CHAPTER -5

PERFORMANCE OF
BOTTOMHOLE CHOKE



CHAPTER -V

5.1 INTRODUCTION

An analysis of the performance of bottomhole chokes with special reference to
Gandhar field is presented. A brief discussion of the applicability of bottomhole
chokes for different reservoirs and well condition is also given. The surface choke
model presented in Chapter-IIl has been extended for predicting the flow
through bottomhole chokes at critical flow conditions. The predictions of flow
rate through bottomhole chokes by the other existing empirical and theoretical
models have been compared with that of the present model. A method of choke
size selection based on system analysis approach is also presented. The
advantages of using bottomhole choke in oil production in terms of energy spent

and static bottomhole pressure change per ton of oil production is brought out.

5.2 THEORETICAL CONSIDERATIONS

Surging production and natural intermittent production are relatively inefficient
ways of using formation gas energy to drive a well. The methods by which the
available formation gas energy can be more efficiently used can be classified into
three types:

i. Methods reducing the liquid throughput capacity of the well

ii. Methods preventing abrupt entrance of large volume of gas from the annulus

(casing-tubing) and
ifi. The methods that, by periodical shut-in and unloading of the well will prevent

the production of gas without liguid.

The throughput capacity of the well can be reduced by replacing the welthead
choke by that with smaller bore. While this will assure a steady flow, it results in a

higher tubinghead pressure. Consequently it results in a lower work potential of
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the gas and if GOR is small it may kill the well also. The risk of killing the well is
considerably reduced if the choke is installed at the tubing shoe. The choke is then
called as a bottomhole choke. While the installation of a bottomhole choke brings
about the same damping effect on the surging and the work potential of the gas is
retained at higher level. A furthet advantage of bottomhole choke is that it reduces
the working pressure of the wellhead assembly. It also reduces the risk of
formation of gas hydrates in a gas well because of the relatively higher
temperatures existing at the well bottom. Gas hydrate, if formed, will obstruct the
choke and may kill the well. If the cooling due to expansion is still high it is
expeditious to install several bottomhole choke one above the other and distribute

the required pressure drop.

Bottomhole chokes can be classified as (i) non-removable type and (ii) removable
type. The non-removable type is nothing but a pressure reducing insert in the
tubing that can be removed by the removal of the tubing only. These types of
chokes are employed in high pressure gas wells only. There are a variety of
removable chokes that can be installed and retrieved by means of wireline tools.
Some have to be seated in a special landing device while others can be seated at
any point of tubing. The Ilatter types of retrievable bottomhole chokes are not
recommended for a pressure differential over 120 bars. For higher pressure

drops, removable bottomhole chokes with mechanical locking device are used.

5.2.1 BOTTOMHOLE CHOKE SIZE SELECTION

An optimum choke is one that gives the required tubinghead pressure for a given

@

static bottomhole pressure and Productivity Index. Brown ®” employed a system

analysis approach for choke size selection. The procedure adopted is as follows :

a) Flow rate through a particular choke is calculated using kmown choke

performance equation.



©)

d)

g)

h)

Using the flowrate determined in step (a) and the Productivity Index (PI) data
obtained from the well test data, the flowing bottomhole pressure (P, is

determined using the equation:

Por=P, - q/PI
(Rof)
Using FBHP, calculated in step (¢) and assuming critical pressure ratio, the

choke downstream pressure is calculated.

Pressure gradient in the tubing downstream of the choke is determined from

the known twophase correlations.

For a given tubinghead pressure and the knowledge of the depth of the choke

the downstream pressure of the choke is calculated.

The calculation of choke downstream pressure starting from bottom ( steps (a)
to (d) ) and starting from the surface ( steps (¢) and (f) ) is repeated for

different choke diameter.

Optimum choke diameter is that one for which the choke downstream pressure

determined in step (d) and that obtained in step (f) are equal.

5.2.2 THE WORK POTENTIAL OF GAS

In a flowing well, fluid from the well is brought to the surface at the expense of

the work potential of the fluid in the reservoir. Considering the well as a system at

steady state, the overall mechanical energy balance can be written as follows :

Energy Input per ton of liquid produced = Energy lost in lifting one ton of oil

+ Energy Lost by the expansion from
P, to P, by the gas .

NOETSNEBEILENNPIINIES (5. 1)
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If P, is the reservoir pressure and P, is the atmospheric pressure, the energy input
along with one cubic meter of gas entering the well is equal to the work potential

of one cubic meter of gas.

