SIMULTANEOUS CONFIDENCE 'BOUNDS ON THE REGRESSION
LIKE PARAMETERS AND DEPARTURES FROM MULTICOLLINEARITY
i
iis :,or MEANS

In&mdugtwn.—- ﬁ :
Conf‘idence ‘sounds given here for regression- like
parameters and departures from Multicollxnear:.@y of means are

improvements over those, given by S.N.Roy (23,24,79) with some

additiogal results. Z;i;.::::;
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Let (yi j) p ~ be ~independent multivariate normals
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with mean vectors (;': ’: ] *and variance-covariance matrix
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B= &2 Zzz and §-:L /ui-Pi ,:‘ 2,...k. Then we are consider-
ing the following problems.- ‘
(i) Confiderice bounds on regression like parameters p,
(i1) Confidencj&e*iaounds on %4's;
(111 ) Confidence bounds on the parameters of the |
departures of means fron_l .the multicollinearity of

means of second kindj
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(iv) Confidence bounds Lon (fi- g ) where 3» Z n, __i/n

i
‘~.s

where Z ni"n- RN
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(v) Confidence bounds on ir«ﬁ (1#3) which is a subset
of (iv), *
‘ The solutions of :.f,klxe above problems are given in
IS

the following sections ixi*tge order mentioned above,

4.2: Confidence bounds on the regression like parameters p:-

&

o S s P . -
Let 8= ( 1 12) - be the S,P,M, due to error

8!, S q
22 .
Plz a Ty

2 .
and then the distributiong’“ of S is Wishart (n-kyptq; 53 s)
if n-k>(p+q). (See chapter .

By using (A.l.lga), ~it is easy to see that

“ e‘1
tr T 1s-tr;:l 281, gttr zlgxsm gas 1Pt )trpz'lz 12

ot otr 5:22 22 *‘“P 21.:. Psaz,
-1
where B=Ro Zzz’ 2'J..z* fll 9212’81 211" 12522% )

Since +trPQ=tr QP, fthe abov% result is equal to

y A

-1 -1 it
(4.2.1) trs S-—tr[i 1. 2+tr):1 2(3'&'-@T)(B¢-p’f)‘¢+trzéa 09

-1 .
where 3—812 29 9 Sga*TT'
Also' ‘Sl ngz‘ ‘ 1;;2 ;
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(4.2.2) Hence, it follows fimmediately that the distrlbutlon

5,3'..&1‘

of Sl 2 ‘and the joint distribution of BY and 822 are independent

j‘/

\3

-ly distributed and their resPective distributions are given

Hence we consider a11 7\1 Z—_‘ 2 | «or A .:._ g2 where MN's are
the roots of } e

We note that Rmax has the distribution of the largest
characteristic root of : "éhe -matrix 8112 88228 when P-O.
The joint distripbuticn of these central roots (when pz q or
p Lq_) and also oi‘ the 1argest root being known all that
we have to do to make (4.2.3) a simultaneous confidence sta.te-
ment with a joint coeffidat (1-9) is to choose 9,/ (1=6;) y=g°
where @, depends on p,q &ggn—k«-q and the quantity on the right
hand side.is defined by"i‘i” ‘
(4.2.4) Pr{Central )max G*/(]:-Q‘)} d.
| substituting this in ,(4 2.3), we can derive the
simultaneous confidence Cbom:xd on? from
(4.2.5) xmax{slilg (B-P)Szz(B-P) 1 ¢ q/(-9).

. Applying (A 1.24) , ) we can revrite (4.2.5) as

(4.2.6) '(B-P)Sgg(B-P)'.a/.& 1 235%/(1-9,,) = A (say)

) for all non-null '8 .gpxl .

Again applying (A 1.25) and with certa.in modifications

ve obtain the simultaneous confldence bound onP as
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4.2.7). a'Bs-{Mﬁ‘Sl'zﬂ) (S'S'éag)} ¢ a'paca’B ot

-1 .}
{7&(3'31 n.a) (.c 8221‘2)}
'z ‘& ‘T&’ .
i
for all non-nu_l",a:*. px].\and & s oagxl .
Since (4.2.7) is true for all non~null ¢ : gxl
we can choose g so as to maximise a Pg . Theé: it is easy to

see that (4.2.7) implieé (3'?}‘_@.) < (a'BB'g) +

{7‘0( (.a'S 2&) (Amax 522)} A similar result i‘ollows for
the other side of the inequality and thus (4.2. ) should imply

