
CHAPTER II

COLOR HYDRODYNAMIC EQUATIONS

In order to to describe the evolution of QGP we need either

kinetic theory or hydrodynamic theory. Classical and quantum, kinetic
theories for QGP have already been formulated! Also the equations of

classical hydrodynamics have been obtained by taking appropriate

moments of the classical kinetic equations . As the classical kinetic

theory forms the basis of our discussion of the hydrodynamic equations

a brief introduction to the basic kinetic equations will be given in

section 2.1, and the color hydrodynamics (CHD) equations will be

obtained from them by taking the appropriate moments. These equations,

for a cold collisionless plasma, were first written by Kajantie and 
2Montonen from the equation of motion of a classical colored 

3particle by using heuristic arguments. Finally in the last section 

2.2, a critical discussion of the derived color hydrodynamic (CHD) 

equations will be presented.

2.1 KINETIC EQUATIONS AND DERIVATION OF THE HYDRODYNAMICAL 

EQUATIONS FOR A CLASSICAL QUARK PLASMA :

There are two approaches that have been used to set up the 

classical kinetic equations:

(i) In the first one, the single particle phase space is 

augmented by including color degree of freedom for quarks.

Further, the single panicle distribution function is an 

invariant under the local gauge transformations. As a
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consequence of the augmented phase space, the kinetic equation 

contains a dnft term in the color space, in addition to a 

drift term in momentum space.

(n) In the second one, quantum transport equations are used to

arrive at the classical kinetic equation for the single
<

particle distribution function. The phase space in this case

is not augmented, but the distribution function is a 2x2

matrix in the color (SU(2)) space. The distribution function 

transforms covariantly under local gauge transformations. The

kinetic equation for such a distribution function has a close

similarity with the Vlasov equation for a Coulomb plasma’.

In this chapter, we consider both kinds of kinetic equations 

to obtain the CHD equations. It ought to be mentioned that the CHD 

equations are derived in cold collisionless approximation i.e. by

dropping collision terms from the kinetic equations and considering

the distribution functions as a product of delta functions in the

momentum (and also in color space). It will be shown that the

resulting CHD equations are the same for both the kinetic equations.

However, in the presence of collisions the form of CHD equations may 

depend upon the nature of the collision terms( see Mrowczynski in

Ref.8).

A plasma may be called "cold" if the thermal motion of its

particles is negligible This requires a specification of some

reference quantity with respect to which the thermal motion may be
neglected. The usual way4 is to compare mean thermal velocity of
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plasma particles With the phase velocity of the linear plasma

waves. Thus, for a cold plasma = co/k » Vj where to is the frequency

and k the wave vector of the wave. This comparison is valid only for
4weakly non-linear waves.

One can understand the cold plasma approximation in physical terms 

as follows. Usually, in hydrodynamics, one introduces a length L and a
4

time t which characterize distance and time over which plasma

quantities can change significantly. For fluid description we consider
1/3length scale associated with fluid element AV, satisfying (AV) « 

1/3L. But (AV) » X where X is the mean free path. This implies
c c

that particles in AV will have to undergo several collisions to leave 

the volume AV. Therefore the fluid element can persist for several

time » 1/v where v is the collision frequency. In general each fluid

element will have a random velocity 0) and a flow velocity component U. 

If U is the same for all particles (if the fields acting on them are 

the same) and U » to then the concept of the fluid element is 

meaningful. This is quite unlike a neutral gas where there is no long 

range self-consistent field, which can ’hold’ the fluid elements

together in the cold collsionless limit and therefore in that case
4hydrodynamics would be meaningless.

Let us first consider the kinetic equation with color scalar

distribution function. Starting from the the equations of motion for a 

classical colored particle in external color fields, Heinz has

obtained the equation for the single particle (antiparticle) 

distribution function f(x,p,Q) (F(x,p,Q)). In the absence of collision 

terms, they can be written as,
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pH[VgQa F£v 8p~geabc Ap qC ao)f(x-P-Q> = 0 <2-*a)

VgQ 8p'geabc Ap QC 5q]^x-P-Q) = 0 (2-lb)

where, gQa is the triplet color charge (a = 1,2,3 for SU(2) group) and

potentials with the Lorentz indices (I (= 0,1,2,3) and color indices a 

(=1,2,3 for SU(2)). Fpvis the field tensor of the gauge fields defined

The first two terms on r.h.s. of Eqs, (2.1) are very similar to 

electrodynamic plasma kinetic (Vlasov-Boltzmann) equation. The third 

term gives drift in color space due to the color charge exchange 

between the fields and particles and it is a characteristic of

non-abelian nature of the quark plasma. It should be noted that the 

second and the third terms on the r.h.s. of Eqs. (2.1) take into 

account the mean field generated by all the plasma particles.

