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CHAPTER - II

ON NORLUND SUMMABILITY OF

GENERAL ORTHOGONAL SERIES

2.1 Let ién(xy (n=0,1,2+.+...++) be an orthonormal
system (ONS) of Lo-integrable functions defined in the closed
interval [@;g . We consider the orthogonal series '

oo

(2.1.1? z:: 6 f(x)

S n=0

with resl coefficlents ER

We denote as usual the nth-partial sums, (G, 1)-means,
(E,1)-means, (R, An,T)- means and (N,pn)— means of the
orthégonal series (2.1.1) by sn(x), 6%(#?, —Tﬁ(x?’ 6;()\,x?
“and tn(x) respectively.

The nth

Nérlund mean or (N,pn)~ mean of the sequence of
partial sums {gn(x)§ of the orthogonal series (2.1.1) is

defined as

n
tn(x) = —%— E pn~ksk(X)’ 070,71, 20000000,
R =T -

where ipnj is a sequence of non-negative real numbers, Py> 0y

Pn = PytPqtece-e +p_ and
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The series (2.1.1) is said to be (N,pn)—summable to s(x),

if
lim tn(x) = s(x).
n .

The sequence ipni will be said 1o belong to the olassliq“,

for a certain real &> o, if

i) 0<P, <Py, q forn=o0,1,2,.....

Or 0< P, 1< Py for n=0,1,2,cc0..

ii) po+p1+ csseses + pn = PnTw

npn
lll) lim "lg-' = 04 )
- 00 n

"It is well~krown that the method (N,pn) is regular, if

end only 1if
p
lim _@y_z o,
n-—»K n

Obviously, if ipn}e MO{; then the method (N,pn) is regular.w

Tet ] jal Pk
S, = = > ——
n Pn k+1
k=0

The sequence ipnj will be said to belong to the dass BVMOQ,

if {pni & Mm and 1if {Sng is a sequence of bounded variation i.e.

00

Z ‘Sn—sn-’l[ <
n=

1) Meder [4§
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Let /u(x)sgx denote a positive function concave from
below, defiﬁed for x> 1 and increasing monotonely to infinity.
We shall call the orthogonsl series (2.1.1) /u(n)~lacunany, if
the number of non-vanishing coefficlents Cp with n<kg?2n does
not exceed /u(n}. Furthermore, we shall say that the coeffi-
cients have therpositive number seguence {qn} as-a mgjorant,
if the relation

¢,=Ofa,)
holds.
Let p = {pnj md g= {qnj be non-negative sequences of real

numbers. We write
n

rn= §:: Ppvyhy

V=0

and assume that T, is non-zero for all values of n.

'

The nth generalized Norlund mean of the sequence of

partial sums isn(xR of the orthogonal series (2.1.1) is given
by J

1 n
‘ TI(IP’ q-) (X) = —r—-r—l- Z pn.—qusk(x)’ n=0, 1’ 20 » 8 e o0

k=0
The method (N,p,q) reduces to the Nrlund method when

q, =1 and to the method (W,q) when p,=1

An increasing sequence of natural numbers
n1<n2<oootcoo<nk<o---'--

is said to satisfy the condition (L), if the series



37
)

satisfies the condition (L), i.e.

oo

1)
1 1
=0t
== 1y l’lm

Sunouchiz) has discussed the convergence of the series

i | 8, (x)-6 (x) |*

) , k>

n=1
under the restriction of boundedness of the functions ﬁn(x)

by proving the following theorem.

THEOREM ¢ If

(2’1‘2) \ﬁn(X)lé K (n=0,1,2.....)
then ) q
B & (s (x)-6 (x)]
n j4} q—-2 q
EZ m dx\<~“§ n=E et s st
a n=1 n=1
Pa‘bel3> investigated the convergence of the series
k
(2.1.3) fi ‘sﬂ(x?n 65 k2
’ n=1
and ‘
x k :
s (x)-6_ ( \,x)
(2.1.4) Z in nn 5 , k>2
n=1
1) Bary [1]

2) Sunouchi [76)
3) Patel [62]
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A

under the restriction of the boundedness of the functiouns p’n(x).