R
(4.2.8) (,a’BB‘_a) - {7\4(3'83 23)/;\mm 22§ 2'pp'a) <

(.a'BB‘.a) + {M(ﬁ's o8)/ Amin 22}

for a11 non-null a pxl . .
Similarly by, maximising (4.2 7} w:.th respect to

4 " S,

8. Pxly we have : 53-*

;.4/‘ %
(4. 2.9) (_Q'B'Bg) - pa(;\max 2)(3 5, )} pm <

’3

3 ‘
(s18280) + Wq — 2)(3‘3229) }

for all non;r}ull 9, qxl ° ‘

Then by smilarg.y maximising (4.2.8) with respect
to g pxl or (4.2.9) "Wigh respect to g s qxl, we have the
result : -ﬂ-f |

T

(4.2,10) %axBB') - {zd(;\m 1.2/ P 22} (xmpp') <

lf -

%
(MaxBB'> + {A*(}max 1.2)/7~m1n322} .
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Iﬁmaﬁm:- Since (4. J?) is true for all non-mxll

vectors g qxl and _a s pxl, we can- specialise ¢ and g

* by putting one, two or mere components equal to zero, and

- then in each case, take arbitrary values 40f the other compo-
nents and reason in the same manner as abovg. Thus proceeding,
we shall have in. a1l (2P-1) (2%1) statements in mumber,

all with a simultaneous confidence coefficient »(1- oL).

4,3 :- Confidence bounds on 51 s (Multicollinearity of means
of first kind % - '
et B |

It i.s easy to See  from (1.5.1) that S(S.P.M,
due to error) and %ﬁ("ii)mp 1=1,24400 ,k are independently

distributed and their distributions are W(n-k,prq; 238) if
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n-kzptq and N | ng ( ) :.,_Z=( 3‘1 i=1,25.4,k
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respectively and putting‘Y‘pxk-((" Ty yl,...,(— i Yic )
P qu"(f— ,Elgtco,,/ﬁ;s xg) jv- ({ﬁ&“l,ooo) \/——Iu‘k). pxk,

)) qu—(rl_l’ooo,@vw )w andg /‘{ %‘22.22 9 it can be

shown to be similar to lemmayz g0:{' chapter 2 that
-1 1 %) w-1 .
. ) -t ' tD= ° .
?.pxk=Tl (ZF T?T3 ) ( x /] D wherg ?“D ;
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& I= o s isdistributed as
-\, I/ a :“
P q
(n-k-p-q-l)/z
(4.3.1) const.. }I -FE: ’ and if Ais any

nonzero root of {(IK-F'F) -Ik}, then by 1emma 3 of chapter
2 and (4.1.22),A1s also the nonzero root of

-1 -1 -] -1
(Tgrxrspg) | (-5 8155501505 (0= § 5155, ).

4, ."

3
The distribution of * 7"m x if p2k or p&k, can be obtained

: from (4.3, 1) on following S.N.Roy (73 74,79) and Pillai

(61,63). | ;;%T{'T - Fif

(4.3.2) Hence we consider-all- M <& or Ma 52 where
. fm f.\\ f ‘“x . -1

M;'s are the roots ofg L (D~§)'S (D-§ ), where

. ,_ra "" {!
L]

-1
'
L-Ik“i‘X 822 X, D—Y—Sle X & 81.2 311-812822812 .

Since- the distrlbution of Apoy in the null hypothesis
is known, what we have\sto do to make (4. 3.2) a simultaneous
confidence statement*with a. joint coefficient (1=a) is to
"choose Gd/ (1-8‘)~A¢(say) where @ depends on p,k and
n-k-q, and the quanti‘by on the righ’c hand suie is defined by

ﬁx‘«f
'

(4.3. 3) . Pchentral 'Amax )A )"" d .

Substituting this in (4. 3.2) ’ "we have for the

simultaneous confidence bound, the statement
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(4.3.4) ° -_‘ ‘ max[ L (D-g)' 31 o (D= ¢ )] .
T Applymg (A.1.25), we can write (4.38.4) as

(4.3.5) ; '(D..g) L (D-§) 2 ¢ N 88 p8

ol ~~mr all non~-null g : pxl.

‘“_ ' A gain applying (A.1.25) and after certain modifi—
cat:.ons, we have the simultaneous confidence statement on.