- . - R‘T ~ p _
Energy input per cubic meter of gas= . =~ Lu g ’Pr /6 ) = Nf.g ‘

censensessarenen (5.2)

Energy is lost

1. In lifting the fluid from the reservoir to the wellhead through well bore.
2. By flow of fluids through the wellhead equipment

3. By energy carried away by the fluids beyond wellhead.

While comparing the performance of bottomhole choke with that of surface choke
in lifting one ton of liquid from the reservoir all other emergy losses can be
assumed to be same except the work done by the pressure energy that will be
different for bottomhole choke and surface chokes. For this purpose, the energy
spent by change in pressure on the liquid by accompanying gas are only
considered. Energy potential lost in lifting one ton of liquid from pressure of P to

Pun and P to P, are given as:

P, — Pwh
p
P -
Wiy 98.I~—(~5~——-}~)£)- S JTon e (5.3)
p

Where P. = Static Bottomhole Pressure , Kgf/cm2
P.n = Wellhead pressure, Kgf/cm2.
P, = Atmospheric pressure, Kgf/cm2.
p = Density of liquid, Kg/ Cu. M
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Gas energy potential lost in expansion of the free gas accompanying one ton of

liquid in expansion from a pressure P; to P, assuming isothermal expansion is

given as :
F,
We = Rl'ln|—- G.1V:) s (54
Where G, = Quantity of gas in standard cubic meters produced along with
one ton of liquid.
R = Gas constant in Joule/Kg.mole °K.
V., = Volume of one mole of gas accompanying at NTP.

The energy potential lost in lifting one ton of liquid and by expansion of

accompanying gas

wn = Wliq+ wfg

In this equation energy of gas evolved during pressure decline from P; to P, has
been neglected as its contribution is very small compared to the total energy loss.

Therefore,

W, = 981 (fa—i}—)&}+ (I{TGO/Vo)ln(RN T T (X )
o, P

5.3 EXPERIMENTAL

Field trial tests have been conducted for predicting the performance of
bottomhole choke in Gandhar field. Flowing oil wells having provision to install
bottomhole chokes with mechanical locking device were selected for the field trial
tests. The details of a typical field trial set up is presented in Figure 5.1. The well
was completed with 5 1/2" 17 ppf production casing and 2 7/8" 6.4 ppf tubing.
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The possibility of surging of gas from the annulus is removed by the use of a

hydraulic packer at 2827 meters as the packer seals the communication between

the tubing and the casing-tubing annulus. The well was producing from a zone

perforated among 2913 and 2918 meters.

Field trial tests were designed specifically for the following :-

i. To measure the oil and gas flowrates through surface chokes

ii. To measure the oil and gas flowrate through bottomhole choke

iii. To measure the tubing head pressures for both surface choke and bottomhole
choke.

iv. To analyse the productivity indices for both surface and bottomhole chokes

v. To measure the change in static bottomhole pressure per ton of oil production.

5.3.1 TEST PROCEDURE

1) Initially the well was allowed to flow through a surface choke for considerable

amount of time in order to stabilize the flow.

2) At stabilized flow conditions, the tubinghead pressure, oil and gas flowrate,

and tubing head pressures have been measured.

3) Flowing bottomhole fluid sample has been collected and PVT analysis has

been done.

4) Then the well was closed for measuring the pressure buildup for evaluating the

reservoir parameters.

5) Then a bottomhole choke was installed in the landing device by wireline.
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6) The well was allowed to become stabilized. For stabilization it took more
than 8 days.

7) At stabilized conditions the flowrates of oil and gas and tubinghead pressure

have been measured.

In order to compare the performance of bottomhele production system with that
of surface choke system another field trial test was designed to measure the
productivity index for both bottomhole and surface chokes production systems.

The folowing procedure was followed :

1) Imitially the well was allowed to flow through 6 mm surface choke.

2) At stabilized flow conditions, the tubinghead pressure, oil and gas flowrate,

flowing bottomhole pressure and tubing head pressure have been measured

3) All the above measurements have been made for 8 and 10 mm surface chokes

at stabilized conditions.

4) Then the well was closed for measuring the pressure buildup for evaluating

the reservoir parameters.

5) Then the well was allowed to flow through a 6 mm surface choke for

considerable amount of time in order to stabilize the flow.

6) A pressure bomb was installed in the landing nipple to record the upstream

pressure of the choke.

7) Then a 10/64" choke was installed in the upper landing device.
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8) The well was allowed to get stabilized through 8 mm surface choke with
10/64” bottomhole choke in position. For stabilization it took more than 8
days.

9) At stabilized conditions a second pressure bomb was lowered in a wireline

and the downstream pressure of the choke was recorded.

10) The flowrates of oil and gas and tubinghead pressure have been measured

through 8,10 and 12 mm surface chokes.

11) Then the well was closed for sufficient time to record the static bottomhole

pressure.

12) The choke was removed from the landing device followed by the choke

upstream pressure bomb with the help of the wireline.

13) The recorded choke upstream pressure and static bottomhole pressure from
the bottom pressure recorder and the choke downstream pressure from the

top pressure bomb has been read carefully.
Another field trial test was designed to measure the change in static bottomhole
pressure per ton of oil production through surface as well as bottomhole choke

systems. The following procedure was followed :-

1) Inmitially the static bottomhole pressure was recorded and the reservoir

parameters were evaluated.

2) Then the well was put on preduction through an optimum choke.

3) After producing the well for a calculated amount of oil, static bottomhole

pressure was measured again.



4) A bottomhole choke was installed.

S) The well was allowed to flow through bottomhole choke system almost for
eight months.

6) During this period the flow has been closely monitored and the variation in

the flowrate was found to be very small,

7) Then the bottomhole choke was removed and the static bottomhole pressure

was measured.

