:	Material science irradiation chamber at IUAC Pelletron facility.	55

\$

Figure 2.4:Picture of Two roll mill.58Figure 2.5:Sample Holder to measure electrical properties.72

,

Figure 2.6:	Vickers' Projection Microscope.	75
Figure 2.7.	Concept of AFM and the optical lever: (left) a cantilever touchin	g a sample;
	(right) the optical lever. Scale drawing; the tube scanner measure	s 24 mm in
	diameter, while the cantilever is $100 \ \mu m \log$	79
Figure 2 8:	The AFM feedback loop. A compensation network (which in my	y AFM is a
	computer program) monitors the cantilever deflection and keeps	it constant
	by adjusting the height of the sample (or cantilever).	80
Figure 2.9:	Schematic representation of a SEM.	82
Figure 2.10	Schematic of electronic shells.	84
Figure 2.11:	FTIR Spectroscopy set up.	89
Figure 2.12:	Sketch diagram of DSC measurement.	92
Figure 2.13	Shows the block diagaram of Mossbauer Spectrometer.	96
Figure 2.14.	Decay Scheme of Co ⁵⁷ .	96

Chapter-3

Figure 3 1(a):	AC conductivity versus frequency for pristine pure and dispersed	
	ferric oxalate in PMMA films.	105
Figure 3.1(b).	AC conductivity versus frequency for irradiated pure and dispersed	
	ferric oxalate in PMMA films	105
Figure 3.2(a):	Dielectric constant versus frequency for pristine pure and dispersed	
	ferric oxalate in PMMA films.	106
Figure 3.2(b):	Dielectric constant versus frequency for irradiated pure and disperse	ed
	ferric oxalate in PMMA films.	106
Figure 3.3(a):	Dielectric loss versus frequency for pristine pure and dispersed ferr	ic
	oxalate in PMMA films	107
Figure 3.3(b):	Dielectric loss versus frequency for irradiated pure and dispersed	
	ferric oxalate in PMMA films.	107
Figure 3.4(a):	Plot of hardness (H_v) versus applied load (P) for pristine pure and	
	dispersed ferric oxalate in PMMA films.	109
Figure 3.4(b):	Plot of hardness (H_v) versus applied load (P) for irradiated pure and	
	dispersed ferric oxalate in PMMA films.	109

.

Figure 3.5 (a):	AFM image of pure PMMA film (pristine) (b) dispersed ferric	
	oxalate (10%) in PMMA film (pristine) (c) dispersed ferric oxalate	e (15%) in
	PMMA film (pristine) (d) pure PMMA film (irradiated) (e) dispe	rsed ferric
	oxalate (10%) in PMMA film (irradiated) (f) dispersed ferric oxal	ate (15%)
	in PMMA film (irradiated).	110-111
Figure 3.6(a):	Mossbauer spectra of dispersed ferric oxalate (10%) in PMMA film	n
	(pristine).	113
Figure 3.7(a):	AC conductivity versus frequency for pristine pure and dispersed	
	ferric oxalate in PVC films.	116
Figure 3.7(b):	AC conductivity versus frequency for irradiated	
	(at the fluence of 1×10^{11} ions/cm ²) pure and dispersed	
	ferric oxalate compound in PVC films.	116
Figure 3.7(c):	AC conductivity versus frequency for irradiated (at the fluence of	lx
	10^{12} ions/cm ²) pure and dispersed ferric oxalate compound in PVC	
	films.	117
Figure 3.8(a):	Plot of dielectric constant versus frequency for pristine pure and	
	dispersed ferric oxalate compound in PVC films.	118
Figure 3.8(b):	Plot of dielectric constant versus frequency for irradiated (at the	
	fluence of 1×10^{11} ions/cm ²) pure and ferric oxalate dispersed	
	compound in PVC films.	118
Figure 3.8(c):	Plot of dielectric constant versus frequency for irradiated (at the	
	fluence of 1×10^{12} ions/cm ²) pure and ferric oxalate dispersed	
	compound in PVC films.	119
Figure 3.9(a):	Plot of dielectric loss versus frequency for pristine pure and dispers	ed
	ferric oxalate compound in PVC films.	121
Figure 3.9(b):	Plot of dielectric loss versus frequency for irradiated (at the fluence	e of
	1x 10^{11} ions/cm ²) pure and ferric oxalate dispersed compound in P	VC
	films.	121
Figure 3.9(c):	Plot of dielectric loss versus frequency for irradiated (at the fluence	of
	1x 10^{12} ions/cm ²) pure and ferric oxalate dispersed compound in P	VC
	films.	122