§ pxk as =
(4.3.6) g'Dg =N (.a’Sl 28) (g'L_g)} ¢ a'feeaDe*

T -3

i {7‘& (a's, o2) (Q‘L_g)}
for all non-null 2 : pxl and all non~-null ¢ : kxl,
Similar to (4.2) , we arrive at the followin.,

other statements which are derived from (4.3.6):
‘ ( + » %
(4.3.7) - (g'DD'3) «{ M la's, 23)(7‘max } n'gg a2) <

(_a’DD' ) +{)~¢(a'sl gﬂ)(MuL>}

:Cor all non-null g : pxl ;

SRR % .k

(4.3.8) (3'D'D) “{h OpaxBy (eI} € (e'g'E'0) £
C1 (etD'Dg) +{Ng (S, eI}
1 ,:% T h

-

T ;'fo’r. all non-null g ¢ kxl and
.
(4:3:9) QgD -{x« a2, Oaaa ¢ O£

N %awi " D gy 12>0me>} :

a“:" A
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To di\scuss the - shoz-tness of (4..3.6), we. consider
the non«central distribution of Amax defined in (4 3. 2) 1.e.
is the largest root of the equation :Ln A

)

7\max

\h Bl

‘i.

(4.‘3.;:1‘0’_) ﬁ | - g) L (D..g )1 ‘9\31 2] =0 |
‘7-\; It is easy to see that the distributlon of the non-

central Xnax “"is really the distributmn fhax Where fmax

is the 1arge§1; root of the equatlon in £ obtained by (1)

" replacing in (4.3.10) f_i by f-a. (# .ﬁi) and so § byf (?ef)
and (ii) assmning the true population parameters ‘a§x ‘fi and
‘50§ . The distribution 1s extremely difficult, but it can be
shown easily from (2.2.2) or (3.3.,5) that it involves as

-the parameters, the positive roots ¥F Vi Voseeey rS (s &

—nin ¥

min.(p,k}) of< ’che determinantal equation inys

1(§ f”ﬁ "f)' 15, 2] =0 where 51-2‘211 %2522 512

and the roots }of W 5, 221)) which disanpear in the null
hypo%hesz.s. The $. -g)(g -3)' is necessarily at least positive

semi-defmite of rank s= min.(p,k), say so that out of the |
P roots of the equation in vy (p=8) are zero and s positive. -

Rei‘erring to’chapter 3 (3.3), we observe that there is a

4“ T,

A

good lupper ‘bound to the shortness of (4.3.8) and the shortness

i

is the monotomc decreasing function of the deviatn.on parameters

and tends to zero as these tend to infinlty. With one population

o
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L we have s=1 and

-1 : -1
Ay (F-§1-8 108 22x> sl. (3-1;-8 .lzsgzzv(;-«-nlfs 2 3
and T= nl(il-_f ) Zl 2 (?: -51) W= 1’ 222 Ym and it is

well-known that on the‘ null hypothesis (nl-p-q)7~/ p is

distributed as central F P ~p-q witiz:h P and nl p=q d.f.

and on the alternative as the di etribution given in (2. 3.2)
with the same d.f, and with a dﬁnatlbn parameter Yand & .
It is easy to check that :Ln thls casel the confidence statement

(4.3.6) reduces to B 7

(4 3.11) ,a,‘g« {p’r& (,a,‘Sl 23) X/nl(n -p—q)} ..l,a, £, ¢

I3
‘f w" Toey o

a'ar {57, (a'sy, 2_@ #/n,(n - p—q>}

v.f/

. 1'?_; e -1
for 4=7 -810805 %, £ = 1*“1 2'80n 27 S1 2 311"312322 12

2? § L_-:'a

for any non-pull g :pxl and Pr(F ~ 0>F /Ho) d .

SR |
The shortness of (4.3,11) can be ‘shown from chapter 3

(3.2) and tends to zero as T-)CD, whateverwmay be.

Truncationt= Since (4.0.6) is true: fox:‘r all non~null vectors
2+ pxl and g :kxl, We can speciallse gzand a by putting
,one, two or more components equal to’ zero, and then in each
' case, taking arbitra.ry values of the other components and

reasoning in the same manner as above, We, shall have 1in all

! '36"i
'\l{l'
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(2P 1)(2 l) stdtements in number all with a_simultanecus
' confidence coei‘ficient 3( 1= a.). } »
I

" means from the Mul’cicollinearitz of means of second
kind H

i -

~ i :

(1) Here the null hypothesis is Ho(a;l-(}ﬂi for 1=1,2,..k)
where G: pxq is a known matrix. Then by transformmg ¥ 1j
. to zij by the’ relatz.on yi;j"Gzi j 31;’ we see that 313 are

independent multivar;tate 'normals with;;gigs:n vector Lti- Ggi

and variance covariance matrii (I-0) &(%-G)' for i=1,2,..

