LIST OF TABLES

Table	e Title	Page -
No.		No.
2.1	Prodrugs approved by USFDA in recent, past and presently available on the market	23
2.2	Nose-brain transport of drug molecules and possible pathways	43
3.1	Preparation of diluted Tf and Lf standards	79
3.2	Calibration of TMD in acetonitrile	80
3.3	Linearity of method for estimation of TMD in acetonitrile	80
3.4	Accuracy of the developed method for TMD in acetonitrile	81
3.5	Intra day precision for TMD determination in acetonitrile	81
3.6	Inter day precision for TMD determination in acetonitrile	81
3.7	Calibration of TMD in methanol	82
3.8	Linearity of method for estimation of TMD in methanol	82
3.9	Accuracy of the developed method for TMD in methanol	83
3.10	Intra day precision for TMD determination in methanol	83
3.11	Inter day precision for TMD determination in methanol	84
3.12	Calibration of TMD in PBS pH 5 with 2% Tween-80	84
3.13	Linearity of method for estimation of TMD in PBS pH5 with 2% Tween-80	85
3.14	Accuracy of the developed method for TMD in PBS pH 5 with 2% Tween-80	85
3.15	Intra day precision for TMD determination in PBS pH 5 with 2% Tween-80	86
3.16	Inter day precision for TMD determination in PBS pH 5 with 2% Tween-80	86
3.17	Calibration of LTG in acetonitrile	87
3.18	Linearity of method for estimation of LTG in acetonitrile	88
3.19	Accuracy of the developed method for LTG in acetonitrile	88
3.20	Intra day precision for LTG determination in acetonitrile	89
3.21	Inter day precision for LTG determination in acetonitrile	89
3.22	Calibration for LTG in methanol	90
3.23	Linearity of method for estimation of LTG in methanol	90
3.24	Accuracy of the developed method for LTG in methanol	91
3.25	Intra day precision for LTG determination in methanol	91
3.26	Inter day precision for LTG determination in methanol	92
3.27	Calibration of LTG in PBS pH 5 with 1% SLS	92
3.28	Linearity of method for estimation of LTG in PBS pH5 with 1% SLS	93
3.29	Accuracy of the developed method for LTG in PBS pH 5 with 1% SLS	93
3.30	Intra day precision for LTG determination in PBS pH 5 with 1% SLS	94
3.31	Inter day precision for LTG determination in PBS pH 5 with 1% SLS	94
3.32	Calibration of PVA in water	95
3.33	Linearity of method for estimation of PVA in water	96

3.34	Calibration of Tf and Lf by BCA method	96
3.35	Linearity of BCA method for estimation of Tf and Lf	97
4.1	Polarity index, evaporation rate and boiling point range of solvents	101
4.2	Coded values of the formulation parameters for TMD-NPs and LTG-NPs	104
4.3	Selection of Organic Phase	113
4.4	3 ³ factorial experimental design for TMD-NPs	114
4.5	3 ³ factorial experimental design for LTG-NPs	.115
4.6	Analysis of Variance of PS for Full and Reduced Model for TMD-NPs	117
4.7	Analysis of Variance of EE for Full and Reduced Model TMD-NPs	117
4.8	Analysis of Variance of PS for Full and Reduced Model for LTG-NPs	117
4.9	Analysis of Variance of EE for Full and Reduced Model LTG-NPs	118
4.10	Check point analysis for TMD-NPs	127
4.11	Check point analysis for LTG-NPs	128
4.12	Influence of the concentration of the activating agent SR-4GL on Tf/Lf	130
4.12	density and PS of TMD-NPs	. 130
4.13	Influence of the Tf/Lf concentration on Tf/Lf density and PS of TMD-NPs	130
4.14	Influence of the concentration of the activating agent SR-4GL on Tf/Lf	130
4.14	density and PS of LTG-NPs	130
4.15	Influence of the Tf/Lf concentration on Tf/Lf density and PS of LTG-NPs	131
4.16	Effect of different lyoprotectants and its concentration on the PS and	138
4.10	redispersibility of TMD-NPs	130
4.17	Effect of Trehalose on the PS and redispersibility of NPs formulations	138
4.18	PS, PDI, ZP, %EE, %Residual PVA of unconjugated & conjugated NPs	140
4.19	Mathematical modeling of release profile of TMD from NPs	145
4.20	Mathematical modeling of release profile of LTG from NPs	145
5.1	Solubility of TMD in oils and surfactants	162
5.2	Solubility of LTG in oils and surfactants	163
5.3	Formulation of TME	166
5.4	Formulation of LME	167
5.5	Optimization of Soya lecithin concentration in TNE	169
5.6	Optimization of poloxamer concentration in TNE	169
5.7	Optimization of Soya lecithin concentration in LNE	171
5.8	Optimization of poloxamer concentration in LNE	171
5.9	Characterization of Microemulsion and Nanoemulsion	172
5.10	Mathematical modeling of release profile of TS, TME and TNE	175
5.11	Mathematical modeling of release profile of LS, LME and LNE	176
5.12	Flux and diffusion coefficient for Microemulsion and Nanoemulsion	176
6.1	Stability study of Tf-TMD NPs	186
6.2	Stability study of Lf-TMD NPs	187
6.3	Stability study of Tf-LTG NPs	189