Figure 3 10(a): Plot of hardness (H_v) versus applied load (P) for pristine pure and dispersed ferric oxalate compound in PVC films. 123

- Figure 3.10(b). Plot of hardness (H_v) versus applied load (P) for irradiated (at the fluence of 1x 10¹¹ ions/cm²) pure and dispersed ferric oxalate compound in PVC films.
- Figure 3.10(c): Plot of hardness (H_v) versus applied load (P) for irradiated (at the fluence of 1x 10¹² ions/cm²) pure and dispersed ferric oxalate compound in PVCfilms. 124
- Figure 3.11(a): AFM image of pure PVC film (pristine) (b) dispersed ferric oxalate (5%) in PVC film (pristine) (c) dispersed ferric oxalate (15%) in PVC film (pristine) (d) AFM image of pure PVC film (irradiated at the fluence of x 10^{11} ions/cm²) (e) dispersed ferric oxalate (5%) in PVC film (irradiated at the fluence of 1x 10^{11} ions/cm²) (f) AFM image of dispersed ferric oxalate (15%) in PVC film (irradiated at the fluence of 1x 10^{11} ions/cm²) (g) AFM image of pure PVC film (irradiated at the fluence of x 10^{12} ions/cm²) (h) AFM image of dispersed ferric oxalate (5%) in PVC film (irradiated at the fluence of x 10^{12} ions/cm²) (h) AFM image of dispersed ferric oxalate (5%) in PVC film (irradiated at the fluence of 1x 10^{12} ions/cm²) (i) AFM image of dispersed ferric oxalate (15%) in PVC film (irradiated at the fluence of 1x 10^{12} ions/cm²). 126-128

Figure 3.12(a):	SEM micrograph of dispersed ferric oxalate (15%) in PVC film	
	(pristine).	129
Figure 3.12(b):	SEM micrograph of dispersed ferric oxalate (15%) in PVC film	

- (irradiated at the fluence of 1×10^{11} ions/cm²). 129 Figure 3.12(c): SEM micrograph of dispersed ferric oxalate (15%) in PVC film (irradiated at the fluence of 1×10^{12} ions/cm²). 129
- Figure 3.13(a):AC conductivity versus frequency for pristine pure and dispersedNi-DMG compound in PMMA films.132Figure 3.13(b):AC conductivity versus frequency for irradiated pure and dispersed
- Ni-DMG compound in PMMA films. 132
- Figure 3.14(a):Dielectric constant versus frequency for pristine pure and dispersedNi-DMG compound in PMMA films.134

Figure 3.14(b): Dielectric constant versus frequency for irradiated pure and	
dispersed Ni-DMG compound in PMMA films.	134
Figure 3.15(a): Dielectric loss versus frequency for pristine pure and dispersed Ni-	•
DMG compound in PMMA films.	135
Figure 3.15(b): Plot of dielectric loss versus frequency for irradiated pure and	
dispersed Ni-DMG compound in PMMA films.	136
Figure 3.16(a): Plot of hardness (H_v) versus applied load (P) for pristinee pure and	l.
dispersed Ni-DMG compound in PMMA films.	137
Figure 3.16(b): Plot of hardness (H_v) versus applied load (P) for irradiated pure an	đ
dispersed Ni-DMG compound in PMMA films.	138
Figure 3.17(a): AFM image of pure PMMA film (pristine) (b) dispersed Ni-DMG	
compound (10%) in PMMA film (pristine) (c) dispersed	Ni-DMG
compound (15%) in PMMA film (pristine) (d) pure PM	MA film
(irradiated) (e) dispersed Ni-DMG compound (10%) in PM	MA film
(irradiated) (f) dispersed Ni-DMG compound (15%) in PM	MA film
(irradiated).	139-140