"‘.k' and le,z,coi,nj: LI . ,
The confidence bound for this case can be obtained
from (4.3.6) by making the necessary changes, namely

84, 2—-8 P.M. due to error for -zi;} S, L~Ik, D-(fﬁl_zl,...,./ﬁkzk)
: v

s pxk andf (Jr'il_,_l,..,f"k ik) pxp where f_ -Mi-G”i i.e. we can '

Write the confidence statements as .

s ey

"‘“’rf

«(4 4.1) g'D_Q-{N (&,'Sl aﬁ) g s}<.a§.9 safl?s ‘

Pt

RO
i

{?u (,a,'S:L 2g) S g} for all non-nulJ: ve‘ctors

a:pxl and ¢ : k:x;}., and
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PriCentral ) (DD'cl 2) 2 ed/(l-s,,)#u}-

H *V, *~4
"“,‘.v >,

I
D=Y-GX,8, o=(I, -®8/ P|, 5=8,P.M. due to error.a
. 1.27°7p -G! 0 4

Other particular cases can be derived from
(4 40 l) Simllur to (40 U)O - ,h(:j: ;f_ii,.‘?.

(i1)

variate analysis of varisncé. of means:.

(a) Univariate case:~ Suppose xif,s are independent
N(E(xi) ¢>) such that putting x“(xl,...,xn), we have
E(x)-AAt a..mxl (m&n) A:nxm is a matrix of rank rgm< n,
given by the experimental situat;on and & :mx1 1s a set of un-

known parameters.

Putting A.nxm-(Al Ag)n, let us _assume, as we
: r Mer. e

can without any loss of generality, that Al.zi:xr ies a set of

independent column vectors which might »be taken as the
basis of A:mxn, Suppose now that it is'required to test
Q(C M=0Q) where Cigzm is af rank s z..min.(q,r)‘ m <. Butting

che © ( 11 312) (4‘1)‘1' =<f€11) s
—— - ,
- @S Gy O bg/ooer Al ams

,v 7 “"*“.

we assume without any loss of generality, that (Cq5 012)
can be taken as the basis of C, then the te{;st given by

R,

S.N.Roy (79,23) is. | R ‘4‘51‘
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(4.402) to reject Ho('_'lf 211) if

(n—r) (z-eBﬂ ) WK ]"l\i(xaBJl)/s e2 E; vhere

, -1
H=C l(A'& ) :\",lgrguw-c (A‘Al) lcll,B ,

= -3 ! {
exxxAlAA) l;gand

Pz {Fs per %4 /H (_’11-93} =d .

z» ,'§ 5

To obtain the confidence bound onﬂ , Ve apply

]

[ i

‘ (A..L‘25) and revrite (4 4:2) as,

I
; T

(4, 4.3) d'n;;.. {ste(g‘kg)/(n-r)}&g*l ¢ a'g +

By

{st*d e(d'Nd)/(n~r :)%,;ffor any non-null vector:: d:sxl.

If we maximise (4 4.3) “with respect to all non-null

s

‘d:sxl, we can write 1t'as, ,

v ad

(4.4, 2 (& M) {()‘max Me sF /(r—r:} ¢ (' 7

M«‘

m‘ﬂ

T
(z'I\"Mz) + {(xmax N)e sF, /(n—-“} e

(b) Multiv::xriate caset= e tu:cn to the multivariate
set-up, ziamely X'pxn whosé' coiuxﬁn vectors are independenfcly
d:z.stributed the r-th vector x,, being N (B(x. ),Z) for
r=1 2,..e,na Let E(X')-Aﬂ, Asnxm M 1 mXD. Then it is easy to’
set the conf.‘:.dence bounas on ‘the parameters C N, by consider«
ing first for all non-null b pxl, the. distribution of bH'X
which is Imlvamc.te nopmale end so the Slmllc.I‘ confidence bound

on C}{_‘g ‘can be written i‘rom (4“4.2) for any non-null b:pxi,

D ¥
1 3
7
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Then we convert this tésf b’focedure by Union-intersection
principle (75) to the multivariate set-up and arrive at

the confidence bound on 7]1 =(Cq1 012)( x as
. Nz

".