The convergence of the series (2.1.3) and (2.1.4) for

k=2 hes been studied by Meder ” and PatelZ)

In this chapter, we first prove the analogous result for
Nérlund summability for k=2 and then extend it for k>2 by

assierting the following theorems

3
THEOREM 1): If the coefficients of the orthogonal series (2.1.1)

satisfy the condition

o3

(2.1.5) > ci<
’ n=0
and
(2.1.6) {pnfe-:Mm, X > o,

$hen the series

00
(s, (x)-t (X))2
= T = <

n=1

almost emerywhere.

je s
(2.1.2) is satisfied, then

b oo _ a 00
[P T S T

a n=1 n=1

THEOREM 2 ¢+ If p,> 0, P >0, np,= O(Pn)and the condition

where Q> 2.

1) Meder [46] '
2) Patel Q]
3) Agrawal and Kantawala -~[1]
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Purtber, we also discuss in this chapter the (W,p )-

summability of the /u(n)-lacunary orthogonal series (2.1.1).
Dealing with the (¢, ®>o0)- summability of /u(n)~ lacunary
orthogonal series (2.1.1) Alexits1)has proved the following

theorem.k

THEOREM B : If the coefficients of /u(n)~lacunany series (2.1.1)
have as a majorant a positive monotone/decreasing nunber

sequence {q satisfying the condition
$%n]
yp(n) q
(2.1.7) ) A B,
n=1

then the condition (2.1.5) implies the (C,Xx>o0)- summability

glmost everywhere of the orthogonal series (2.1.1).

The (B,q)- summability for g=o of the /1(n)~ lacunary

orthogonal series (2.1.1) has been discussed by Sapre and

2)

Bhatnagar ™.

We extend in this chapter the above results to (N,pn)~

summability as follows :
THEOREM 3 ¢ Let

(2.1.8) {pf e B>, >4

and the coefficients of /u(n) - lacunary orthogonal series (2.1.1)

have as a majorant a positive, monotone decreasing number

1) Alexits (4], p.130)
2) Sapre and Bhatnagar  [74]
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sequence {a} satisfying the the conditions (2. 1.5) and (2. 1.7)

Then the series (2.1.1) is (N,p )~ summable almost everywhere.

P -

In the above theorem we may excludé.the condition of the
lacunary property, if we take into comsideration that betw;ve’en
the indices n and 2n there are exactly n free places; therefore
if we put /u(x)=x ieee /u(n)zn, then every row is /J.(Il)"'

lacunary.

This remark enables us to point out a special case from
Theorem 3 in which the condition of the lacunarity does appear

nomore .

THEOREM 4 : If the coefficients of the orthogonal series (2.1.1)

have as a majorant a positive, monotone decreasing sequence iq,nj

satisfying the condit ion

00
(2.1.9) Z ?—n——-<oo
n=1 n

and (2.1.85 holds, then the orthogonal series (2.1.1) is

(N,pn)- summabl e almost everywhere.

Moreover, this chapter also contains a result on genera-
lized Norlund summability of orthogonal series. The summability

of the orthogoral series (2.1.1) bﬁr Gesdro, Buler, Riesz and
Norlund methods has been investigated by Kolmogoroffq), Saprez),

4)

Zygrmmdg? and Meder'’. Dealing with the generulized Norlund

summability of orthogorml series (2.1.1) Patel and PatelS) has

1) Kolmogoroff [34] 4) Meder -[48]
2) sapre [72] 5) Patel R.K. and Patel C.M. [63]
3) Zygmund (96
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proved the following theorem

THEOREM C ¢+ Let p=ipn§ and q={qn§ be non-negative, non-
~decreasing séquences of real numbers such that rnf~ra) as
n —»w and

n

Pnn
r:; =O§12.

(2.1.19)
Let {nkg be an arbitrary increasing sequence of indices
satisfying

n
1eq ¢ Zler for keo,1,2.......

where g and r are positive constants. Then the series
[r s
(2.1.11) (s, (x)-0{Pr2) (x)f
S Py A -
k=1 .

is convergent almost everywhere in (a,b).

In this chapter we generalize the above result by proving

the following theorem

THEOREM 5 : Let p=§pn} and g= {%nf be non-negative, non-—

decreasing sequences of real numbers such that T, 00 88

n —»p0 and satisfy the condition (2.1.10). if an increasing

sequence of natural numbers {n,; satisfy the condition(L), then

the series (2.1.11) converges almost everywhere in (z,b).