-

Chapter-4

Figure 4.1(a): AC conductivity versus frequency for pristine pure and dispersed Ni	-
DMG in PMMA films.	146
Figure 4.1(b): AC conductivity versus frequency for irradiated (at the fluence of 1)	ĸ
10^{11} ions/cm ²) pure and dispersed Ni-DMG in PMMA films.	147
Figure 4.1(c): AC conductivity versus frequency for irradiated (at the fluence of 1x	K
10^{12} ions/cm ²) pure and dispersed Ni-DMG in PMMA films.	147
Figure 4.2(a): Dielectric constant versus frequency for pristine pure dispersed Ni-	
DMG in PMMA films.	150
Figure 4.2(b): Dielectric constant versus frequency for irradiated (at the fluence of	
1x 10 ¹¹ ions/cm ²) pure and dispersed Ni-DMG in PMMA films.	150
Figure 4.2(c): Dielectric constant versus frequency for irradiated (at the fluence of	
1×10^{12} ions/cm ²) pure and dispersed Ni-DMG in PMMA films.	151

Figure 4.3(a):	Dielectric loss versus frequency for pristine pure and dispersed Ni	
	-DMG in PMMA films.	151
Figure 4.3(b):	Dielectric loss versus frequency for irradiated (at the fluence of 1x)	011
	ions/cm ²) pure and dispersed Ni-DMG in PMMA films.	152
Figure 4.3(c):	Dielectric loss versus frequency for irradiated (at the fluence of 1x1	0 ¹²
	ions/cm ²) pure and dispersed Ni-DMG in PMMA films.	152
Figure 4.4(a):	Plot of hardness (H_v) versus applied load (P) for pristine pure and	
	dispersed Ni-DMG compound in PMMA films.	154
Figure 4.4(b):	Plot of hardness (H_v) versus applied load (P) for irradiated (at the	
	fluence of 1x 10 ¹¹ ions/cm ²) pure and dispersed Ni-DMG con	npound in
	PMMA films.	154
Figure 4.4(c):	Plot of hardness (H_v) versus applied load (P) for irradiated (at the	
	fluence of 1x 10 ¹² ions/cm ²) pure and dispersed Ni-DMG con	pound in
	PMMA films.	155
Figure 4.5:	XRD diffraction pattern for Ni-DMG compound.	157
Figure 4.6(a):	XRD diffraction pattern for pure PMMA film (Pristine).	158
Figure 4.6(b):	XRD diffraction pattern for pure PMMA film (at the fluence of $1x$	
	10^{11} ions/cm ²).	158
Figure 4.6(c):	XRD diffraction pattern for pure PMMA film (at the fluence of 1x	
	10^{12} ions/cm ²).	159
Figure 4.7(a):	XRD diffraction pattern for 5% Ni- DMG compound dispersed in	
	PMMA film (Pristine).	159
Figure 4.7(b):	XRD diffraction pattern for 5% Ni- DMG compound dispersed in	
	PMMA film for irradiated at the fluence of 1×10^{11} ions/cm ² .	160
Figure 4.7(c):	XRD diffraction pattern for 5% Ni- DMG compound dispersed in	
	PMMA film for irradiated at the fluence of 1×10^{12} ions/cm ² .	160
Figure 4.8(a):	XRD diffraction pattern for 20% Ni- DMG compound dispersed in	
	PMMA film (Pristine).	161
Figure 4.8(b):	XRD diffraction pattern for 20% Ni- DMG compound dispersed in	
	PMMA film for irradiated at the fluence of 1×10^{11} ions/cm ² .	161

- Figure 4.8(c): XRD diffraction pattern for 20% Ni- DMG compound dispersed in PMMA film for irradiated at the fluence of 1x 10¹² ions/cm². 162
- Figure 4.9(a): XRD diffraction pattern for 40% Ni- DMG compound dispersed in PMMA film (Pristine). 162
- Figure 4.9 (b): XRD diffraction pattern for 40% Ni- DMG compound dispersed in PMMA films for irradiated at the fluence of 1x 10¹¹ ions/cm². 163
- Figure 4.9(c): XRD diffraction pattern for 40% Ni- DMG compound dispersed in PMMA film for irradiated at the fluence of 1x 10¹² ions/cm². 163
- Figure 4.10(a): AFM image of pure PMMA film (pristine) (b) dispersed Ni-DMG (40%) in PMMA film (pristine) (c) pure PMMA film (irradiated at the fluence of 1 x 10^{12} ions/cm²) (d) dispersed Ni-DMG (40%) in PMMA film (irradiated at the fluence of 1 x 10^{12} ions/cm²). 167
- Figure 4 11(a) SEM micrgraph of pure PMMA film (pristine) (b) dispersed Ni-DMG (5%) in PMMA film (pristine) (c) dispersed Ni-DMG (40%) in PMMA film (pristine) (d) pure PMMA film (irradiated at the fluence of 1x 10^{11} ions/cm²) (e) dispersed Ni-DMG (5%) in PMMA film (irradiated at the fluence of 1x 10^{11} ions/cm²) (f) dispersed Ni-DMG (40%) in PMMA film (irradiated at the fluence of 1x 10^{11} ions/cm²) (g) pure PMMA film (irradiated at the fluence of x 10^{12} ions/cm²) (h) dispersed Ni-DMG (5%) in PMMA film (irradiated at the fluence of 1x 10^{12} ions/cm²) (i) SEM micrograph of dispersed Ni-DMG (40%) in PMMA film (irradiated at the fluence of 1x 10^{12} ions/cm²). 168-170