(4.4.5) _Q‘MX‘b-{(h‘Sb)(g'Nd) s)a/(n-r)} <§'71
4'Mx '.b'*'{(h'sh) (g'N.a) s)\\/(n-r)}

for all noa—null ,d sxl.and b pxl, M & N are defined
"in (4.4.2), S is the S, PoM.: due to error and Mq(depending on
PySyn=T) is the o\% point of ‘che distribu’cion of the largest
~root of S 5™ Y1) /s under Ho('fll..o) 5 *=8,P.M, due to
hypothesz.s.. XMN'mX. o

Now for maximising cver ,d and Db, we can proceed
" similar to (4.2) and arrive ‘at the following.

3
.
\& ’, kW

*
(4.4.6) (2'sy'D) -{(.b's.m (Amax N)Sh/ (n"r)} ¢ (b"}l'h b)

%
(.D'gxb) “'{(.b's.b) (Amax N)s?q/(n—r)}
for any non-null _‘p pxl pmd S*’ X M'MX';

i~

_%_ .
(4.4.7) (@'MX'XM'Q). -{(mmax s)(g'm)sw(n—r)} @M ')
) \ (Q'MX'}HQ‘Q)_ +{(Amax S)(Q’Nﬂ) s?q/(n-r)} B

for any non-null d : sx1 and

_M_Q
ey
Y
-7
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(4.4.8) Oy > -{(mmax\ 5) Ohgax ) sM/tn-ﬂ} 4<hmax“]1”]1>s

Mpax s gcm s><>mx ) sw(n-r>} ’

zo;u

all with fconfi'dence coefficient 2(1=a ).
Also we. ncte ’chat the hypothesis. of testing
G/R-O.qxp is the ~same ae C}LP-O where P:pxu (u ¢p,of rank u)
i.e, C).L* = 0 wheid ){_*-7({13/ end so testing ’Yzl (C 12)”_ exp

is replaced by testing ‘rﬁ = (Cqq C12)N_P. sxu. Hence (4.4.5)
would be replaced by a statement in which everything else ‘
is the same except that under )‘,p would be replaced by u

- ‘and written as ), X would be replaced by’ P'X:ux n,

S would be replaced by PSP and all nen-null b:pxl would

be replaced by ,b*.uxl. Similarly in (4.4.6) and (4.4.8),
* in addition, S* would be repldced by P'S*P. \

With a confidence coefficient >(1- o)y (4.4.5) and
(4.4.8) will now be repla.ced by the respective confidence

B g x’

‘statements: , ‘

(4.4.9) g'm'Pb*- {(h*'P'SP.b*) (g'va)s x: /(n-r)}ésl'"'hPh*z

e

Q'M'Pb**-{(b*w spb*) (4'Nd)s N /(n-»r)}
" for all ncn—null“g sxl and _b* : uxl, and

(4:4:30) O P P e*m‘% {cxm P!smcxmax Mexy/n} &
O\max PW}]_?I]_P) z

? Ty
kY oA



" where

Irmmeations- Truncatlon problems for (4.4.5) and (4.4.9)

:z 'é'

are similar to those discussed in (4.2) and (4.3).

el .:

4,5 Confidence bounds on (f_j; - 5 )' :=

IS e

\

With theé same notatlons as (1.5) let

: Zy P Rl)
. (Z' Zt\= (R!
Z ) ,?‘ ) q (R - R.)
, k-

n T k-1
P (Bl) = Y &1(;1"; ) ¢ svesy r k(}k";)
q\R q ‘531(31"'3 ) g vesss Jhk(xk-x)
1

Y T
(4.5.1) 9( )(B«A)(Y' X') -%-fp(
g\ X q

E; X, o k
¥i= 3’13/“1’ x = Zlniixi/n, %= ;1=X1 -’51;;/“1’“"1‘21“1

R
DT

A . P Zl p [X %’&' A A )

and also . = i =B-A and =T.

‘ ol z o \x) b bLh Ay Ayliy
P .

