
CHAPTER V

FILAMENTATION IN HEAVY ION COLLISIONS

In this chapter filamentation instability of two counter 

streaming color fluxes will be analyzed. This chapter is composed as
i

follows. In section 5.1 motivation for studying the filamentation will 

be provided. In section 5.2 the derivation of the equations describing 

filamentation of two color streams will be presented. Section 5.3 

deals with the numerical solutions and their analysis. Summary and 

conclusions are provided in section 5.4.

5.1 INTRODUCTION : The prospects of generating QGP in the 

relativistic heavy-ion collision (RHIC) experiments have stimulated 

much interest in finding out the consequence of the presence of QGP on 

the evolution of secondaries. Such studies may be useful in explaining 

the new features of RHIC which would possibly arise due to the 

presence of QGP and also in finding out the signature of QGP. Due to 

the expected transparency of the nuclei in RHIC, the instabilities 

associated with the plasma streaming are of interest. Such 

instabilities associated with the hadron plasma were first studied by 

Ivanov* and it was demonstrated that under RHIC conditions only the 

filamentation mode is the most unstable as the growth time of this 

instability was found to be shorter than that of the total interaction 

time of the two nuclei [i.e. the time interval within which the two 

nuclei can fly pass each other’s diameters, see Ivanov in ref.l]. Soon 

after this work it was shown that filamentation instability in RHIC 

might occur even at the energy range ( few hundred GeV per nucleon)
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2where quark-gluon plasma might be produced. Dispersion relation and 

the growth rate for the filamentation mode, in these works, have been 

obtained within the frame work of classical kinetic theory.

Thus, it is obviously of interest to examine how the

filamentation instability can affect heavy ion collisions. 

Filamentation is the instability which leads to stratification of 

initially homogeneous and oppositely directed plasma flux which are

interacting via mean vector fields (gluon fields for QGP). As 

filamentation instability leads to net color and baryon current in the 

plasma it was proposed in the previous work in hadron plasma and in 

QGP (see Ref. 1-2) that such stratification can directly be observed 

m the heavy ion collision experiments. This is because such currents 

should be radiating electromagnetic waves (y radiation) along the 

direction perpendicular to the beam axis [Ref. 1-2]. However, doubts 
have been cast on this way of detecting the instability^ on the ground 

that there are other photon sources, e.g. neutral pions, which can

also emit photons in the same energy range as those from 

filamentation

Another important consequence of the instability is that it

might enhance the nuclear stopping power. As we will see below (in

section 5.2) in such an instability, the electric field is directed

against the streaming current This can decelerate the streaming

velocity. However, this mechanism can become strong only when the

electric field grows in amplitude with the instability. This is a

collective mechanism for the deceleration and it becomes important 

only after the growth time of the instability. Thus, to examine such a 

deceleration, the study of the nonlinear state generated by the
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instability is of much importance. If the growth time of the

instability is much shorter than the overall interaction time of the

two nuclei then the deceleration can become significant and may

enhance the stopping power of the nuclei. Indeed, there are some

indications that stopping power of nucleus-nucleus collision is higher

than that of nucleon-nucleon or nucleon-nucleus collisions at high 
5 'energies . It ought to be mentioned that in the earlier works on the 

filamentation in QGP (Ref.2-3) the problem of stopping has not been 

analyzed. However, in the work on filamentation in the hadron plasma 

(Ref.l) it was mentioned that such instability might contribute to 

nuclear stopping.

In the present work our chief interest is to examine how

effective is the collective deceleration mechanism provided by the

filamentation. As already mentioned, this can affect the nuclear

stopping. For this the analysis of the nonlinear state generated by

the instability will be of crucial importance. We have applied the CHD

equations, derived in the previous chapter, to study this instability

non-perturbatively. However, in the present section a linear stability

analysis will also be provided to obtain the dispersion relation for

the filamentation mode. The maximum growth rate obtained by using the

CHD equations is found to be the same as that obtained by using the

4linearized kinetic equations.