It is interesting to note that characteristics equations of 

Eq.(2.1) give the equations of motion of a classical color particle 

moving in an external color fields, given by

where x denotes the proper time and dot denotes the derivative with

eabc *s comPleteIy antisymmetric Levy-Civita tensor. is the gauge

as

mi'V(x) = gQa Fpv(^(t))j,v(t) (2.2)

and

(2.3)
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respect to it.

Eq. (2.2) is the "Lorentz force” equation for the colored 

particle. Eq. (2.3) describes evolution of the color charge Qfl. The 

equation shows that unlike electric charge the color charge Q can be
a

exchanged with the gauge field potential A . Moreover, Eq. (2.3)
r*

conserves QaQ (summation over a is implied) so that it describes

rotation of Qa in the color space. It ought to be mentioned that Eqs.

(2.2)-(2.3) were obtained from the QCD Lagrangian, by writing down

Heisenberg’s equation of motion for a colored particle in an external

3color field and then replacing the operators by the C-members 

(expectation values).

For a self-consistent theory, the dynamics of color fields 

should be generated by the currents in the Yang-Mills field equations

% + *E.bc A£ = 8 ' <2 4>

where the color current J^(x) can be obtained by integrating the 

distribution function (Eq.(2.1)) over the phase space measure defined 

as dpdQ with

dp = 2 0 (2.5a)

dQ = 5 QaQa - q2' dQj dQ2 dQ^ (2.5b)

dp and dQ are invariant measures for momentum space and SU(2) color 
space respectively. The condition 2 ® [p0] ^ [p2'm02] selects particles
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with the positive energy on mass-shell. The condition 5^QaQa -q^ 

preserves the bilinear-Casimir invariant in SU(2) color space. Color 

currents can then be defined as a Lorentz four vector

P^ Q Jf(x,p,Q) - f(x,p,Q)) dpdQ (2.6)

In the the collisionless plasma approximation Eqs.(2.1-2.6), 

together with gauge fixing conditions, form a closed set of equations 

which can provide a classical self consistent description of the quark 

plasma.

One can write, using Eq.(2.5), four current as

JS<*> P4 Q (f(x,p,Q) - T(x,p,Q)) d^pdQ

m_

where d3p = ^,3 dPldp2dp3.

(2.7)

In the cold plasma approximation3the distribution function

is

3
f(x,p,Q) = n(x,t) f“j 6 Qa-Qa(x,‘) (2.8)

where U is a* component of the color field and p. is i* component 

of the "momentum field" . The momentum field is related to the 

velocity field U(x,t) by the relation pj = moU(x,t) where mQ is the 

rest mass of the particle. Here we have assumed that the mean field 

velocity does not have any color label. This assumption is necessary 

to obtain the CHD equations of Kajantie and Montonen. However, without 

this assumption hydrodynamic equations can be formulated, but the

5
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equations are too complicated to study. Next we define moments of 

f(x,p,Q). A colorless four flux is defined as

N^ = p^f(x,p,Q) dpdQ (2.9)

and a colored four flux is defined by Eq.(2.6)

In the "cold plasma" approximation these will become

= n(x,t) U^(x,t) (2.10)

= Qa(x,0 n(x,t) U^(x,t) (2.11)

To obtain moment equations for the colorless flux we 

integrate Eq. (2.1a) over p and Q:

ptif(x,p,Q)dpdQ]-gJjQaF“v pi1 a* f(x,p,Q)dpdQ

•sJKtx/V QC 8^f(x,p,Q)dpdQ - 0 (2.12)

One can show that,
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Q Fa 
va jiv 8. \ F^v P^f

and

'abc V Q° 3V= 3 eabc A,kQC f
jib

The integrals, in Eq. (2.12), containing these terms will 

vanish if the volume integrals in momentum and color space are 

converted to surface ones and if one assumes that as |p|,|Q| , f

0. Then using Eq. (2.10), we obtain

d = 0 (2.13)

This is a continuity equation for colorless flux and can be 

identified as baryon number (of the quark-fluid) conservation, in the 

absence of pair production or annihilation. However, a relativistic 

treatment of the fluid in general does require the inclusion of pair 

creation and annihilation The neglect of such effects may justified 

on the physical situations being examined, e.g., when one considers 

phenomena whose time scale is much shorter than annihilation and 

creation rate of quarks then we can safely neglect these processes.