5.4 RESULTS AND DISCUSSION

The oil flowrate, gas flowrate and tubinghead pressure measured through surface
choke as well as through bottomhole choke from the field trial are presented in
Table 5.1. In Table 5.2 the well test and PVT data for the test wells obtained from
the field trials are given.

5.4.1 PERFORMANCE OF BOTTOMHOLE CHOKE

It has been brought by Perkins *® that the empirical correlations generally are
valid over the range where experimental data were available but may give poor
results when extrapolated to new conditions. Hence, the co-efficient in the Gilbert
form of equation has been modified to fit the bottomhole choke data given in
Table 5.1. A co-efficient of 10.82 has been found to give minimum deviation. So,

the equation for bottomhole choke becomes :

1082 ¢, R
Pf = d2.000 S 0‘0.9(5.7)
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It can be noted that the value of coefficient is different for bottomhole choke when
compared to the values of surface choke. This is because of the fact that the
upstream pressure, the temperature and solution gas ratio are much higher for
bottomhole choke. Further, these empirical correlations do not consider the

physical properties of fluids.

The tubinghead pressure predictions by the equation 5.7 for bottomhole choke
data are presented in Table 5.3. In order to compare the performance of other
empirical correlations the bottomhole choke data collected from the field trial
have been fitted in the empirical correlations of Gilbert, Ros, Baxendell, Achong,
and Pilhevari. The tubinghead pressure predictions by these correlations are
presented in Table 5.4. The statistical analyses of the tubinghead pressure
predictions by the empirical models have been done and the results are given in
Table 5.5. It can be seen from this table that the present empirical correlation ,
Equation 5.7 best predicts the field trial test data. The proposed empirical
equation (Equation 5.7) for bottomhole chokes best predicts the bottomhole choke
data with an average relative percentage error of -7.73 and standard deviation of
14.7 while Ros correlation predicts with a relative percentage error of 48.38 and
standard deviation of 54.71.

CROSS PLOT

The cross plot of predicted versus experimental values for bottomhole choke
tubinghead pressure prediction by the equation 5.7 is shown in Figure 5.2. The
cross plots of predicted versus experimental values for bottomhole choke
tubinghead pressure prediction by various other empirical correlations are
presented in Figures 5.3 through 5.8 In figure 5.2 it can be seen that most of the
plotted points fall very close to the perfect correlation of 45° line. The other

empirical correlations reveal their overestimation.
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35.4.1.1 EVALUATION OF THE THEORETICAL MODEL

A theoretical model developed in the present work for predicting the flow

through choke has been presented in Chapter - III and is given below :-

ko 0.5
C, 4 k( 2 )(}j Pr AB(1+C)
d “%e k+1 gc ¥
=(18464826)——m————————————"— e, 3.29
2 =( ) 4(B+0) (3.29)
where 4 = p +£§e§’~+F (3.25)
ot T els wolPy C e .

B = B +FE, e (3.26)

. (R, -R
C = ( it ’)+§0— L4 (3.30)
5615 T, 144Py

The above equation includes a discharge coefficient Cq to accommodate the
deficiencies of the model. Theoretical models developed by previous investigators
have included such a discharge coefficient. It is necessary to evaluate this
coefficient so that the correlation can be used for the prediction of the

performance of the bottomhole choke.

5.4.1.2 DETERMINATION OF DISCHARGE COEFFICIENT, C;

The field trial test data presented in Table 5.1 have been used to determine the
value of Cy4, using regression analysis. For this purpose, a program developed in
QBASIC and is presented in Appendix-II. A value of 1.574 for discharge
coefficient, Cy , was found to give minimum deviation for the flowrate through
bottomhole choke. With the value of 1.574 for C,;, equation 3.29 can be written

as follows :



2 V(&)
4 k(m] N
M T chq'AB(l—FC)

Q =(1574)(18464826)

A(B+C) ............

The discharge coefficient for the bottomhole choke is twice higher than that of
surface chokes system. This is due to the fact that the model assumes mist flow
through choke. In case of surface choke this assumption is valid whereas in case of
bottomhole choke the flow through the choke may be either single phase of bubble
flow. Further, the properties of the fluid are measured at upstream conditions of
the choke. The upstream solution gas oil ratio and pressure are more in case of

bottomhole choke making the fluid compressible unlike the surface choke system.

54.1.3 STATISTICAL ANALYSIS

In Table 5.6 values of flowrate calculated using equation 5.8 are presented along
with the corresponding test data. Statistical analyses of the data have been carried
out using EXCEL. Equation 5.8 predicts the flowrate with an average relative
percentage error of -4.17, minimum relative percentage error 0.03, a maximum
absolute relative percentage error of 29.57, a standard deviation of 14.04 and a

correlation coefficient of 0.9984,

5.4.1.4 EVALUATION OF OTHER MODELS

Flowrates have been calculated wusing the theoretical models developed by
Poettmann and Beck, Omana, Ashford, Ashford and Pierce, Sq¢hdeva and
Perkins. Measured values of flowrate are presented along with the values
predicted by these models in Tables 5.7 through 5.12. These tables also include

the calculated values of relative percentage error.

