
CHAPTER m

LONGITUDINAL OSCILLATIONS

In this chapter we apply the CHD equations, derived in the 

previous chapter, to study the longitudinal oscillations in the QGP.
i

The novel features arising due to non-abelian nature of the gauge 

fields will be discussed.

3.1 INTRODUCTION : Density fluctuations in the QGP may cause 

powerful color electric fields which in turn can exert a restoring 

force on the plasma particles and as in a Coulomb plasma the

longitudinal oscillations would be set in the medium. Indeed, using
\

the linear response formalism similar to that in QED the longitudinal 

oscillations and ordinary Debye screening behavior similar to that 

Coulomb plasma have already been found in the QGp! Using the linear 

response formalism one finds for the plasma frequency C0p (in the one 
loop order, 0(g2))

2 (Nf + 2N) 7 0
© p = —is---------g T2 (3.1)

where and N are number of quark flavors and the number of colors of 

the gluons respectively, g is the strong interaction constant and T is 

the temperature of the medium.

The study of longitudinal oscillations is important because it

is one of the simplest indication of collective behavior of a plasma.
«

Their existence in QGP can be a unique proof of the deconfined color 

in the plasma. Moreover, they can contribute to energy density and 

pressure of the plasma and they may influence the emitted particle
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spectra. A classical approach also, in the linearized limit, gives
3the same values for the plasma frequency and the screening length .

For simplicity we have considered that the plasma comprises of 

two species (panicle and antiparticle). The entire volume (infinite 

in extent) is assumed to be locally color neutral when no perturbation 

is applied. Longitudinal waves in such a plasma can cause local color 

density fluctuations, which in turn may cause, as in a Coulomb plasma, 

a powerful restoring force and the longitudinal oscillations can be 

sustained in the medium. As mentioned in the introduction our primary 

interest is to study the non-perturbative aspects of the QGP. Hence we 

solve non-linear CHD and Yang-Mills equations to study the

longitudinal oscillations. It will be shown that even when the

non-linearity parameter is small the linear plasma frequency of the 

oscillations get strongly modified.

3.2 BASIC EQUATIONS : We will study the CHD equations in the 

non-relativistic limit

2

d n."at A V'<"A V = 0 (3.2a)

< VA' V )VA = 8 r 
mA

Ea + VA (3.2b)

a_
at + v, I = 

a g eabc
AS •VA-\]Ic (3.2c)

These equations together with the Yang-Mills equations [2.46 in 

chapter II] form a closed set of equations which may be utilized for a 

description of self consistent collective non-linear oscillations of 

the QGP. These equations are deficient in that no finite temperature 

effects in terms of the quark pressure have been retained here. As

44



mentioned in Chapter II this is justified when the phase velocity of 

the wave is much' greater than the thermal velocity of the plasma 

particles. Thus the thermal dispersion can be neglected for the 
longitudinal oscillations as they are long wave-length wavesf

Equations (3.2a) - (3.2c) (also the Yang-Mills equations) are a

set of nonlinear coupled partial differential equations which are
t

quite difficult solve in their generality. Therefore we shall look for

special solutions of these equations which are nonlinear plane

stationary waves. Thus we assume that all the quantities depend only

on the variables t and x^(say) and that too only through the single

variable £ = x^ + Pt. Mathematically, this assumption will convert the

partial differential equations to the ordinary differential equations

because = d/d£ and a/dt = p d/d£. Physically, the crucial

assumption here is that the nonlinear solutions are stationary in a

frame moving with the phase speed p. Such nonlinear stationary plane

wave solutions are widely discussed in Coulomb plasma literature and
also have been considered for non-abelian fields^. The phase velocity

p plays the role of a parameter in the final equations.

Since our interest is to study the longitudinal oscillations we

may ignore the coupling to color magnetic fields. In fact, it can be
1 2shown directly that (from the field equations) that if A , A and

their derivatives are zero at £ = 0 then they are zero for all values '

of £. Physically, this means that the symmetry properties of the field

and plasma equations ensure that the purely longitudinal disturbance

can propagate without coupling with the color magnetic perturbations.

In rest of this chapter we will consider only the longitudinal

1 2disturbances and therefore we set A and A to zero.
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1 A
We now make the gauge choice A =0. The only non-vanishing

'i 3
field strength can now be written as E = - a. A„ = -(3 a' where A^= a„a t a a a a

and the prime denotes differentiation with respect to £. One can also 

write Ampere’s equations (space component of the Yang-Mills equations) 

as

aa (3.3)

As we show below r can be expressed in terms of the Yang-Mills 

potentials by integrating the hydrodynamic equations [Eq.(3.1)]. 