Chapter-5

Figure 5.1:	FTIR spectra of pristine and irradiated polyimide films.	179
Figure 5.2: Plot of hardness (H_v) versus applied load (P) for pristine and		ated
	polyimide films.	180
Figure 5.3:	Conductivity versus frequency for pristine and irradiated polyimide	9
	films.	183
Figure 5.4:	Plot of dielectric loss versus frequency for pristine and irradiated	
	polyimide films.	183

Figure 5.5:	Plot of dielectric constant versus frequency for pristine and	
	irraduated polyumide films.	184
Figure 5.6:	TGA thermograms of pristine and irradiated polyimide films.	185
Figure 5.7:	DSC thermograms of pristine and irradiated PI films.	186
Figure 5.8:	FTIR spectra of pristine and irradiated PC films.	189
Figure 5.9:	Plot of hardness (H_v) versus applied load (P) for pristine and irrad	liated
	PC films.	192
Fig 5.10:	AC conductivity versus frequency for pristine	
	and irradiated PC films.	192
Figure 5.11:	Variation of tan δ with frequency for pristine	
	and irradiated PC films.	193
Fig 5.12:	Plot of dielectric constant versus frequency for pristine and irradia	ated
	PC films.	193
Figure 5.13:	TGA thermograms of pristine and irradiated PC films.	194
Figure 5.14:	DSC thermograms of pristine and irradiated PC films.	195
Figure 5.15:	FTIR spectra of pristine and irradiated PES samples.	200
Figure 5.16:	Hardness (H_v) versus applied load (P) for pristine and irradiated F	PES
	samples.	201
Figure 5.17(a): AC conductivity versus frequency for pristine and irradiated PES	1
	samples.	202
Figure 5.17(b): Dielectric loss versus frequency for pristine and irradiated sampl	es. 203
Figure 5.17(c): Dielectric constant versus frequency for pristine and irradiate PE	S
	samples.	204
Figure 5.18:	TGA thermograms of pristine and irradiated PES samples.	206
Figure 5.19	ln $[ln(m_0/m)]$ versus 1000/T (K ⁻¹) for the pristine and irradiated P	ES
	samples.	206
Figure 5.20:	DSC thermograms of pristine and irradiated PES samples.	207
Figure 5.21:	The FTIR spectra of pristine and irradiated blend samples.	211
Figure 5.22:	Hardness (H_v) versus applied load (P) for pristine and irradiated	
	samples.	212

Figure 5.23(a).	AC conductivity versus frequency for pristine and irradiated	
	samples.	215
Figure 5.23(b)	Dielectric loss versus frequency for pristine and irradiated samples.	215
Figure 5.23(c):	Dielectric constant versus frequency for pristine and irradiate	
	samples.	216
Figure 5.24:	TGA thermograms of pristine and irradiated samples	217
Figure 5.25:	ln [ln(m ₀ /m)] versus 1000/T (K ⁻¹) for the pristine and irradiated blen	nd
	samples.	218
Figure 5.26:	DSC thermograms of pristine and irradiated samples	219

List of Tables

Chapter-2

Table 2.1: Thickness of the polymers	59
Table 2.2: Details of the irradiation of the polymers.	60

Chapter-3

Table-3.1: Mossbauer parameter of dispersed ferric oxalate (10%) in PMMA film.113

Chapter-4

Table-4.1: XRD parameters for NI-DMG compound.	164
Table-4.2: XRD parameters for pristine and irradiated 5% Ni-DMG compound dispersed	
PMMA films.	164
Table-4.3: XRD parameters for pristine and irradiated 20% Ni-DMG compound	dispersed
PMMA films.	165
Table-4.4: XRD parameters for pristine and irradiated 40% Ni-DMG compound	dispersed
PMMA films	165