Statistical parameters like average percentage relative error, average absolute

percentage relative error, standard deviation and correlation coefficient have also

Y

~
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Statistical parameters like average percentage relative error, average absolute
percentage relative error, standard deviation and correlation coefficient have also
been estimated from these data and are in Table 5.13. Among the theoretical
models, Omana’s model performs better than the other models. It gives a
correlation coefficient of 0.9871 and a standard deviation of 42.34 that is
comparable to the model proposed in the present investigation. Ashford and

Pierce’s model gives the highest standard deviation of 79.93.

CROSS PLOT

The cross plots of measured flowrate against the flowrate predicted by equation
5.8 is shown in Figure 5.8. It shows that equation 5.8 predicts the flow rate with
a good accuracy. Cress plots prepared for the correlations developed by previous
investigators are shown in Figures 5.10 through 5.15. Here also it can be seen
that the equation proposed by Omana predicts the data with a good accuracy.
The overprediction of flowrates by other correlations is due to the fact that the
tubinghead pressure , solution gas oil ratio and the temperature for bottomhole

choke are much higher when compared to surface choke.

5.4.2. COMPARISON OF BOTTOMHOLE CHOKE PRODUCTION
SYSTEM WITH THAT OF SURFACE CHOKE.

In order to evaluate the performance of bottomhole choke production system, the
performance of bottomhole choke has been compared with that of surface choke

system in terms of the following :

e PRODUCTIVITY INDEX

e PRESSURE DROP PER TON OF OIL PRODUCTION

e CONSUMPTION OF ENERGY POTENTIAL IN LIFTING UNIT
MASS OF OIL



5.4.2.1 PRODUCTIVITY INDEX

The oil flowrate, gas oil ratio, flowing bottomhole pressure, static bottomhole
pressure and tubinghead pressure obtained from the productivity index field trial
test through 6,8 and 10 mm surface chokes are tabulated in Table 5.14. The oil
flowrate and gas flowrate measured through 10/64" size bottomhole choke with
8,10 and 12 mm surface chokes are presented in Table 5.15. The recorded choke
upstream pressure, choke downstream pressure and the shut in pressure for the
10/64" Dbottomhole choke are tabulated in Table 5.16. For the purpose of
comparing the bottomhole choke performance with that of the surface choke,
flowrate has been taken as the basis. The flowing bottomhole pressure
corresponding to the measured flowrates through 10/64" bottomhole choke with 8
an 10 mm surface chokes have been obtained from the surface choke inflow

performance curve.

The drawdown corresponding to these flowrates and the respective productivity
indices are calculated and presented in Table 5.17. It is evident from this table
that the use of bottomhole choke increased the flow efficiency by 4.5 times with

respect to surface choke system.

It has been observed during the experiments that when the well is changed from
surface choke system to bottomhole choke system the well requires minimum of 8
days to get fully stabilized. During this period, the gas flowrate observed is more
than the gas flowrate at stabilized conditions. This may be due to the fact that
once bottomhole choke is installed, the drawdown given to the reservoir is less
than that of the surface choke system. This has already been confirmed from
Table 5.17. This can be explained using Figure 5.16. When a surface choke is
installed the flowing bottomhole pressure at the wellbore is denoted as P.5 for a
reservoir pressure of P, whereas for the same liquid flowrate through a
bottomhole choke the flowing bottomhole pressure is Pyp. Since the flowing
bottomhole pressure in case of bottomhole choke is higher than that of the surface

chokes system, when the well is changed from surface choke to bottomhole choke
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system the already liberated gas occupies the pores around the well bore at a
pressure of Pyq. This area has been shown in dark shade in Figure 5.16. These gas
starts entering the wellbore till it attains the equilibrium condition with the flow

through bottomhole choke system.

Further, during flow through surface choke system the fluid entering the wellbore
attains pressures below the bubble point pressure when the reservoir pressure is
slightly higher than the bubble point pressure. In such cases the gas starts
liberating inside the reservoir, forming two-phase flow causing higher pressure
drop. On the other hand, while producing through a bottomhole choke system,
single phase flow is maintained resulting in a lower pressure drop inside the
reservoir. So, the uses of bottomhole choke results in an increase in oil production
and decrease in gas production. It has been further confirmed that the increase
in oil production is not only attributed to the retrograde gas condensation but
also to the single phase flow inside the reservoir due to the less pressure

drawdown.

5.4.2.2 PRESSURE DROP PER TON OF OIL PRODUCTION

The following static bottomhole pressure data collected from the pressure drop
field trial test are tabulated in Table 5.18 :-
- Initial reservoir pressure ( i.e. before starting production)
- Pressure after producing calculated amount of oil through surface choke
system (ie before installing bottomhole choke system ) and

- After producing calculated amount of oil through bottomhole choke system.