Further, we assume that in equilibrium both the species have the same 

density i.e. njQ = njQ = nQ and the velocity of both the species are 

zero. The color neutrality condition in this case will read as IjaQ +

2a0 0.

Eqs.(3.2) on integration will yield the following relations:

V,

‘Aa

= p "0/( P + vA) (3.4a)

H
' 9 „ -V 1/2

(3.4b)

g ) eabc ab lAc nA VA (3.4c)

be combined with eqs.(3.3) and using

definition of current as given in the previous chapter we get

/ T / 6 T a' *Aa ' n eabc ab c n &abc “b “c 
o o

e , a, a_

On integration one finds the conservation law

la 2a n„ abc b c 
o

(3.4d)
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We now assume for the simplicity of calculation that one specie 

is much heavier than the other, so that (say) rr^ » m^. In this case 

we may set V2 = 0, which in turn implies that l2a= constant = l2ao =

-I jaQ. Note that the same situation would have arisen for a spatially

homogeneous plasma if we go to a frame in which the specie 2 is at

rest. We may now write

!l = 8 "1 V1
8 I3 n<M> Eabc abac + >1 j[ 1 - [' 2g \-l/21

hao^otr' o abc b e r *laoJ 

which may be substituted in the Ampere’s Law eq.(3.3) to give the 

final nonlinear equations describing the longitudinal oscillation.

c = [g
8 ",

abc abac + “p ‘laoi[ 1 - 1
2g
mj|3 *laoaan (3.5)

One can observe that that eq.(3.5) contains two types of 

nonlinear terms, those arising from the non-abelian nature of the 

gauge potentials (first term in the first bracket) and those arising 

from the hydrodynamic framework used to describe the plasma (second 

term in the second braket). It is well-known that latter type of terms 

are also present for a Coulomb plasma. As our main interest is in the 

study of non-abelian effects, we expand the square root in eq.(3.5) 

and retain only the terms linear in the field amplitude. We then

obtain the equation

aa
g nc

m &
li ( 1
laov

lboab ) ' “mT* ( Eabc ab ac^ldoad) (3'6)

where we have dropped the specie label on the mass. The assumption of 

weak plasma nonlinearity corresponds to the condition (glia0//mjj)aa <<: 

1 which is equivalent to |Vj|p « 1 i.e. the directed particle 

velocity in the wave-fields is much less than wave phase velocity. At
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the same time the retention of non-abelian term means that we must

have g a/|iq > * where |K| measures the magnitude of the of

derivative term |a7aj. Thus the assumption is justified if i-aa> 1
gIoaa P

-p-. In order to get a feeling for these inequalities in terms of
m

physical quantities we rewrite the longitudinal electric field ~

-9taa — o)paa in terms of the wave energy density ~ E& and use a
2 3normalizing energy density ~ nmc ~ 2-5GeV/fm (the typical energy 

density in the plasma needed for a deconfmig transition). We may then 

write the above inequality as

-210* < ( Ew^)1;2 < (nA)ll2
Cg(P/c)

where we have assumed that the phase velocity p/c ~ 1 and the typical 

wavelength k~^ ~ c/ci)p ~ few fermis From the inequality above we may 

see that our treatment is valid for was low as 10 i.e. for wave
C

energy density of order hundredth of a percent of the typical plasma 

energy density.

Eq.(3.6) treats the plasma in an approximate manner, which may

be given a simple derivation (see Appendix A). The oscillations in

this case are interpreted as nonlinear temporal oscillations and have

no spatial dependence (d/dx 4 0 ). For finite wavelength perturbations

(d/dx = 0 ), the correct interpretation is still in terms of the

variable £ = x + Pt or its temporal analog x = t + x/p.

To proceed further we take, for simplicity, I^0 = Ij20 = =

2 2 2I and also define to = g n (I ) /m. We further write eq.(3.6) in a 
o p 0 o o ^'

neat symmetrical form by introducing scaled normal-mode variables, 

which remove the coupling between a^, ^ a^ arising through the

linearized first term. We thus introduce the quantities a a a o a
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(where aQ is a normalizing scale-factor for the vector potential ), Xj
* * * / j £

— 3.j + &2 X2 “ v 3/2(aj- &3J, X3 ==: *1/2 (a^ ■ 2H2 -t* ^2'* —p =

T. The resulting equations are

xj = — 3 Xj + (e//Y )( X2 X3 - X3 X2 ) Xj (3.7a)

X2 = (e /fY ) ( X3 Xj - Xj X3 ) Xl (3.7a)

X3 - <V/T ) ( X, X2 - x2 X, ) X, (3.70

In equations (3.7a-c), the dots denote differentiation with 

respect to the dimensionless variable T and e = gzI0ag/t6a) is a 

parameter characterizing the strength of the non-abelian terms.