6.4	Stability study of Lf-LTG NPs	189
6.5	Accelerated physical stability studies of TME, TNE, LME and LNE	192
6.6	Stability study of TME	193
6.7	Stability study of LME	193
6.8	Stability study of TNE	195
6.9	Stability study of LNE	195
7.1	Influence of incubation time on the labeling efficiency of TMDS and TMD-NPs formulations	204
7.2	Influence of the Amount of Stannous Chloride on the Labelling Efficiency of TMDS and TMD-NPs formulations	204
7.3	<i>In-vitro</i> stability of 99mTC-labelled complex of TMDS and TMD-NPs formulations in rat serum	205
7.4	Influence of incubation time on the labeling efficiency of LTGS and LTG-NPs formulations	206
7.5	Influence of the Amount of Stannous Chloride on the Labelling Efficiency of LTGS and LTG-NPs formulations	206
7.6	<i>In-vitro</i> stability of 99mTC-labelled complex of LTGS and LTG-NPs formulations in rat serum	207
7.7	Radiolabelling summary of DS and NPs formulations	208
7.8	Influence of incubation time on the labeling efficiency of TS, TME and TNE	209
7.9	Influence of the Amount of Stannous Chloride on the Labelling Efficiency of TS, TME and TNE	209
7.10	In-vitro stability of 99mTC-labelled complex of TS, TME and TNE	210
7.11	Influence of incubation time on the labeling efficiency of LS, LME and LNE	211
7.12	Influence of the Amount of Stannous Chloride on the Labelling Efficiency of LS, LME and LNE	211
7.13	Stability of 99mTC-labelled complex of TS, TME and TNE	212
7.14	Radiolabelling summary of DS, Microemulsion and Nanoemulsion	213
8.1	Tissue / Organ distribution of ^{99m} TC labelled TMDS	219
8.2	Tissue / Organ distribution of ^{99m} TC labelled TMD-NPs	220
8.3	Tissue / Organ distribution of ^{99m} TC labelled Tf-TMD-NPs	220
8.4	Tissue / Organ distribution of ^{99m} TC labelled Lf-TMD-NPs	220
8.5	Pharmacokinetic parameters of blood for TMDS and TMD NPs formulations	223
8.6	Pharmacokinetic parameters of brain for TMDS and TMD NPs formulations	223
8.7	Relative Targeting Ratio of TMD formulations	223
8.8	AUC _(0→48) values of different organs for TMDS and TMD NPs	224

	formulations	
8.9	Tissue / Organ distribution of ^{99m} TC labelled LTGS	224
8.10	Tissue / Organ distribution of ^{99m} TC labelled LTG-NPs	224
8.11	Tissue / Organ distribution of 99mTC labelled Tf-LTG-NPs	225
8.12	Tissue / Organ distribution of 99mTC labelled Lf-LTG-NPs	225
8.13	Pharmacokinetic parameters of blood for LTGS and LTG NPs formulations	228
8.14	. Pharmacokinetic parameters of brain for LTGS and LTG NPs formulations	228
8.15	Relative Targeting Ratio of LTG formulations	228
8.16	$AUC_{(0\rightarrow48)}$ values of different organs for LTGS and LTG NPs formulations	229
8.17	Tissue / Organ distribution of ^{99m} TC labelled TS _{in}	233
8.18	Tissue / Organ distribution of ^{99m} TC labelled TME	234.
8,19	Tissue / Organ distribution of 99mTC labelled TNE	234
8.20	Pharmacokinetic parameters of blood and brain for TS _{iv} , TS _{in} , TME and	237
0.20	TNE	231
	Brain targeting efficiency and direct nose to brain transport percentage	
8.21	following i.n. administration of ^{99m} Tc labelled TS _{iv} , TS _{in} , TS, TME and	237
	TNE	
8.22	AUC _(0→48) values of different organs for TS _{iv} , TS _{in} , TME and TNE	238
8.23	Tissue / Organ distribution of ^{99m} TC labelled LS _{in}	238
8.24	Tissue / Organ distribution of ^{99m} TC labelled LME	238
8.25	Tissue / Organ distribution of ^{99m} TC labelled LNE	239
8.26	Pharmacokinetic parameters of blood and brain for LSiv, LSin, LME and	242
-	LNE	<i>∠</i> ¬∠
8.27	Brain targeting efficiency and Direct nose to brain transport percentage	242
	following i.n. administration of ^{99m} Tc labeled LS _{iv} , LS _{in} , LME and LNE	
8.28	AUC _(0→48) values of different organs for LS _{iv} , LS _{in} , LME and LNE	242