For simplicity we have considered the plasma to be infinite in 

extent and comprising of two counter streaming color beams in the 

color neutralizing background. Moreover, we have considered the

simplest geometry in which filamentation can occur. This is consistent 

with the earlier work as they have demonstrated that the filamentation
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mode is the most unstable mode, for RHIC conditions, compared to other 

possible instabilities arising due to the plasma streaming (Ref. 1-3). 

Thus we have considered a mixed wave (having both longitudinal and 

transverse components of the color fields) having a component of the 

color electric field in the direction of the stream velocity and thus 

generating a current in the opposite direction. The propagation of
t

waves along the beam direction is ignored as it gives the
3"longitudinal two stream instability" which is found to be much

4weaker, in RHIC conditions, as compared to the filamentation mode.

In order to analyze the stopping of the beams and to describe 

the properties of the final nonlinear state of the instability, we 

have numerically investigated the solutions of the nonlinear 

hydrodynamics and the field equations using a plane wave ansatz. 

Starting from the arbitrary initial conditions in a moving frame (in 

which the wave phase is assumed to be stationary), velocity profiles 

in x and z-directions are studied. It is found that the non-linear 

state is one where the incident color fluxes have lost a considerable 

fraction of their mean directed motion. The auto-correlations of the 

velocity profiles suggest that the stream velocities have become 

chaotic and the mean value is never restored the original value of the 

directed velocity.

It should be noted that analogus to the situation in Coulomb 

plasma a colored test particle traversing in QCD plasma can lose its 

energy by interactions with plasma collective modes. Indeed, the 

perturbative calculations of such type, for equilibrium QGP, have 

shown that the energy loss of a high energy test particle is extremely 
small^
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5.2 EQUATIONS FOR FILAMENTATION : To obtain the basic equations 

describing the filamentation we apply the CHD and Yang-Mills 

equations, in cold collisionless limit, to the following situation :We 

assume that two species A = 1,2 of the same masses are counter

streaming in z-direction. The equilibrium velocities , when no 

perturbation is applied, for both the species is VQ for A = 1 and - VQ 

for A = 2 and |v | ~ 1. The equilibrium components of velocity vector 

in the other direction (perpendicular to z) are assumed to be zero. 

When there is no perturbation, both the species are considered to be 

homogeneous and have the same value for the equilibrium density n . 

Also the color vectors of both species are assumed to be the same in 

the absence of any perturbation i.e IjQa = ^oa- ^here *s 80 overa^

color neutralizing back ground which is homogeneous in density and 

color and does not change with the perturbations.. It was found that 

the instability is maximum in the direction perpendicular to the 
stream velocity^. Therefore in such a plasma we have considered a 

mixed wave which propagates in a direction perpendicular (say x-axis)

to the stream axis. The wave is assumed to have components of color

electric fields along x- and z-axes while the component of color 

magnetic field is in y-direction. Such a system is unstable and leads 

to filamentation (Ref.1-4). The CHD and Yang-Mills equations for this 

case are then written as •

(a20 - °IK + S'-bcK 8xAc * 8xAb Acl + sTAS>ZAa • CA£a^]
Xv2a z

= Ja (1)
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<0 ^ - ®eabcAb ‘A - ' <A£Ab>Aal ' Ja ®

Va + S>AVA> = 0 O)

m(30 + VA 3x>VA = SlAaK ' VABa ' VA*VAEa + V1 Ea» SQA<5>

1

m<a0 + VA sx)VA “ 8>AK • V*Bl - V*(V*E‘ + V* Ef)] SQa(6)

<30 + VA 8x)>Aa = ®£abc< VA Ab + VA Ab >'ac <7>

where SQA = {1 - (V * )2- (vj)2)1/2, E* = - a0A* E* = - 8/J and B? = 

- a Af + ge , AuA^. It should be mentioned that A^ = 0 is the gauge
X a a DC DC O

choice exercised m writing the above equations.