‘J
& ¢

. A0 x’\;’,f B )
for (B-A) is.am idempotent matrix of Tenk (k-1)(4.1.12),
‘Hence by applying (A. 1.10) to (4.5.1), there
@xists a semi-orthogonal matrix A (k-l)xk such that

SR\ T
(»4.5.2? p((z}al)m;;p (Zl)A @

g \R/ T q\2
. k v ° l 3 k"‘ S Z
. 3 "\ '\ 3 n N S p p
(4.5.3) Moreover b‘y (1.5.5) 3 S= (S‘}l Sla and ( 21
- - . ,,L-w s A 4
('._.:.'a‘ 12 ’ q22 k.

s > v

are independently. distributed and their reSpective distributions
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‘are W(n-k,p*q;5;5) and Mﬁ[p (N)A]_ y &= C}l 12) p-]
- - a\p 5 22? q
| N‘ ' LU= '51 - .
such that - 1 Al (ut.. V)= ; (Si &%) where
@ Iimy '}s P i 2 - - .

v (8 _p /MUy 3?{
q ]§2 Jﬁl(gl ﬁ.: 3“- ...”‘,“xﬁk(zk- Z")
) . | -

1 -
f N"’,v * b - ] 7 ;
K ol (v)é’ (7. %) = ( J(® R)
= J, n; Y /n, and so as (4.5.2), we Write '

fzt

=g MRy

.o .‘Q{ﬁk%km E)) k

i"l

wj P

p /& ;WK'P N - f
| ( 1)z () B, B yomd 7 (M-S, I, .
52 R fz

S:lmilar to 1emma 2,* of cha ter 2, the distribution

of  F;ip -1)= -Q Q' ) ( 2 '1 )?‘3— » Where
23~ ) ~ o~ ‘51 0. P
N o e )
;’g*.j';:, %2 -2 d

and E*E*I-Z‘(S ZZ') 12 is given by

- .

‘ g = ns-k~p-q-l)/"
54.5.4? const, le~F1F1'1 \
4 5-5) Lf Ms the ,z%on}ﬁgexp Toot of {,(?k'fl-Fgl?- -;k_l} ,

" then by using the 1em‘ 3 of _chapter 2 and (A.1.22) s

also the nonzero root of ;ﬂ»;:
(161[' - ;1,

Ve

i 4 U :; j:)

*..;J' ‘l
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' f -1
t
Iy g2 S ) (Zl 1]:c."sl.‘aszz Z) 1. .(Zl"') 810523 Z); or

"““\

'Ml =1 i1
T *\" ’ .
-1 _.=1 .
Now we have (Ik. 1-1-2 522 Z) :-Ik_ —'7'(8 4779 )

and so P=(Z;- 1.312322 ka f-z “"222) (21-7}1-3128222)

=(2,~ "h-812822 Z)~'(zl-?]*1.slaszzz) .

(z S z 71 0l S 5o 7)1
-7]1.. 125 22 ) (522+232) (Z3-1;=812805 )

=(R M-8, szzR) ”‘1 "}-slas? la)'
(RyN=$ 10557 1?)11 (s mav )‘1R(R _71-3 s;; R

with the help of (4.5, 2) and") 5‘1 -2122:22 5o = ”fllA . Hence
H t

-1
(4030@) P'"(Til qt"slgsgg R) (Ik‘t‘Rl 822 -R) (“"{ "7"5 322 R)o
(4.5.7) Using this expression in (4.5.5), we shall

- ) - y -‘l -14

have ) as the nonzero root of L, (D~ )‘Sl 2 (Dl-'fpwhere
L—<I+zz'snlalnfzssla 4 N=Fi= 50 5on &,
Ly= (T ) » D1 Pfen end 7= - Tipadye
(4.5.8) The &3.stributlon of, )\max if p<(k=1) or p 3(k~1)
can be easily obtained from (4.5.4) and so we consider all
A 42® or >\max‘52 where )\'s are defined in (4.5.7).

{459 Since the dig:b;'ibution of Apmax

[,

hypothesis is known, sd what we, have to do to make (4.5.8)

in the null

S

vy
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a simultaneous confi'dénce ”s’t:;iieﬁent with a joint coefficient

(1-4), is to choose- I 2-9¢/(1—e¢) =) vhere §, depends on
Pyk=1) & (n=k~-q), angl'_Pr(Ger_;’qral Amax? Pa )=0.