Equations (3.7a-c) may be interpreted as the equations of motion 

of an ’effective particle’ with three degrees of freedom ina nonlinear 

potential field. It can be shown by direct calculation that these 

equations have the following conservation laws:

1/2 ( X j + X2 + X3 ) + 3/2 X ^ = E (3.8)

e/2V3{ Mj + m| + M3 ) — 3 Mj = M (3.9)

where Mj = X2 X3 — X3 X2

M2 = X3 X1 - X1 X3 (3.10)

and M3 = Xj X2 — ^2 ^ 1

Eq.(3.8) describes an energy conservation law. Note that the

first three terms on the left hand side (corresponding to the ’kinetic 

energy’ of the effective particle) actually describe the energy in the 

longitudinal color electric fields. Eq.(3.8) thus has a clear physical
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interpretation in terms of exchange of energy between the color

electric fields and the kinetic energy of plasma particles. Eq.(3.9)

is related to the conservation an angular momentum like vector in

color space. Note from Eq.(3.4d) that Mj, M2 and are related to

color fluctuations being carried by the Yang-Mills fields. In the
2 2 2absence of matter we have the conservation law Mj + Mj+ M^ = constant.

The last term in Eq.(3.9) is a consequence of color charge being 

exchanged between the chromo-fields and the material particles. It

should be emphasized that the conserved quantities in Eqs(3.8-9) are 

gauge invariant. This is explicitly demonstrated in appendix B by
A

making a gauge choice A° = 8 AJ and demonstrating that E and M are 

independent of 8. Finally,' it is worth pointing out that for the exact 

equations (Eq.3.5) we have a different material particle kinetic 

energy term in the energy conservation law, but Eq.(3.9) does not 

change.

3.3 NUMERICAL CALCULATIONS AND RESULTS : It is in general very 

difficult to solve Eqs.(3.7a-c) analytically hence a numerical

procedure is used to integrate them for different initial conditions

and for different values of e. The procedure used for integrating the 

equations was the fourth order Runge-Kutta method with variable step 

size. The results presented in the figures (below) are the

representatives of a very wide choice of initial conditions and the 

parameter choices e. Hence the qualitative features of the results are 

independent of any specific choice of the initial conditions.

Moreover, we have chosen to present the results in terms of the 

scaled normal mode variable Xj. This variable can be shown to be 

related to the particle velocity. Therefore this variable is just
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right for displaying characteristic features of the 

physics.

It is obvious that when e = 0, we have the 

oscillations for Xp with frequency v3 whereas X2 an^ X^ may 

increase linearly with T. When e is not equal to zero and riot, too ; 

large, the Xj solutions exhibit two periodic modes. These are the
t

cases depicted in Fig.(la,2a). In both the cases, for small value of 

e, the linear plasma mode with frequency v 3 0)^ and nearly a constant 

amplitude oscillations is followed by a new ’non-abelian mode’ which

differs significantly from the plasma mode in both amplitude and 

frequency. In fact Fig (lb), for the interval T- = 250 to = 500 of 

Fig.(la), more clearly shows that the plasma mode is followed by the 

non-abelian mode having frequency nearly four times that of the plasma 

frequency and significantly reduced amplitude. Although in these 

solutions both types of behavior occur periodically, it is not clear

when the crossover from the plasma mode to the non-abelian mode 

occurs. It seems to depend on the phases of X2 and X^.

For large values of e, Fig(3.a), we find intermittency or chaos 

in Xj motion i.e. the plasma and the non-abelian mode do not occur

periodically in Xj motion and crossover from one mode to another is

irregular Such motions may contribute to the thermalization of QGP.

In fact to quantify this further the auto-correlation study of X^ 

motion is also earned out (Figs lc,2b,2c). Figs.(lc,2b) depict the 

auto-correlation of X^ for small values of e (i.e. Fig. la,2a). The 

auto-correlations show oscillatory behavior with T. As one expects for 

the oscillations in Fig.(3a) the auto-correlation of Xj decreases fast 

and saturates around zero in a time interval of few plasma periods.
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This indicates that the energy associated with the particles goes into 

random motion and the field energy. We should also mention that X2 and

motions are quite irregular (for all values of e except zero) and 

do not show any plasma mode.

It is worth recalling here that, the numerical results shown in

this section do not include the effect of the plasma nonlinearity (see

section 3.2). However, we have found after extensive calculations that 

inclusion of such terms does not change any of the qualitative

features presented in this chapter.