In order to prove the above theorems we need the follouwing

lemmas ¢
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LENMMA 11): (PALEY's THEOR®M) : Let iﬁn(x§ be an ONS over

an interval (a,b) and lﬂn(x)\é M for a<x<b.

(i) 1f fng, 1< p<? and C,,0, sceeeesC oeeee are the Fourier -
1'72 n

coefficients of £ with respect to f;,f,, +veeo then

EZ o [P | 7

is finite and

22':;\% \pnpizj%éAp i? £ 7 dxj%

where Ap depends only on p and M.

(ii) If Q22 and CqsCpy eeses Gy +veee i8 a sequence of

n’
numbers for which

0

4
Y (G | P
n=

then a function f(x)el%(a,b) exists, for which the numbers
C, are Fourier coefficients with respect to the system iﬁn(x)f

and 1

i S}f\q dxj'%é Bgig; X Iq nq"2ja

where Bi depends only on q and M.

2
LEMMA 2 ¢ Let {nk}be an increasing sequence of indices

satisfying the condition 1<gq< 1.‘.;_'::1 ¥ for k20,4 2.,....

1) Bary (1], p.224), Zygmnd ([98],p. 121)
2) Meder [38]1
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where r and g are constants. If the conditions (2.1.5) and
(2.1.8) hold, then the orthogonal series (2.1. 1) is (N,p )
summable almost everywhere if and only 1f the sequence &s (xzf

is convergent almost everywhere. ,

2+3 PROOF OF THEOREM 1 : We have

i

s, (x)-t, (x)

1 I

1
E Ckﬂk(x) - ""T?-r'l' E Pn_rsr(x)
k=0 =0 -
n P
1
= =L E ckﬁk(x) § Ppr” 1 > pn-r> Ckﬂk(x)
=0 k=0 .
n n n n
=) B (x) ) p_ - EY
2 k 'k n-r~ P 1Pk Pp-r
k=0 T =0 k=0 " r=k
n ket
1
- "P";" Ckfgk-(x) pn-r
k=0 T r=0 .
Consequently
o b 00 n k-1
(2.%.1) E 1 g (s (x)-% (x))? dx=§ A G2(E P )
s n n n T2 k n-r
. .- nP e
n=1 a n=1 n k=0 r=0

If 0<:pnT , then the conditions (2.1.5) and (2.1.6) gives

A b 0o n

Zf _( (Sn(X?—tn(x?]E dng .1;.;?2 Z k%gpz

n=1 a n=1 n k=0

Bl
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k=1 n=k n
00 00 0o 2
= § 2.2 § 1 §
T k=1 ©on=k K=
Therefore, by B.Levy's theorem, we obtain
B (s, (x)-t, (x))?
< o0
n
n=1
almost everywhere.
If o<:pn¢ , then (2.%3.1) becomes
00 b 00 n
1 _ < 1 2,2 2
E 1 j (s, (x)-%, (x)fax< — K202p2_
n=1 a - n=1 "n k=0
%9} o] 2
_ 2.2 Pr—k+1
= k7Cy
= =k

=Oﬁ)ii0§<m
e

Hence, by B. Levy's theorem, it follows that

» p)
5 (5,05 G)% -

1
n=1 ,

With that the theorem is completely proved.



2.4 PROOF OF THEQREM 2 s We have

n 41

_ 1
s, (x)-%,(x) = E Oy (2)- T ) D, _p Sp(x)
) ’ k=0 : r=0
n n n n
— 1 / - -———-1 .
=, § Cyy (%) _;_ Pn-r” 7B, E Py E
k=0 r=0 =0 k=0
ckﬁk(x)
n
_ 1 _ A
= F Oy () E Phor™ T Gy Py (x) _S_
k=0 =0 =0 =
*Pp-r
n k-1
_ 1
- Pn Ckﬁk(x) E Pher
k=0 T r=9
n
1
=T €yl (x) (B, Pn-k)
n k=0

it

= P, -P
E__ OBy (X)Ry, where By = -%fﬂ‘-

Using Lemma 1, we have

b q b n ‘1
(2.4.1) g ‘sn(x)-tn(x) [ dx = ”Z ckﬁkﬁk(x)]anc
T a ’ C a tk=0 :