" Substituting this in (4.5.8), we have for the
TR B
simultaneous confideifiée bound, the statement

:.- "' t '; ‘

. is-l ;
(4.5.10) Max § I3 (D np S1.2 OrPléng vitha
confidence coefficient (1-— ol ).
Applying (A. 1.24)1 and then (A.1.25) and after
certain modifications, we obtain the simultaneous confidence

bound on‘rl as

(4.5011) g'le-pd(a'sl 28) ('L b)}4 aMb<a'Dyk +

{7\,‘ (,a,‘Sl Za,) (_b'Ll_‘Q)} for -all non-null aspxl

v ?3
f'? fi

and all nop-null b:kxl except far the vector (ﬁl’ﬁa"” ,Jﬁk)
for (1, Jﬁ'z,...,J- k)'-—,Q pxl, and so we can always without
any loss of generality fix,one element of D, Let us suppose
the k-th element of _b to be zero.

For maximising 64 }5. ll) over g:pxl or b:kxl, we

can proceed similarly as in: (4.2) and arrive at

(a'D; Dly +{Ad(_a;‘8 ﬂa) (;m Ll)}

fex all non-null ,a pxl;

i
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¥
(4.5.13) (,b'D'Dlh) -{N,()\max 51.2) (_b'Llp)} ") 7]12)

(-b'D'Dl-b) *S@‘&Qmax 1.27 (2’ Ll-b)}

“for all non-rmll b° kxl1 where the last element of D is zeros

(4.5.14) and Qmax DlDl) -gm Opax 51.2) Agax 1)}

Y, Iu

‘%
(')‘max‘yﬂ') N Q\nax by N (?‘max $1.2) Qmax Ll)}

all with a confidence cééfficient greater than or equal to
(1-a). ':::;‘_::

_ To discuss the shortness of (4,5.11), we consider
the non-central distribut:.on of Nnay defined in (4.5.8) i.e.

7‘ma.x is the largest root of the determinantal equation in A,

) 1 :
NI R) (Rl-:v)-sm 223)-3 >\\0.

22

=1
(4.6,15)  [(B)-8,8 22

It is easy to see that the distribution of the
non-central Pmax is really the distribution of fmax where
fpax 18 the largest root of the equation in f obtained by (i)
replacing in (4.5,18) ii« by "s (# i ) and so § by ? #5
i.e, “]by ’f}* (#"P and (ii) a?SWnlng the true population para-
meters as ‘v} The distribu’clon is extremely difficult but

after converting R. & R to %, & Z and using (2.2.2) or (3.3.5)

1. ~1
it can be shown ’chat it inv°1ves ‘the parameters, the positive

roots ,% TisBgeeey 73 (Ls £ min. (pyk~ l)) of the determinantal

éﬂ')'



equation in Y: ](Y]*-T}) ("’]*-7))' Yf;ﬁ' } =0, and the roots

of V(B—A)V‘éz *(5 ! J ) Which disappear in null hypo=

thesis. The (Yl*..?)) (’))* 1}) il is#necessarily at least posit:!.ve
semi-definite of z-ank min.(p,k—l)—s (say), so that out of

the p roots of the equation :an ly{p-8) are zero and s positive.
Referring to Chapt‘-er 3 (3.3), we observe that there is a

" good upper bound to the s:%oﬁ:ness of (4.,5.,11) and the short-
ness is the monotonic decreasing function of ‘the deviation
parameters and tends to z.ero“as these tend to infinity., With

two populations (i.ee k-z) > we have s=1 and

i L

(4.5, 16) ’:"'“12 G 1.12f§2o5{i;(%§?1‘é2) {e ol Frue To2)-Gddb

A= :
) 4 f‘i*\-.‘»l-!-TZ
- . ¢ f:\"‘ ~ 12

y o

— _ - e -
where - nlg-nlnz/ (nf‘ng) ’ X};g— Ii- 812822 Z; 1—»1,‘:‘2‘,,
Ay

2 = = yig7lE = = L 1=1.0:
T2 Pip %y 32) 8o (Ey1-2). &.ii" £i-hiolop Y1171,25

T-nlz(g*.. ?—* .._g 2) Z' (ﬁ}‘_ -5.3- .S.l"‘ 5'-22:

C"-nlz(}_’l _2)‘ Zgg ( -V ) , and it 1s wel-lmown

that on the null hypothesis ‘}\(n +n2-»p-q-1)/p is distributed

F t d. - - ® d
as p,nl"‘nz-p-q 1 Jwith p_an (n M el -1) def. and on

the alternative as the distrn.bu’clon given in (2.a.2), with



,v,.

It is easy to check in this case that the confidence state-
ment (4.8,11) ‘reduces to A .