3.4 SUMMARY AND CONCLUSIONS : We have studied the effect of 

non-abelian terms on the longitudinal oscillations of a classical 

quark-gluon plasma. We Have found that for a certain strength of the 

non-abelian parameter there exists a new periodic mode (non-abelian 

mode) which alternates with the usual Coulomb plasma mode. The 

transition from the plasma mode to the non-abelian mode and vice versa 

is sudden and how exactly these transitions occur is not yet properly 

understood. It is difficult to see how such a novel behavior which our 

nonlinear analysis reveals can be obtained by the methods of

perturbation theory even for small values of the non-abelian parameter 

e.

Also we have observed that for large values of £ the longitudinal 

oscillations show chaos or intermittancy in the transition from the 

plasma mode to the non-abelian mode and vice versa. Such oscillations 

might contribute to the thermalization of the plasma. The 

auto-correlation study of Xj "time" series shows that for large 

values of e the correlations decays very fast i.e. in a time period of 

a few plasma oscillations, the correlations reduce to zero value.
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APPENDIX A : SIMPLE DERIVATION OF EQ.(3.6)

We start with the approximate linearized form of the plasma 

equations (3.2 b-c), viz,

a.VA = \ ‘AaEa
(Al)

Va. g eabc ( Va-Ak ) 1
A‘ b ' Ac (A2)

We have used the gauge condition A° s 0. The neglect of the plasma

nonlinearity through ( V^'V) term is fully justified when a/ax 0.

a 3Equations (A2) shows that A —I = 0. Noting that E„ = - a A„, we
a Ol a a t a

may now integrate Eq.(Al)’to get

m, *Aa aa (A3)

Again, from the definition of the current density (see chapter

-Is 2-45>' Ja ■ S"oVa'a 

Eq.(A2) to derive the equation

3 3
two, Eqs 2.45), J s gn VAI» and Ampere’s law &' = J , we may usea O A Aa a a

_ g a.IT abc “b “c 
o

where a over dot denotes differentiation with respect to time variable

t. As in the main text if we assume that specie 2 is heavy then we get 

.2 2

aa
g
m lao Ibo b

eabc ab ac^ldoad) (A4)

Eq.(A4) descnbe nonlinear temporal oscillations and they are very 

similar to Eqs.(3 6) discussed in the text.
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APPENDIX B:GAUGE INVARIANCE OF CONSERVED QUANTITIES E AND M 

The quantities E and M are defined by the conservation laws,

Eqs. (3.8-9) and we expect them to be gauge invariant. To explicitly 

demonstrate this gauge invariance let us make a general gauge choice 

A° = SA . The parameter 6 is a constant and was chosen to be zero in 

the text. With this choice of the gauge we obtain the following
i

equations describing the longitudinal oscillations

Xj + 3 Xj =
,2

iT3

x3 =

✓3

_e_
L /I

( 1+ 5/p] Xj + g 8/p 

1+ S/p^Xj + g 8/p] M.

\2 i1+ 5/p] X1 + g 5/pj

M,

M,

(Bl)

(B2)

(B3)

where (a= 1,2,3) are as defined in the text. For 5 = 0, we can
a

recover Eqs,(3.7) derived in the text. It can be directly verified 

that these equations have the same conservation laws as, Eq.(3.8-9), 

in the text. Thus we have explicitly demonstrated that E and M are 

gauge invariant quantities.
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FIGURE CAPTIONS

Fig. la. Oscillations of the field variable Xp Initial

conditions are given in terms of variable xi>x2>x3’xpx2 and 

which are related to the field variables used in this chapter by 
Xj = Xp X2 = (3/2)*^Xj and X^ = (l/2)^ and their derivatives

1

are defined accordingly.

e= 0.05 and the intial conditions are

xj= X2 = x3 = 0. and Xj = 2, X2 = 0.1 and x^ = 0.3 

Fig.lb Oscillations of the field variable Xp The values of 

the parameters e and the initial conditions same as Fig. la. 

The scale for the variable T is expanded.

Fig.lc Auto-correlation of Xj of Fig.la.

Fig.2a Oscillations of the field variable Xp

= 0.05 and the intial conditions are

Xj = x2 = x3 = 0 and = 2, ^ = 1 and = 3.

Fig.2b Auto-correlation of X^ of Fig.2a.

Fig.3a Oscillations of the field variable Xj

= 0.05 and the intial conditions are

Xj = x2 = x3 = 0 and Xj = 2, X2 = 0.1 and Xj = 0.3 

Fig.3b Auto-correlation of Xj of Fig.3a
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