In order to get a differential equation for the color flux 

(or color currents) we multiply equation (2.1a) by and integrate 

over p and Q, i.e.
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PtlQdf(x.p.Q) dpdQl - g JJ QdQa F“y p^9p f(x,p,Q) dpdQ

-g II QdEabc P%bQCsQ «*•&<» *ldQ = 0 al4)

One also has the equation

<3d£abc P%b %*Q< ~ «q[<WV 9rf] - 5adW>VCf

As we have already argued,the total divergence term in momentum or 

in color space will vanish. Thus we obtain, (if one uses Eq. 

(2.13)}

u%3a = -geabc v\b X}c (2.15)

This equation describes precession of the color fluid charge in color 

space.

To determine the dynamics of U^(x,t), multiply Eq. (2.1a) by
#Y

p and integrate over p and Q. Thus, "

-gJ|paQaFJvP^aVf(x’P’Q)dpdQ •
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gJJ p\bcP%bQCaQ f(x’PlQ) dpdQ = 0

This can be written as

mQ n UpUa + gQa F*a U*1 n = 0

Setting a = v and using Eq. (2.13) we get

u%uV = §r% f£v (2J6)
Eqs. (2.13), (2.15) and (2.16) form a closed set of momentum equations 

which describe the hydrodynamics of the classical quark plasma.

However, it can be shown, in general, that when the 

distribution function f(x,p,Q) is separable in p and Q i.e.

f(x,p„Q) = h(x,Q) F(x,p) (2.17)

then Eqs. (2.13), (2.15) and (2.16) can be obtained by the moments of 

Eq. (2.1a). In this case the macroscopic "color charge" Qa is defined 

as,

JQah(x,Q) 
Qa = JTfTxTQySTJ (2.18)

Before, we study Eqs. (2.13), (2.15) and (2.16) further, a 

derivation of these equation from the matrix kinetic equation will be
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discussed.

For simplicity we consider spinless quarks of one flavor 

only. The quark (antiquark) distribution function f(x,p)(7(x,p)) is a 

2x2 matrix (for SU(2)) in color space and transforms covariantly under 

the local SU(2) gauge transformations i.e.

f(x,p) = U(x) f(x,p) U'J(x) (2.19)

where U(x) is a local gauge transformation matrix, f and F satisfy the 

following transport equations in the collisionless case (see S. 

Mrowczynski in Ref. 2)

p^f(x,p) igjA^Cx), f(x,p) p{F^(x),f(x,p)j 0 (2.20a)

+ ig A^(x), f(x,p)
l2 W F^v(x),f(x,p) (2.20b)

where {,} denotes an anticommutator and [,] denotes a commutator.

It should be mentioned that these equations are obtained as 
the semi classical limit^ of the original quantum transport equation*. 

f(x,p) is a matrix whose trace is non-zero. A are gauge potential and
r*r

Fpv = ap.Av * + ig [A^Ay] are the chromo field tensors whose

traces are zero. Eqs. (2,20) transform gauge covariantly under the 

SU(2) local gauge transformation.

However, Eqs. (2.1) and (2.20) are not quite independent. 

