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CHAPTER - II

ON NffRLUBD SUMMABILITY OP 

GENERAL ORTHOGONAL SERIES

2.1 Let (n=o,1,2.............. ) be an orthonormal
2system (ONS) of L -integrable functions defined in the closed 

interval Ja, b| . We consider the orthogonal series

(2.1.1)
00

JZ °A(x)n=o
with real coefficients C^s.

•jj
We denote as usual the n -partial sums, (C, 1 )-means, 

(E, 1 )-means, (R, 1)- means and (N,pn)- means of the

orthogonal series (2.1.1) by sn(x), 6^(x), -j (x), 6^(^,x) 

and t (x) respectively.
n

thThe n Norlund mean or (N,p )- mean of the sequence of 

partial sums ^sn(x)^ of the orthogonal series (2.1.1) is 

defined as

n

Vx> 1

n
pn-ksk(x), n=o,1,2.

k=o

where ^Pnj a sequence of non-negative real numbers, p0> o, 

Pn = P0+P-i+......... +Pn ^
n

Sn(x) <Wx>
k=o
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The series (2.1.1) is said to be (N,p )-summable to s(x),

if
lim t (x) = s(x). 

n —■—>oo

The sequence ^Pn| will be said to belong to the cl as si, 

for a certain real o, if

i) °<Pn<Pn+i for n=o, 1,2, ..... 

or o<pn+1< Pn for n=o, 1,2, .....

ii) P0+P-,+ + p„ = t oo 
^n n I

np
iii) lim 

- n—^oo
o<.

It is well-known that the method (N,p ) is regular, if

and only if

lim
Pn

n....n

Obviously, if ^Pn| M , then the method (H,pn) is regular. D

let n
sn “ T

n
k+1

k=o

The sequence ^Pnj will be said to belong to the cLass BVM'XX.

if \pn^ €1 M and if is a sequence of bounded variation i.e.

00

1) Meder Q-SJ
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Let yu(x)^x denote a positive function concave from 

"below, defined for x^ 1 and increasing monotonely to infinity. 

We shall call the orthogonal series (2.1.1) yu (n)-lacunaiy, if 

the number of non-vanishing coefficients 0^ with n<k<;2n does 

not exceed yu(n). Furthermore, we shall say that the coeffi­

cients have the positive number sequence as-a magorant,

if the relation

VO <V
holds.

Let p = ^pnj and q= ^qnj be non-negative sequences of real 

numbers. We write
nrn~ ^ •^n-'O^b

i)=0

and assume that rn is non-zero for all values of n.

The n generalized lorlund mean of the sequence of 

partial sums -£sn(x)j of the orthogonal series (2.1.1) is given 

by

(x) r.
n

n
pn-kakB]E^x^ n=o, 1,2.

k=o

The method (lf,p, q) reduces to the Horlund method when 

q^l and to the method (N, q) when pQ=1.

An increasing sequence of natural numbers 

n1< n2 <...............<nk<.................

is said to satisfy the condition (L), if the series
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Eh.

satisfies ttae condition (It), i.e.

00 -1N

r-k-o^ •k=m

2)Sunouchi * has discussed the convergence of the series

po

En=l

I I k

n
k >1

under the restriction of boundedness of the functions (x) 

by proving the following theorem,.

THEOREM : If

(2-1-2) 

then
13 JQl-

[ Ea n=1

3),.

n
(x)| ^ K (n=o, 1,2......... )

|sn(x)-6;U)|

n
dx<A ) n

L__
n=1

q~2
n

» q>1

(2.1 .3)

and

(2.1.4)

Patel investigated the convergence of the series 
l1 2 3n(x)- ~rfx) *

n
, k>2

n=1

oo sn(x)-6;( A,x)

n

ik
k^-2

n=1

1) Bary 01]
2) Sunouchi j76)
3) Patel l62j



under the restriction of the boundedness of the functions 0 (x) •n

The convergence of the series (2.1.3) and (2.1.4) for 

k=2 has been studied by Meder^and PatelQ

In this chapter, we first prove the analogous result for 

lorlund summability for k=2 and then extend it for k^ 2 by 

asserting the following theorems i

3)
TEE0BE1 1 : If the coefficients of the orthogonal series (2.1.1)

satisfy the condition

00

(2.1.5)

n=o
and

0n<°°

(2.1.6) lpn]e:M0<’ CK^°»

•then the series

OQ

r
(S (x)-t(x)f

n' _ n 
n < 00

n=1

almost everywhere*

THEOREM 2 : If pQ> o, pn;> o, npn= Q(Pn)and the condition

(2.1.2) is satisfied, then

b oo

a n=1 n=1

where q.^2.