From the static bottomhole pressure data, the pressure drop per ton of oil
production has been calculated for both the cases of surface and bottomhole
choke systems and are presented in Table 5.19 . It can be seen from this table that
the static bottomhole pressure drop per ton of oil production in case of
bottomhole choke is seventy (70) times lesser than that of the surface chokes

system in one case and twenty-seven (27) times less in another case.
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5.4.2.3 CONSUMPTION OF ENERGY POTENTIAL IN LIFTING
UNIT MASS OF OIL

In order to analyse the benefits of using bottomhole choke, the energy spent in
lifting unit mass of oil has been calculated using equation 5.6. This has been
tabulated in Table 5.20. From this table it can be seen that the bottomhole choke
system consumes only seventy percent (70%) of the energy consumed by the
surface choke system. In other words the use of bottomhole choke comserves thirty
percent (30%) of the total energy spent in case of surface choke system. This
energy conservation is apparently due to the less free gas production. This free
gas energy conservation will in turn result in higher over all recovery because the
free gas energy is considered to be the main driving force in the process of oil

production in a flowing well.

5.5. BOTTOMHOLE CHOKE SIZE SELECTION

A choke size selection procedure has been evaluated using system analysis
approach. One of the main assumptions made in this procedure is the mist flow
condition in the down stream side of the choke for calculating the pressure drop
inside the tubing string. In the surface choke production system different flow
pattern occurs at various depths starting from single phase flow, bubble flow,
transition flow between slug and mist flow and finally mist flow. But in case of
bottomhole choke only mist flow occurs at the downstream side of the choke due
to the substantial pressure drop across the choke. Because of large pressure drop,
the fluid is flashed liberating all the gas dissolved in the liquid forming liquid as

mist in the continuous gas phase.



The following procedure was adopted for the choke size selection :-

i) The well is tested through a surface choke and flow measurements have been

made at stabilized conditions.

ii) The well is closed for measurements of static bottomhole pressure and

evaluation of reservoir parameters.

iii) PVT analysis of the bottomhole sample is done.

iv) The flow rate through various bottomhole chokes is calculated assuming static
bottomhole pressure as choke upstream pressure and the test GOR as
produced GOR using the model presented in Chapter - III with a dicharge
co- efficient of 1.574

k+1 05
4 k( 2 )(E) Pr AB(1+C)
U NE+1 oLk
—(1574)(i8464826)— 4 538
g =(574) ) 1(B+0) (5.8)
Where A4 = p +22Lp o . (3.25)
> Se1s | P
B = B4F, s (3.26)
®R-R) A £z, 030

5615 T, 144Py

v) From the flowrates obtained from Step iv, the flowing bottomhole pressures
(Pw) are calculated using the productivity index estimated from the well

test data.

Pl = Q
Pl *ow




vi) From the flowing bottomhole pressure, the choke downstream pressure is
calculated assuming a critical pressure ratio of 0.528 and flowing

bottomhole pressure as choke upstream pressure.

Pds = ow * 0.528

vii) From the given tubinghead pressure, the choke downstream pressure is

calculated for a given flowrate assuming mist flow conditions.

viii) Plots of flowrate versus choke downstream pressure calculated in step vii
and flowrate versus choke downstream pressure calculated in step vi are

made.

ix) The inter section of these two plots gives the maximum possible choke size and

flowrate for a given tubing head pressure.

x) The tubinghead pressure for a given choke is calculated by subtracting the
pressure drop inside the tubing-string for the flowrate through the given

choke from the choke downstream pressure, calculated in step vi.

The block diagram for the choke size selection for a given tubinghead pressure is
shown in Figure 5.17. Chokes have been selected as above with the help of a
personal computer and installed in different wells. The after choke pressure,
calculated from top as well as from bottom of the well for various choke sizes for
individual wells have been tabulated in Tables 5.21 through 5.30. The plots
of choke size versus flowrate , choke downstream pressures calculated from the

wellhead and from the bottom of the well for optimum choke size selection have
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been shown in Figures 5.18 through 5{27. Tuh?s predicted and measured
10 W

tubinghead pressures of the field trial testsAare tabulated in Table §.31. It can be

seen from this table and from Figure 5.28 (Cross plot for THP) that the predicted

tubinghead pressures are in close match with the measured values.

5.6 CONCLUSIONS

1. Field trial test results shows the uses of bottomhole choke in oil production

resulted in increase in oil production and decrease in gas oil ratio.

2. During production through bottomhole choke system the static bottomhole
pressure change per ton of oil production is much lesser than that of surface

chokes system.

3. From the energy balance it has been observed that the use of bettomhole
choke conserves the free gas energy which in turn will result in higher overall

recovery.
4. The model proposed in Chapter-III has been extended for bottomhole choke.

5. A discharge co-efficient of 1.574 found to yield minimum deviation for the
bottomhole choke.

6. A comparison of flowrate prediction by the present model with that of the
other existing models has been made and proved that the present model
predicts the flow through bettomhole choke better than any other existing

models,
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7. A bottomhole choke size selection procedure has been evaluated and proved
that mist flow occurs in the choke downstream section of the tubing string
resulting increase in flow efficiency utilizing the maximum use of free gas

energy.

8. The predicted tubinghead pressures . 'JCOY Ax ﬁfmnt ‘chole Sizes
are compared with that of measured values and found that the predicted

values are very close to the measured ones.