Before we proceed further, it should be noted that

interpenetration of the two species can cause collisional momentum 

transfer from one specie to another. Therefore in Eqs.(4-5) one must 

include a term involving collisions between particles belonging to the 

two different species. Such terms may be included phenomenologically 

as in the appendix of Chapter IV. However, when the plasma frequency 

is much higher than the collision frequency, such terms in the 

momentum balance equations (i.e. Eqs.4-5) can be ignored. This is 

because the momentum transfer due to the collective mechanism can 

significantly exceed that due to the collisions.

Next we obtain the dispersion relation for the instability. For 

this purpose we will assume that when no perturbation is applied, all 

the force field in the plasma is zero. Such a plasma will be then 

shown to be unstable with respect to the transverse perturbations

81



provided by the mixed wave Since for the stability analysis we are 

interested in small departure from the equilibrium, we write

(I) Af = Af, A* = A* as there is no back ground Yang-Mills
a a a a

potentials

(II) no initial flow in the x-direction i.e. V* = V*
a a

Oil) vf = V. + VA ( V. = -VA for A = 1 and +V„ for A =2 ) 
v A Ao A Ao o o

1 o(iv) as the background color vectors are same we write 1^ = I

+ TAaand

(v) also the background density for both the species are the 

same and hence n^ = nQ + n^.

Here all the quantities with ‘tilde’ denote perturbations. The

absolute values of the background quantities are assumed to be much 

greater than the absolute values of the perturbations. Moreover all 

the background quantities are assumed to be homogeneous in space and 

constant in time. The various quantities are substituted in eqs. 

(l)-(6) and by retaining only the I order terms in the perturbations, 

one can get the ‘linearized’ version of Eqs.(l)-(6).

Next by considering that all the perturbed quantities vary as ~ 
ei(kx-o>t)^ Qne can 0btain from ^ gqj.

Ka = -(k/o>)n0 g SQ0 I°(o V+ k V*0 V> /(m m)

V = -8*b(“ V+ k VA0 V> /<ra <o)
VA = ' 8 SQfl >b Sb/(m (D)

( 2)1/2
where SQq = 0 " Vol

If we substitute these in the expression for the currents 

(Chapter II ) we get the following current profile
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Ja =
2 S2P

rrf
° OhXh + 

abb
2 i g n -

o tzto
(0 vx,Ar;ro abc b c

2(k/co) V2 (7)
' m o a b b

where pQ = n - [ 1 - V2 ]1/2 is the density in the rest frame of the 

fluid ( i.e. proper density ).
/ 2 2 \ ~zAs a result the linearized en. (6) then reduces to -(to - k ; =

^a
Multiplying these eqs by 1° and summing over a, we get,

-(o)2 - k2 ) = -2co2 (l - V2 ) - 2(k/to)co^Vo2 (8)

where or =
g p„a,)

p m 

The solutions of eq. (8) are,

k2 + 2co2(1-V2)

co +=

* [ {k2+ +8k‘“-v.2,J2 2
P o J

1/2

(9)

Clearly the -ve root of this equation gives rise to an

instability For the streams colliding with the relativistic velocity 

Vo~ 1, eq. (9) will become

One can see from (10) that the absolute value of co2 always increases 

, 2 2

with k For k » co one finds 
P

co2 = - co2( 1-co2/k2) (11)

where cpo = 2c0p which is similar to that obtained by Mrowczynski

(Ref.4). Retaining only zeroth order term in G>o/k one can get the

minimum time t scale for the instability to develop as 
min '

83



lmin co
0.7
CO_ 0.5-0.3 fm/ c

This instability can grow if the interaction time of the two

nuclei is greater than tm . The interaction time t of two nuclei

can be taken as the time the nuclei will take to fly pass each other
1/2

- 2 C, A. ( 2 Mn' E lai 02)

where rQ = 11 fm, A is atomic number, Ej^ is the energy of the 

projectile. At 200 Gev/ nucleon, for the collision of two uranium

nuclei t . ~ 15 fm/c, which is much greater than t • and hence the 
int ° min

instability can develop in RHIC. Note that tj is underestimated as 

the mutual deceleration of the two species due to collisions and the 

effect of plasmon decay' are ignored (Ref. 1,4). However, this

underestimate is justified.