1) Meder p-63
2) Patel £60]
3) Agrawal and Kant aw ala ~|T]
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Further, we also discuss in this chapter the (l!,p )- 

summabilily of the yu(n)-lacunary orthogonal series (2.1.1).

Dealing with the (0, o(->o)- summability of yu(n)- lacunary 

orthogonal series (2.1.1) Alexits 'has proved the following 

theorem.

THEOREM B : If the coefficients of px (n)-iaeunary series (2.1.1)

have as a majorant a positive monotone decreasing number 

sequence -fq.n| satisfying the condition

f- ^

then the condition (2.1.5) implies the (C, dc>o}- summability 

almost everywhere of the orthogonal series (2.1.1).

The (E,q.)- summability for q.;>o of the yu(n)~ lacunary

orthogonal series (2.1.1) has been discussed by Sapre and 
2)Bhatnagar .

We extend in this chapter the above results to (E,p )- 

summability as follows :

THEOREM 3 s Let

(2.1.8) -Jpn| e bym'*, <x>f

and the coefficients of yu(n) - lacunary orthogonal series (2.1.1) 

have as a majorant a positive, monotone decreasing number

1) Alexits ( [4-J , p. 130)
2) Sapre and Bhatnagar" Jj4]
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sequence ^q^j satisfying the the conditions (2.1.5) and (2.1.7)# 

Then the series (2.1.1) is (N,p )- summable almost everywhere.

In the above theorem we may excludetthe condition of the 

lacunary property, if we take into consideration that betwesa 

the indices ua and 2n there are exactly n free places; therefore 

if we put yU (x)=x i.e. ^u(n)=n, then every row is yu(n)- 

lacunary.

This remark enables us to point out a special case from 

Theorem 5 in which the condition of the lacunarity does appear 

no(more.

THEOREM 4 : If the coefficients of the orthogonal series (2.1.1)

have as a majorant a positive, monotone decreasing sequence jqnj 

satisfying the condition

(2.1.9) r — <°°
and (2.1.8) holds, then the orthogonal series (2.1.1) is

r

(H,pn)- summable almost everywhere.

Moreover, this chapter also contains a result on genera­

lized Eorlund summability of orthogonal series. The summability

of the orthogonal series (2.1.1) by Oes&ro, Eul a*, Riesz and
1) 2)

NBrlund methods has been investigated by Kolmogoroff , Sapre , 
Zygmund^ and Meder^ . Dealing with the generalized Eorlund 

summability of orthogonal series (2.1.1) Patel and Patel1 2 3' has

1) Kolmogoroff [543 4) Meder .&8]
2) Sapre [72l 5) Patel R.K. and Patel G.M. [j55j
5) Zygmund (96|
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proved the following theorem s

THEOREM 0 : Let P^P^j. and q= ^qn j be non-negative, non-

-decreasing sequences of real numbers such that rQ—*-oo as 

n —*- co and

Let be an arbitrary increasing sequence of indices

satisfying
nk+1

1<q ^ —- ^r for k=o,1,2..............
nk

where q and r are positive constants. Then the series 
oo ■

is convergent almost everywhere in (a,b).

In this chapter we generalize the above result by proving 

the following theorem :

THEOREM 5 s Let p= ^pnj and q= be non-negative, non­

decreasing sequences of real numbers such that rQ—^oo as 

n —*-oo and satisfy the condition (2.1.10). If an increasing ' 

sequence of natural numbers -jn^j satisfy the^ condition(L), then 

the series (2.1.11) converges almost everywhere in (a,b).