TABLES OF CHAPTER-V
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TABLE 5.3 TUBINGHEAD PRESSURE PREDICTIONS BY THE PRESENT
EMPIRICAL CORRELATION FOR BOTTOMHOLE CHOKE

SLNO Tyg%m TPU%EID%CI];EE:)D @Lﬁf&?&gﬁ
-+ |[PRESSURE  puilPRESSURE . puif "o 1 ¢ PRROR
1 4266 3748.20 -12.14
2 4133 4544.72 9.96
3 4076 4385.17 7.59
4 4214 4276.31 1.48
5 1971 2719.63 37.98
6 4233 4309.79 1.81
7 4162 3735.12 -10.26
8 4233 3913.54 7,55
9 4076 3650.18 -10.45
10 4162 4080.06 -1.97
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TABLE 5.6 FLOW RATE PREDICTION BY THE PRESENT THEORETICAL
MODEL FOR BOTTOMHOLE CHOKE

| wmasuren | prepicreD | PERCENT
SL.NO | FLOW RATE | FLOW RATE | RELATIVE
Lt .| BBLS/DAY. BBLS/DAY N ERROR
1 881.00 803.43 -8.80
2 1170.60 824.03 -29.57
3 594.00 527.40 -11.21
4 472.00 393.68 -16.59
5 365.00 379.75 4.04
6 257.00 313.52 21.99
7 704.00 752.90 6.95
8 755.00 706.18 -6.47
9 712.00 T12.18 0.03
10 534.00 522.85 -2.09

b



TABLE 5.7 FLOW RATE PREDICTION BY POETTMANN AND BECK
MODEL FOR BOTTOMHOLE CHOKE

.. | +MEASURED - |-PREDICTED | PERCENT
SLNO | - FLOW RATE - | FLOW RATE | RELATIVE
- - | BBLSDAY . .| BBLS/DAY | ‘ERROR

1 881.00 373.13 -57.65

2 1170.00 459.29 -60.74

3 594.00 148,52 -75.00

4 472.00 155.51 -67.05

5 365.00 92.62 -74.62

6 257.00 35.2 -86.30

7 704.00 198.33 -71.83

8 755.00 254.17 -66.34

9 712.00 247.57 -65.23

10 534.00 137.73 7421

4|

| .
St

-



TABLE 5.8 FLOW RATE PREDICTION BY ASHFORD
MODEL FOR BOTTOMHOLE CHOKE

= | MEASURED | PREDICTED | PERCENT .

SL.NO |- FLOW RATE " | FLOW RATE | “RELATIVE
|~ BBLS/DAY- | BBLSDAY | ERROR
1 881.00 460.05 -47.78
5 1170.00 487.77 -58.31
3 594.00 261.31 -56.01
4 472.00 216.91 -54.04
5 365.00 142.44 -60.98
p 257.00 107.73 -58.08
; 704.00 364.85 -48.17
8 755.00 376.64 -50.11
0 712.00 374.87 47.35
534.00 253.37 -52.58

10

St

-
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TABLE 5.9 FLOW RATE PREDICTION BY ASHFORD AND PIERCE
MODEL FOR BOTTOMHOLE CHOKE

suno | etranrer | mow e |y

S TR TR ) - BBLS/DAY | ERROR
1 881.00 43.24 - -95.09
) 1170.00 31.75 97.29
3 594.00 88.60 -85.08
4 472.00 43.96 -90.69
g 365.00 274.25 -24.86
6 257.00 157.70 -38.64
7 ( 704.00 133.12 -81.09
8 755.00 59.68 -92.10
9 712.00 70.46 -90.10
10 534.00 92.44 -82.69




TABLE 5.10 FLOW RATE PREDICTION BY OMANA
MODEL FORBOTTOMHOLE CHOKE

.~ | MEASURED: .| PREDICTED | PERCENT

SL.NO| .FLOW RATE . | FLOW RATE| RELATIVE

.~ |~ BBLS/DAY ' | BBLS/DAY | ERROR .
1 881.00 754.96 -14.31
5 1170.00 757.47 -35.26
3 594.00 368.20 -38.01
4 472.00 376.04 -20.33
5 365.00 30.79 -91.56
6 257.00 168.68 -34.37
7 704.00 522.18 -25.83
3 755.00 524.84 -30.48
9 712.00 511.22 -28.20
534.00 376.09 -29.57

10

<



TABLE 5.11 FLOW RATE PREDICTION BY SACHDEVA
MODEL FOR BOTTOMHOLE CHOKE

.z )" MEASURED | PREDICTED | PERCENT |
. SLNO. | FLOWRATE |FLOW RATE| RELATIVE .
o~ | - BBLS/DAY. | BBLS/DAY'| = ERROR'

1 881.00 383.00 -56.53
2 1170.00 486.59 -58.41
3 594.00 132.07 -71.77
4 472.00 108.80 -76.95
5 365.00 105.76 -71.02
6 257.00 4334 -83.14
7 704.00 182.68 -74.05
8 755.00 288.36 -61.81
9 712.00 262.23 -63.17
10 534.00 126.86 -76.24