In order to estimate the strength of initial perturbations of
E2 -1

the gauge fields A, we take --------- p ~ 10 where p is the plasma
t her

,2-parameter (see chapter IV, page 9) and E is the field energy. Thus 
4~4A2g T A 42 -1

— g A and thus A ~ 10. Hence within the time
2 ,2Cl) A
P
the r T

period of few t the perturbations can become large and they cannot 

be described by the linearized set of equations (Eqs.7-9). In order to 

study the nonlinear state generated by the instability one must 

consider the solutions of Eqs( 1-6)with the full non-linearity. However 

Eqs.(l-6) are a set of coupled nonlinear partial differential

equations, which are very difficult to solve in their generality. 

Therefore, we look for special solutions of these equations which are

nonlinear plane stationary waves. Thus we assume that all the

quantities are function of a single variable C = x + pt. This

assumption will convert all the partial differential equations of the
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problem to the ordinary ones. Physically the important assumption here 

is that the nonlinear solutions are stationary in a frame moving with

the phase speed (3. Such stationary waves have already been discussed

in Chapter III.

In the stationary frame all the hydrodynamical equations, except 

the one for color dynamics for (say) specie 1 can be integrated
i

analytically. In the dimensionless form the resultant equations are

given below

P n,
8 V

>2a = P8k EabcAbAc ♦
(P - 1)

0k _ k Z t z 
eabc b c

(15)

0kZ[(A^)V

K AbK ]- !la + 2I2oa <16>

where f, Ao

1 - V

1

172 0 I At. AAb b

1A
1 - V'

172
P0 IAbAXb

g i oa0 S a 0 = _2_°, k
m CO.

V
~p m

■o A 2 % Vo
and co_ =

Here a and i are some normalizing factors for the dimensionless 
o o ,
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gauge field potentials and the color vector respectively and they 

arise in the same way as before (see previous chapters). The prime 

denotes differentiation with respect to a dimensionless variable t 

defined by t = C/0^- These equations then can be used to define 

current profiles in terms of the gauge field amplitudes. When these 

current profiles are substituted in the Yang-Mills equations one

obtains a set of equations, in terms of the dimensionless variables, 

which describe the saturated nonlinear state generated by the

filamentation instability in the stationary frame

0k
]3—N1 eabc + Vj Tc (17)

teabcAb Ac' + k2 <Ab>2 - K Ab ) Aa (IB)

a
(19)

This is a set of 15 coupled ordinary nonlinear equations and 

it is not possible to solve them analytically. Therefore solutions of 

these equations have been obtained numerically and they are discussed 

in the next section

5,3 NUMERICAL RESULTS AND DISCUSSION : In this section numerical 

solutions of Eqs.(17-19) will be discussed. These equations have the 

following conservation law

§! <Af)2 + (Af)2+ k2[(Ap2(Ap2 . (a^2] +

^-[l/SQj+l/SC^] = constant (20)

where SQA (A= 1,2) have already defined above[below Eq.(7)]. Eq.(20) 

can be understood in terms of the field energy and the kinetic energy

(P - 1)A* + ke,
abc

2A? a! + A? A* 
be be + k (Ai A^A
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of the plasma particles. The terms with the factors 1/SQ^ are

correspond to the sum of kinetic energy of each specie, while the rest 

of the terms correspond to the field energy. Eq.(20) has been used to

check the accuracy of the numerical solutions.

Fourth order Runge-Kutta method with variable step size has been 

used to integrate Eqs.(17-19). The results shown in the figures 

(below) are the typical solutions of Eqs.(17-19). The solutions with 

different initial conditions and parameter choice do not show any

different qualitative behavior than those depicted in these figures.

As mentioned earlier filamentation is expected to provide a 

mechanism for the deceleration of the color flux. Therefore, the 

velocity profiles defined by Eqs.(13-14) are the right physical

variables to study such effect.