- - +
(4.5.17) a'(y, - gé'é)-{de_(.a'Sl.z.a)(sz Mmool &

)+§pF (a' 31 o8) (1472, Y/m n

a' (-5 <3 (1 .07a, 2y

{2

for all non-null vector g,\ 3 pxl, and m=n +n2-p-q-1 &
Prin’n +n2_n_q 1 ‘d /B (T~o)} oo

R o /

The shortness of (‘4 5.17) can easily be shovm
L..u. X

from Ghapter 3(3.2) -and tends to zero as T tends to infinity

whatever Wmay be, .. -

K

Truncation:~ Since” (4 5o 11) is true for all non-null vectors

a: pxl and all non-x\ull _b kxl which has the last element
as zero, we can Specialise _b and 2 by putting one, tWwo or
more components equal toy zero, ‘and then in each case, take
arbitrary values of the other components and reason in the
same manner as above, Thus roceeding, we shall have in all
(2P-1) (2 1-1) sta,temeng;in number all with a s&aﬁ.multaneous
confidence coefficient »(1~a).

4.6:- Confidence bounds on (ii .ﬁl) (i# .‘!) which is a

sub-set of (4.5) t-

With t.he same notgj;i}é}ns as (4,5) and vith

'\ o

< S
L S Tw
0]
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Xg N
-1 5 -1
Tp.2" I 512°22 3}1' -n‘ﬁh‘ 5252 Tps Bpymyne/ (ngtng),

and ?ht""(xh"‘xi;) 'Sgg(xn"it)nht, we may note that

‘ 2

= iug;ﬂ # (Yh 2.% 2 j )(Yh.z"i't. '? +§+,)a
1+Ti1;, non-nu%}i :_‘_j,;:_:; @5, 52 |

'
xw,,f [N

Thus for a. glven palr (h,t), the statement that
Uh’c &F, 1is exactlye equivalent to the statement that, for all

l

non-null g, st
a2 (Yn o Tt 2)~{Fd(,a'sl za.)(J:!-Tht)/nht} £ al (?h ft) <
a' (yh oYy, 2)+{F (5'81 aa)(1+Tht) /nht}

We observe that when -the true pOpulation MeRAs are

Ep'sy Uy (k- 1)/p 1s distributed as F

,,,}
with p and (n-k-p-q+1) ds :£' where n-’).ni .

Pan'k‘P'q+l

Now considering all pai;'s (h,t) out of k-samples
(and k-populations), it is easy to gsee that the statement
that the largest U,y out of all pairs is <F, , which again
is equivalent to the statement that, for all non-null g s
and all pairs (£,t) out & ks

PRI

LA
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»
.,
seetd

(4.%.1} a'(y, o yt 2)-{? (.a'Sl 2&.)(1+Tht)/nht}<.a (5§ <

a'(y, o Yt 2)+{F (.a. 'S1. 3&)(1+Tht)/nht} .

If the confidence coefficient of (4.6,1) 1is
to be (1-d), then F aF“(p,q,n 1903000y n,) will be given
by (4.6. 2) Pr{l.argest Uﬁt out of(k)pairs, ,Fd/null hypothesis}
=d, o : ;, - ‘

It 1s obvious that the distribution of the
largest Uht involves aS-béTQmeters Just p, q and nl,nz,...,nk.
It is easy to see that the distribution is managable only
when the number of parameters is small., It may be noted that
Wwhen k2, (the 1argest Uht) (n'+n2-p-qr1)/p will of course be
F distributed with defo p and ny tno=p-q=1. Also fhe shortness
of the confidence bounds (4.6 1) can be formally written as

Prftlargest Uy out of(k) pairséF&(p,q,nl,... ,nk)/alternative}.
It is important to observe that while each Uht!j%?iﬂ
is individually distrlbuted ‘(on the null hypothesis)as F ‘
with d.f, p and n-kup-qi'l, the (g) Uht's are not independent,
ner do we know what the distributlon of the largest central
Unt 1s, to say nothing of ‘the non~central case, so that the
confidence statement (4.6.1) has not been reduced to practical
terms as was done ibr the - other cases discussed. The distri-

bution problenm arising in this situation needs investigationy
L.-_.,§
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For the associated problem of testing
Hf§1=e0e= k), we set up! éé before the rule that if,. ’
for non-null 2:pxl and all pairs (hyt), the bounds (4.6,1)
include zero, we accept Hy and reject it otherwise, The
properties (including power) of this test are tied up in
an obvious manner with those of the multifple confidence
interval statement (4.6, 1).3
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