SO

[y



TABLE 5.12

FLOW RATE PREDICTION BY PERKINS

MODEL FOR BOTTOMHOLE CHOKE

.~ ] ' "MEASURED | PREDICTED | . PERCENT
SL:NO |- FLOW RATE | FLOW RATE | - REEATIVE -
-] __-BBLS/DAY- ‘ ‘| BBLS/DAY | - ERROR
1 881.00 695.68 -21.04
2 1170.00 818.40 -30.05
3 594.00 335.31 -43.55
4 472.00 370.49 -21.51
5 365.00 218.66 ~40.09
6 257.00 98.63 ~-61.62
7 704.00 448.29 -36.32
8 755.00 478.16 -36.67
9 712.00 479.15 ~32.70
10 534.00 311.31 -41.70
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TABLE 5.14 SURFACE CHOKE TEST DATA OF TEST WELL NO.2

6 87.00 661.00) 127.59 252.39 20.45 4.25

8 149.00 528.00] 117.95 234.98 37.86 3.94

10 206.00 563.00} 107.53 213.27 59.57 3.46
SHUT IN 147.80




TABLE 5.15 WELL TEST DATA THROUGH 10/64 INCH

BOTTOMHOLE CHOKE ( WELL NO.2)

1 8 163.00 574.00 93562.00
2 10 186.00 434.00 80724.00
3 12 185.00 382.00 70670.00




TABKE 5.16 RECORDED BOTTOMHOLE PRESSURE DATA WITH
10/64" BOTTOMHOLE CHOKE IN POSITION ( TEST NO.2)

160

" SUREACE | o
CHOKE SIZE | -

8

11.8

129.8

10

261.64

11.2

130.1

272.84
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TABLE 5.17 COMPARISION OF SURFACE CHOKE DATA
WITH THAT OF BOTTOMHOLE CHOKE
IN TERMS OF PRODUCTIVITY INDEX

STATIC BOTTOMHOLE PRESSURE = 272. 84 Kg/Cm®

‘SURFAC‘E

BOTTOMHOLE CHOKE 10/64"

8 265.54 11.8 163 13.81

10 266.14 11.2 186 16.6

SURFACE CHOKE

230* 42.84 168 3.8

225.5* 50.34 186 3.69

* CALCULATED FROM SURFACE CHOKE IPR FOR THE FLOWRATES



TABKE 5.18 STATIC BOTTOMHOLE PRESSURE DATA

[ SEY

292.8 278.79 824.39 SURFACE CHOKE
278.79 272.84 24652.90 BOTTOMHOLE CHOKE
282.5 276.6 3736.10 SURFACE CHOKE
276.6 275.45 20043.60 BOTTOMHOLE CHOKE

e

{



TABKE 5.19 CHANGE IN STATIC BOTTOMHOLE

PREESURE PER TON OF OIL PRODUCTION

SURFACE CHOKE
292.8 278.79 824.39 14.01 1699.44
2825 276.6 3736.1 5.9 157.92
BOTTOMHOLE CHOKE
278.79 272.84 20043.6 5.95 29.69
276.6 275.45 24652.9 1.16 4.66




TABLE 5.20 COMPARIS:ON OF ENERGY SPENT
IN LIFTING UNIT MASS OF OIL
(SURFACE CHOKE VS BOTTOMHOLE CHOKE )

ENERGY SPENT IN LIFTING UNIT MASS OF OIL IN 10* JOULES

1 17166.90 4309.44 12857.46
2 4960.55 3571.83 1388.72
3 16824.17 6074.78 10749.39
4 7893.70 3838.21 4055.49
5 15653.71 10856.21 4797.50
6 21093.81 12708.58 8385.23
7 13273.85 6537.97 6735.88
8 12194.65 6336.97 5857.68
9 9730.51 6075.89 3654.62
10 20845.58 6537.20 14308.38




TABLE 5.21 BOTTOMHOLE CHOKE SIZE SELECTION TEST NO.1

RESERVOIR PRESSURE = 4266 Psi

RESERVOIR TEMPERATURE =266 °F

FORMATION VOLUME FACTOR =1.707

TEST GAS OIL RATIO =3208 Scf/Bbl

SOLUTION GAS OIL RATIO =2472 Scf/Bbl

REQUIRED TUBINGHEAD PRESSURE =750 Psi

CHOKE SizE |

- 4/64 INCH- ']
6 206 1997 1808
8 366 1799 1745
10 | 573 1544 1664
12 825 1233 1555
14 1123 864 1428
16 1467 440 1347




TABLE 5.22 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.2

RESERVOIR PRESSURE
RESERVOIR TEMPERATURE

FORMATION VOLUME FACTOR

TEST GAS OIL RATIO
SOLUTION GAS OIL RATIO
REQUIRED TUBINGHEAD PRESSURE

CHOKE SiZE

=4133 Psi
= 262
= 1.565
= 2673 Scf/Bbl
=2156 Scf/Bt
=750

166

AiG4INCH. |/-BBi
: ~ 2092 2335
10 497 2041 —
. o 1980 2286
14 975 1907 2257
16 1274 1823 —
18 1612 1727 2189
20 1990 1621 2140
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TABLE 5.23 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.3