Fig (1 a) shows the velocity of specie 2 in z-direction as 

function of t. It clearly shows that for the value of non-abelian

parameter k = 0.1, the initial flow velocity (at t = 0) Vjq = -9 (in 

the units of 9) considerably reduces with increasing t and attains a 

mean value around -1.0 within the time scale characterized by a few 

plasma frequency. Thus the velocity of the color flux in the 

longitudinal direction reduces significantly. The transverse component 

of the velocity (in x-direction) which was zero initially has acquired 

a mean velocity around 3.9 during the course of the motion. One can 

calculate the loss in the kinetic energy by subtracting the initial 

kinetic energy from the mean energy It is found that around 847. of 

the initial kinetic energy has been lost during the course of the 

motion.

Fig.(2a) shows the z-component of the velocity of the specie 2
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for the strength of the non-abehan parameter k = 0.5. The plot 

clearly shows that the initial flow velocity Vj = -9 attains a mean 

value around -3.0 within the time period characterized by a few plasma 

frequency Fig (2b) depicts the plot of x-component of the velocity. 

Initial flow velocity which was zero develops a mean velocity around 

the value 2.7. The energy loss, in this case, is found to be 90 '/. of
i

the initial kinetic energy of the color flux.

Thus, from this one may conclude that within a few plasma 
oscillations (t^j included) the color fluxes will lose considerable 

fraction of their mean directed energy and hence enhance the nuclear 

stopping The time within which the beams lose their energy may be 

higher than tj (as estimated above). However, the overall

interaction time due to this collective mechanism can exceed t- ..mt
The autocorrelation for the z-component of the velocity

(Fig.lc-2c) shows that the flow has become chaotic and the

correlations decrease very fast without any sign of its recurrence.

Thus one can say that a significant fraction of the mean directed

energy of the plasma stream is lost completely into randomly

oscillating wave fields and kinetic energies.

The time interval within which the beams are losing energy may

of the order of sum of t • and the time within which the nonlinear
min

state looses its initial kinetic energy. In the stationary frame 

ansatz this time may be regarded as the distance over which the fluid 

element has lost its energy From our results an estimate of such 

distances may be of the orders of few fermis which is much less than 

that obtained by the linear calculations of the energy loss [Ref.6].

Fig.(3) shows the velocity profile for the case k = 0. In this
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case Eqs (17-19) reduce to those for an abelian plasma as all the 

non-abehan terms drop out from the equations. This figure clearly

shows that there is a marginal difference between the mean velocity

and the initial velocity. Thus, in this case, the fluxes do not loose

much of their kinetic energy compared to the previous two cases with k 

* 0.

5.4 SUMMARY AND CONCLUSIONS : In this chapter we have studied 

the filamentation instability and have found that the hydrodynamic

treatment that has been adopted by us gives the same value of the 

maximum growth rate as obtained by the earlier methods based on

classical kinetic approach.

The analysis of the nonlinear state of the instability is

earned out. The nonlinear terms seem to lead to a situation where the
I

beams have lost their directed velocity significantly for the cases k

* 0. The estimates of the energy loss and the relaxation time indicate 

that, this deceleration mechanism may significantly enhance the

nuclear stopping power in heavy ion collision experiments.
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FIGURE CAPTION

Fig la z-component of the velocity of specie 2 is plotted as function 

of t. The values of parameters are (3 = 1.1, 0 = 0.1, VQ = 9 (in the 

units of 0), and k = 0.1. The initial conditions are L, = I,lll l12 " ri3

1, A* = A* = 0 (a= 1,2,3) and A* = 1.4, A^ = 0.2, A^ = 0.3, A* 

0.2, = -0.3, a|*= 1.1.

Fig.lb x-component of specie 2 is plotted as function of t. All the 

conditions are the same as Fig.la.

Fig lc Autocorrelation of z-component of the velocity in Fig. la.

Fig 2a z-component of the flow velocity of specie 2 as function of t 

is plotted. All the conditions are the same as Fig.la except k which 

has value k = 0.5.

Fig.2b x-component of the velocity is plotted as function of t and all 

the conditions are the same as those in Fig.2a.

Fig.2c Autocorrelation of z-component of velocity in Fig.2a.

Fig. 3 x-component of velocity of specie 2 is plotted as function for 

k = 0 (abelian case) and all other conditions are same as Fig.la.
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