In order to prove the above theorems we need the following

(2.1.1Q)

(2.1.11)

1emmas !



be an GFS overLEMMA 1H (PALEY’s THEOREM) s Let \0nU)j 
an Interval (a,b) and |^n(x)l M for a<x<b.

(I) If fcLP, 1< P^.2 and C-^Qg .............. 0n.......... are the Fourier

coefficients of f with respect to ..........then

where A depends only on p and M.
hr

(ii) If q>2 and C-^Cg, ......... 0n,

numbers for which

is a sequence of

DO

n
a—2na +£?0 f

then a function f(x) eL^a, b) exists, for which the numbers 

Cn are Fourier coefficients with respect to the system |$n(x)j

and

II f dx ? q ^ bJ 
a J ^n^T

i,
q _

°n I ^ {
where B, depends only on q and

2)
LUMA 2 : Let ^n^jbe an Increasing sequence of indices

satisfying the condition i<q.< {oy. k- 2.........
1) Baiy ( 01 J , p.224), Zygmund (D8],p.121)
2) Meder 0-53
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where r and q are constants. If the conditions (2.1.5) and 

(2.1.8) hold, then the orthogonal series (2.1.1) is (N,p )- 

summable almost eveiywhere if and only if the sequence ^sn(x)| 

is convergent almost everywhere.

2.3 PROOF OF THEOREM 1 : We have

snU)-tn(x)

n n
°A<3> - 1

k=o
FT 4_Pn^sr(*)

r=o ' '

?n E <wz)
n

k=o

n r

E VrEVr‘ X L Vrl_ Vk'1)
r=o r=o k=o

n

n n n n

E °A(x) E Vr’V E °A(x) E Pa-:k=o

n

“ p XZn k=o

r=o

k-1

■n-r
r=o

k=o r=k

Consequently

0o h co n k-1

(2.3.1) e^ l a*E E°*(En=1 a
—2____ nP _____ ,___n=1 n k=o r=o

■n-r

If °<Pnf‘ > then the conditions (2.1.5) and (2.1.6) gives

oo

n=1

b Oo n
5 J (Bn(x)-tn(x)f d^<E Ek2°

a
■ —w nP , —n=1 n k=o

2 2 
kpn
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00

k=1

w p2
Agr ^

n=k nrn

co 00 co

k=1 n=k

Therefore, by B. Levy’s theorem, we obtain

OcorVe2^ -3 -Oo;) ^<oo^ wnMw Chmimm y|

K=1

oo (Bnt^)-tn(x))'
n < oo

n= 1

almost everywhere.

If o<p 1 , then (2.3*1) becomes

00 CO n

n=1 a

Co

=0(1) 2 2 k °k
' k=

1

’Od) „2°k <°°
' k=

Hence, by B. levy's theorem, it follows that 

00
r (sn(x)-tn(x))‘

< 00

n=1

With that the theorem is completely proved.
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2.4 PROOF OF THEOREM 2 : We have

n
sn(x)-tn(x) = cA<x)-

n
1

k=o

n

J?n l_ Vr sr<x> 
r=o

n n n
x)

k=o

' n

n-r P.
r=o n

*- -■ Mwna

2_ Pn~r 
r=o k=o

•Gk^k(x)

n n n

= XZ XX Pn"r ZZk=o ' r=o k=o

pn-r

Y1 CAW ZIPn-rk=o

n

r=©

"n JZ °A<xHVPn-k>k=o .