RESERVOIR PRESSURE = 4076 Psi

RESERVOIR TEMPERATURE =262 °F

FORMATION VOLUME FACTOR = 2616

TEST GAS OIL RATIO = 4655 Scf/Bbl

SOLUTION GAS OIL RATIO = 2300 Scf/Bbl

REQUIRED TUBINGHEAD PRESSURE =750 Psi

‘CHOKE SizE

1164 INCH- -} : 3 X RE
6 169 2012 1410
8 301 1903 1390
10 470 1763 1371
12 677 1592 1351
14 922 1390 1332
16 1204 1156 1351
18 1524 892 1497
20 1882 597 2206




TABLE 5.24 BOTTOMHOLE CHOKE SIZE SELECTION TEST NO.4

RESERVOIR PRESSURE

RESERVOIR TEMPERATURE
FORMATION VOLUME FACTOR

TEST GAS OIL RATIO

SOLUTION GAS OIL RATIO

REQUIRED TUBINGHEAD PRESSURE

= 4214Psi

= 270 °F

= 1.9568

= 2875 Scf/Bbl
=1344 ScfiBbl
=750 Psi

CHOKE'SIZE| " FLOW R

“1164'INCH: .| - . BBLS/DAY
8 200 1914 1459
8 356 1673 1410
10 857 1363 1341
12 803 983 1272
14 1092 535 1321
16 1427 18 2557




TABLE 5.25 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO. §

RESERVOIR PRESSURE

RESERVOIR TEMPERATURE
FORMATION VOLUME FACTOR

TEST GAS OIL RATIO

SOLUTION GAS OIL RATIO

REQUIRED TUBINGHEAD PRESSURE

Psi
°F
=2.8619
=9844 Scf/Bbl
= 3256 Scf/Bbl
Psi

6 95 1008 977
8 169 983 o717
10 264 950 998

- 12 380 911 1029
14 517 864 1101
16 675 810 123;4" ,
18 865 748 1473
20 1056 680 1927

169
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TABLE 5.26 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.6

RESERVOIR PRESSURE

RESERVOIR TEMPERATURE
FORMATION VOLUME FACTOR

TEST GAS OIL RATIO

SOLUTION GAS OIL RATIO

REQUIRED TUBINGHEAD PRESSURE

= 4233 Psi
= 267 °F

=1.806

=9844 Scf/Bbl
=1630 Scf/Bbl
=760 Psi

~]

1184 INCH ; “1.« 'BBL
6 178 1781 1068
8 317 1427 1106
10 495 972 1366
12 713 417 5096




TABLE 5.27 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.7

RESERVOIR PRESSURE =4162 Psi
RESERVOIR TEMPERATURE = 262 °F
FORMATION VOLUME FACTOR = 2.4787

TEST GAS OIL RATIO = 4988 Scf/Bbl
SOLUTION GAS OIL RATIO = 2460 Scf/Bbl

REQUIRED TUBINGHEAD PRESSURE =750 Psi




[N

TABLE 5.28 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.8

RESERVOIR PRESSURE = 4233 Psi
RESERVOIR TEMPERATURE =262 °F
FORMATION VOLUME FACTOR = 2.5588
TEST GAS OIL RATIO = 4673 Scf/Bbl
SOLUTION GAS OIL RATIO = 3516 Scf/Bbl
REQUIRED TUBINGHEAD PRESSURE =750 Psi
L INGH T
6 178 2063 1751
8 318 1930 1713
10 497 1758 1655
12 715 1548 1597 |
i 14 974 1301 1520
16 1272 1015 1443 |
18 1610 691 1424
20 1988 329 2079

~1

~

{
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TABLE 5.29 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.9

RESERVOIR PRESSURE =4076 Psi

RESERVOIR TEMPERATURE =262 °F

FORMATION VOLUME FACTOR =2.6161

TEST GAS OIL RATIO = 4656 Scf/Bbl

SOLUTION GAS OIL RATIO =3300 Scf/Bbl

REQUIRED TUBINGHEAD PRESSURE =750 Psi
6 172 1875 1593
8 307 1661 1637
10 480 1385 1462
12 691 1047 1368
14 941 648 1284
16 1229 188 2550




TABLE 5.30 BOTTOMHOLE CHOKE SIZE SELECTION, TEST NO.10

RESERVOIR PRESSURE =4162 Psi

RESERVOIR TEMPERATURE =262 °F

FORMATION VOLUME FACTOR = 24787

TEST GAS OIL RATIO = 4988 Scf/Bbl

SOLUTION GAS OIL RATIO = 2460 ScfiBbi

REQUIRED TUBINGHEAD PRESSURE =780 Psi

[ onone size e

o INCH T

jessetumisssiienistnne
6 175 2091 1350
8 311 2009 1331
10 486 1903 1322
12 700 1774 1313
14 952 1621 1313
16 1244 1444 1322
18 1575 1244 1396

l 20 1944 1021 1590

oy



TABLE 5.31 COMPARISION OF THP PREDICTION BY
CHOKE SIZE SELECTION PROCEDURE
WITH THAT OF MEASURED

Y
-~}
g ]

| Measured THP | Predicted THP
AwPSE o ZiwPSE -

T

1 441

2 421 452

3 1172 1174
4 967 1013
5 597 632

6 1138 1071
7 1123 1274
8 711 701

9 435 429

10 1306 1331




FIGURES OF CHAPTER-V
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