The difference between f(x,p,Q) and f(x,p) is that f(x,p,Q) is a 

function of the continuous color variable Q (a=l,2,3 for SU(2))
d
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whereas f(x,p) has a finite number of color components. We define 

color components of f(x,p) as,

f0 = tf f(x,p) (2.21a)

and

fa = ff Xaf(x,p) (2.21b)

where (a=l,2,3 for SU(2)) are the generators of the SU(2) 

group. Then we can write f(x,p) as

f(x,p) = fc 1 + fa (2.22)

If we substitute these into Eq. (2.20a) we obtain

P%fo's ptlpav 5pfa = 0 <2'23a>

and

P1*Va -^.bc^Vc ' apfo = 0 <2-23b>

One can obtain Eqs. (2.23) from Eq. (2.1a) if the color moments of the 

distribution function in Eq. (2.1a) are taken as shown below.
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fo = Jf(x,p,Q)dQ (2.24a)

fa = |Qaf(x,p,Q)dQ (2.24b)

fab = IQaQbf(x,p,Q)dQ (2.24c)

and other higher color moments can be defined quite similarly. Taking

Eqs. (2.25) represent an infinite hierarchy of color moments of

the distribution function. From the view point of QCD, one may expect

that only color singlet and triplet (Eqs. (2.23a-b)) distribution

functions to play a role in the phase space evolution of the system.

The hierarchy, however, has all the higher color moments of the

distribution function f(x,p,Q). In quantum theory also a similar

hierarchy can arise, but one can truncate it by using color algebra of

X-matrices. The classical analog of such truncation condition is (Q 

1 7~ X) . We impose it classically (by hand) so that
JL a

7corresponding moments of Eq. (2.1a) , we get

P%f°<X,p) = 8P%VM »pfa(x,p) (2.25a)

P4Va ' ^.bcA^c = 8P4FpVW 8p fab (2.25b)
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fab(x'P> = 5ab fo(x-P> (2.26)

As a result, Eq. (2.25b) will become

Thus, Eqs. (2.25a) and (2.25b) are the same as Eqs. (2.23a) and 

(2.23b). In the cold plasma approximation the distribution function 

(Eq. 2.8) will give

After this long digression we return to the question of taking 

moments o,f Eq. (2.20a). In the "cold plasma" approximation we can 

write,

where p(x,t) is 2x2 matrix in color space and Pj(x,t) are momentum 

fields and pj are single particle momentum components and p- are 

assumed not to have any color label. This assumption is the same as 

the one we have made in the case of color scalar distribution 

function. We then define the following moments

(2.28)

(2.29)
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using Eq.(2.29)

= Jf(x,p)p^dP/mo

# = p(x,t) l#(x,t)

and

e^v = rPVf(x,P) ^
J o

using Eq.(2.29)

0^V = mop(x,t)l#(x,t) U^(x,t)

Taking corresponding moments of Eq. (2.20a) we have

+ ig = 0

and

a/v + ig v6lxv
Next we expand p in terms of A-matrices,

p(x,t) = nl + na

(2.30)

(2.31)

(2.32)

(2.33)
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(2.34)= "(1 + Qa V

where

Q
a

na/n (2.35)

Thus we have, n = tr(p(x,t)) and nQ„ = tr[X„p(x,t)]. If we use
a a

decompositions (2.30) and (2.31) then the moment equations (2.32) and 

(2.33) will give us

3 (nU^) = 0 (2.36)
H’

- 8£abc Qc <2-37>

mQ Uv = -gQa F*v # (2.38)

Qa mQ l#a^Uv - g F*v # = 0 (2.39)

By using Eq. (2.38) and the condition (2.28) we can 

demonstrate that Eq. (2.39) is actually an identity. Conditions like 

(2.39) can also arise when one takes moments like 0^v = JQ D^pv
a a

f(x,p,Q)dp dQ of Eq. (2 la). Eqs. (2,36)-(2.38) form a closed set of
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equations describing hydrodynamics of classical quark plasma and which 

are the same as Eqs. (2.13), (2 15) and (2.16). We will call them, 

hereafter, equations of Chromohydrodynamics (CHD).

2.2 Chromohydrodynamic Equations : In the previous section we have 

shown that two diffemt kinetic equations can give the same set of CHD
i

equations in the cold collisionless approximation so that Eqs. 

(2.37)-(2.39) are obtained for the quark distribution function. A 

similar set of equations can be obtained for the antiparticles with Q 

-Q. Thus we give an extra label A to all the fluid variables i.e. 