n
°A^^k' where Rk =

k=o

Using lemma 1, we have 

b

P -P , n n-k
n

(2.4.1) J | sn(x)-tn(x) | 

a

.q.-2



Eence

r |sn(x)“’tn.(x) I'1 r^- i r^~ 3 .0. a_2

) Y1 -a ■ - ta « A1 l_ s 2_ l°kl 1% I **
a n=1 ' “ ’ "*

po n

n=1 k=1

= A
f- i~

1 l__ n L__ k
n=1 k=1

CL k
tSr.-I'r.-V-)'1

_q-2 v n n-k 

‘a

i • 6 <

(2.4.2)
b

a n=T

|Bn(^)H;nU)| 0L

n

00 00 /p p \9>‘

a*^ a1 nck|’ k«--2 )n - p~
k=1

___  npa
n=k n

How
" (En-W? f=1 'vW1

, nP4
n=k n

q.___  ripn=k n n

<vv/

q.—nP n=2k n

Since Pn> o

2k-1 /p p >,q 2k-1 p4(Pa n-kj ^ a ^ k _1

<1nP
n=k n

, nP 
n=k n

QL k

and for n>r 2k

n
p _pn n-k

r=n-k+1

^ *
=0(1)7^ ^

r-n-k+1
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Therefore

oo

n=2'k

(P -P )^ 
Krn n~k;

nP.<1 f 0(0
PO ■u-Q.-pQ.

n

n

-Ob

=00).

Consequently, from (2.4.2)

n=2k n
1__
q+1

br\2a- |sn(x^''tii(xMq' ^— q
z_ ——5s—Lax=ai 2>; i^i k4

a n=1 * k=

This completes the proof of our theorem.

2.5 PROOF OP THEOREM 5 s Under the conditions (2.1.5) and 
1)(2.1.7) Alexits ' has proved in Theorem B, the convergence 

almost everywhere of the sequence |s (x)Z of the partial sums

of the orthogonal series (2.1.1).

Consequently, it follows hy condition (2.1.8) and Lemma 2 

that the series (2.1.1) is (U,Pn)- summable almost everywhere.

2)PROOF OF THEOREM 4 : A1 exits has proved that the condition

(2.1.9) implies the condition (2.1.5).

Moreover, the condition (2.1.9) is a special case of

(2.1.7) corresponding to ^u(n)=n and this case is, as mentioned

above, satisfied for every series. Hence our theorem follows 
from Theorem 3-

1) A1 exits (jjT) , p.130)
2) Alexits ([4], p.132)
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2.6 PROOF OF THEOREM 5 : We have

snU) - 4P,cl)(x) =

n

Y1 °A(x) -
n

-4- Vs. ^ ss(x)
i=o n i)=0

n n -J
) - ..r ‘ / pn-'b / ^i^i^
i=o n -0=0 i=o

n n n n

~k ZI0 A<*:) n Vi. ^ - ~4~ JZ °AW /* Pn-'i)
1=0 " ■o=o n i=o •0=i

n i-1

^ Y2 ° a« YL v* %.n i=o ' ' feo

Since ipni aBi {Sxi 81,0 aon-decreasing, 

pi^pn and *1^%. for i^n*

Consequently 

b 2 2 n
AiAi V“ ±2025 ,,2pnqnV“

(s (x)- I^’^Cx)) dx^. 2
l - . ' n i=o
£1

Now, replacing n by in 

pa 6

n i=o

the aoove inequality, we have

f (sn(x)-T^f<ll (x))2dx4. J~ i2C2
kvf a k - k ' grj r2 fey

We shall show the convergence of above series by taking the

sum upto m terms.



n.m " k
1

___ T"
k=1 nk i=1

- nm 1 V”
= 2__

. 2_2 x C.l

n. nf

an

= 0(D

4- y~ i2°i+ 4- J~ i2°i+.......n / n2 x=Tn
+ nl

n.
i=1

.2 2i Of

mE*3

i=1

m n, m n
YL + H i2°i H A+............+ m

k=1 nk i=n^l te nk i=n
ttV-1

i2r2 1 n1 Ci 2 
n^ m

Since, the sequence ^n^j satisfies the condition (l), the
psequence {n^} also satisfies the condition (L) and hence

m m
\ ^ .«**.. ^_ \ ^ __^
/ 2< 2 * / 2 ^ 2 ’ .............
4—. n. n. 4—- n. n_k=1 nk n1 k=2 nk n2

Consequently
n.m 2 2 k

fer r2 i=1
nk

= 0(1)

n1 n2 J!®

E*s-?*E ,v‘7.... Efcr ni ife-H 2 ^“^.1

nmm
=0(0 r ci < w-

i2af. k
_____ 1 Y|

i=IVi+1 m

i=1
Hence, the result follows "by B. le’vy's theorem.