4}

< 4 Z |Cx fq | B }q k%72

k=1



b a 7 n
|s, (x)-% (X)} q
n n 1 q=2
SE —2 ! ax A1E ng o By | x
2 n=1 n=71 k=1
n
=4 1 R -
n=1 k=1 n
ioeu
b ) o0
s _(x)-t_(x) _
(2.4.2) g g En = | ax & A, > |0y |* 6% >
a n=1 =1 n
Now ]
o0 - q 2k- _ _
E (Pn En k) _ E (Pn Pn~k) + § (2 Fnx
q g ) q
n= nPn n=k IlPn n=2k nPn
Since Pn> o)
2k-1 _ q 2k=1 S
E BaPaa)” _ E 5’:‘_<§ =1
q = q
= nPn = nPn
and for n=2k
n
BBk = P
=n-k+1
n
=0O(1) =
T =kt
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Therefore
20 (Pn“Pn-k)q ) a. g
R = )(1) E g
- nP - n®ip
n=2k n n=2k n

=O(1).

Consequently, from (2-4.é)~

b 0 - a
S E ISn'(X) sn(x)) ax =01) ]Cqu kq—-2
a n=1 : k%’—;

This completes the proof of our theorem.

2.5 ©PROQOF OF THEOREM 3 : Under the conditions (2.1.5) and

(2.1.7) Alexits1)bas roved in Theorem B, the convergence

almost everywhere of the seguence isén(xi§ of the partial sums

of the orthogonal series (2.1.1).

Consequently, it follows by condition (2.1.8) ani Lemma 2

that the series (2.1.1) is (N,pn)— summable almost everywhere.

2

PROOF OF THEOR®M 4 : Alexits™ has proved that the condition

(2.1.9) implies the condition (2.1.5).

Moreover, the condition (2.1.9) is a special case of
(2.1.7) corresponding o /u(n)=n and this case is, as mentioned

above, satisfied for every series. Hence owr theorem follows
from Theorem 3.

1) Alexits ({47 , p.130)
2) Mexits (4], p.132)
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2.6 PROCF OF THFOREM 5 : We have

5,(x) - 2PV (x) =

icwx) ---—Z Doy Oy 8 (x)

i=0
Zc;a (x) -—-—-Z . 9i0ﬁ5 (x)
i=0
£} \ T1 n e}
"g‘; Z ¢33 (x) Z: P & "110;; Z ¢ 303 (x) Z Pp-y %5
i=0 T ov=0 i=0 P=1
—"'Zcﬁ (X)Z Pp %4y,

i=0 -

i

i

i

Since ip and {q are non-decreasing,
nf 1%n}

P;«p, amd g;¢q, for ign.

Consequently
2 2 11
¢ (p,q) Tnin § 4262
g (S (x) T, 5a (x)) axg T 2 i
2 n I=5

Now, replacing n by ny in the above dnequality, we have
0o oy

E X (s, (x —T(P’Q) (x)) dx < ; izoi
- = -=1

We shall show the convergence of above series by taking the

sum upto m terms.
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m 2 2 nk
o
E ny Yy 167
k=1 rz i=
Ry
m nk
1 2.2
= 0 7 § 10y
- B=T M T=
n4 n2 nm
=om[——;- 2o L) e ) i
Ry L o 3=7 i I=9
i=1
21 m ) - n
=((1) 1205 -—-1—-5+> 120?% —1-§++E .
i= =1 =01 k= Ay i=n #
]
2.2 1
it}

Simce, the sequence {n,} satisfies the condition (L), the

sequence {ni} also satisfies the condition (L) and hence

m m
1 A 1 A
-——-—2-<-"—2, '—?<"’“2 ’ .. PRI
=T M P =3 % %o
Consequently
ot} p2 q2 D
Oy Ty igci =
k=1 rg 1=
k
n
n1 :n2 2.2 1 §m 5 0 1
T 1= R4 i=n 1 2 i=n__,+1 o
B
2
:OU)E ¢ < oo
i=1 -

Hence, the result follows by B. Levy's theorem.