"A- UA a"d QAa 2 3 W Label A, in general, denotes a ’specie’ in the 

plasma. For example A could denote quarks of different flavors or 

antiquarks. The four velocity is usually defined as

U H = 
A "

(
1 (2.40)

2where VA is three velocity vector of the specie A and VA = VA'VA 

denotes the scalar product of the 3 velocity vector. Under this 
substitution and identifying nA/J 1-VA -» nA i.e. density in laboratory 

frame equations (2.36)-(2.38) can be written as:

S "A + V- nAVA = 0 (2.41)

VA‘V g_ 
m, jt:V I v A *Aa

[Ea + Ba-VA(VA.Ea)](2.42)
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(2.43)/
\

\

VA'V Aa gEabc Ab'VA-Ab ‘AC

where is the rest mass of the specie A. Ea and Ba are a* 

components of color electric and magnetic field three vectors 

respectively and their components are defined below:

Ea = Fa° ’ Ba = - 2 ^ FJk (2M)

where t,j (= 1,2,3) are three space components and e1^ the

Levi-Civita tensor. CHD equations in this form were first obtained

2using heuristic arguments by Kajantie and Montonen . The color current 

generated by the particles is then

Ja = * l W*-1’ "A*’1'1*
(2.45a)

Ja = lAiSx't) nA(x,t)VA(x,t) (2.45b)

This current will act as a source term on right hand side of SU(2) 

Yang-Mills equations

y=aV + SEabc (2.46)
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Eqs. (2.40)-(2.45) form a self-consistent set of CHD and

Yang-Mills equations for the QCD in cold-collisionless limit. In order 

to determine the effect of gauge-transformations on Eqs.

(2.41)-(2.43), we need to know gauge transformation properties of the 

variables n^,V^ and 1^ . It is well-known in gauge theory that under
t

the ’local’ gauge transformations

= U'1(x)A^U(x) - i/g U’^Ufx) (2.47)

where A^1 = A^ Xa, and a summation over a is implied.

We see that the left hand side of Eq. (2.46) transforms

covariantly. Since n^ and do not have any color label, they are

invariant under the transformations (2.47). The color charge vector

1^, however, transforms covariantly under these transformations i.e. 
1^ -> UI^U^. This can be deduced from Eqs. (2.45) and (2.46), since 

the that left hand side of Eq. (2.46) transforms covariantly.

Therefore, the four vector current density must have the same

transformation property due to the requirement of covariance of the 

equation of motion (Eq. (2.46)). In view of these arguments, Eqs.

(2.41) and (2.42) are gauge invariant whereas Eq. (2.43) transforms 

gauge covariantly.

It should, however, be mentioned that Eqs. (2.41)-(2.43) are

incomplete in the following sense:

1. Since gluons do interact among themselves they would get
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thermalized among themselves and also with the quarks. Hence 

there ought to be a set of equations to describe the 

hydrodynamic evolution of the thermal gluons. The contribution 

of such gluons is not considered in the present work. This is 

because to date no hydrodynamical theory of thermal gluons has 

been worked out. One of the difficulties may be in determining 

the nature of the collision term in the corresponding kinetic 

equation.

2. The effects due to the spin degree of freedom of quarks are 

neglected. The spin degree of freedom comes naturally in the 

quantal formalism of' the kinetic theory. To understand the 

structure of quantum theory it may be useful to have a 

classical theory which includes spin. The spin degree can be 

neglected when the kinetic energy of quark is greater than the 

spin magnetic interaction amongst them in the Dirac 

Hamiltonian (see H.Th. Elze et. al„ in Ref. 1).

3. In the derivation of the moment equation we have made the

"cold plasma" approximation. This corresponds to a very

idealized situation, where the thermal, or random energies are

small enough for the pressure and heat tensors to be

neglected. The exhaustive treatment of the hydrodynamics at

2finite temperature can be found in a beautiful paper by Heinz.

We should note, however, that the earlier treatments of

hydrodynamics for the QGP discussed so far, assumes a particular model
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for the collision terms, in order to have local thermodynamic

equilibrium The resulting hydrodynamics depends on the form of

collision terms i.e. no unique hydrodynamics is available due to a 

lack of information about these collision terms . In our view all

these hydrodynamic equations should have the same cold-collisionless 

limit.
i

After considering all these limitations, we should mention 

that Eqs. (2.41)-(2.43) clearly show how the color of the particles is

being exchanged with the field and vice versa. They are simple enough 

to study the nonlinear non-abelian phenomena.

This completes our discussion of CHD equations and in the 

subsequent chapters they will be applied to study various nonlinear 

physical situations.
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