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CHAPTER - 9

ON THE CONVERGENLE CF LACUNARY

OnTHOGONAL SeERIES

Let.{¢n {x)} (n=0, 1, 2, «ve-0e. ) be an
orthonormal system of LQ - integrable functions defined
in the closed interval [a, b]. Let A(x) £ x denote a
positive function, cconcave from below, defined for x 3 1

and increasing monotonely to infinity. We shall call 'the

orthogonal series

(9.1.1)
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C. @ (x)

n=0

1)
Ma) lacunzry , if the number of non-vanishing

N > A iy
coefficlents €, with 0 < k § 2n does not exceed Aoy,

Furthermore we shall say that the coefficients have the

positive number sequence {qnﬁ as a majorant 1if the
-

Irelation
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holdse.
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have the same meaning as considered in Chapter 2.

The Cesaro summability of order a of Aln) -
lacunary oTthogonal series (9.1.1) was discussed by

Alexitsl}. He has proved the following theorem i

Theorem A ¢ If the coefficients of XA{n) }.acunary
orthogonal series {9.1.1) have as a majorant a positive

molotone decreasing number sequence {qé& , satisfying

the condition

AN
(9.1.2) L%i&’-

1l t28

then the condition

(9.1.3) roc? ¢ e,
n=90

implies the (C, a) summability almost everywhere of the

orthogonal series (9.1l.1).

The (E, q) ?&mmability for q > o of the

A{n)- Racunary orthogonal series (9.1.1) was discussed

. o~ e ‘1} v . 'L
by Sapre: end Bhatnagar ‘., Similarly Norlund summability

was discussed by Kantawala P.S,3)

In this chapter we extend the above results
P

1) Alexits G. ([5], p. 130) 3) Kantawala P.S. [50]
2) Sapre and Bhatnagar [107]
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to (ﬁ, pn) summability and Riesz summability of order 1.

Qur results are as follows.

. Cx
Theorem 1 : Let p (- M and the coefficignts of Mn)-

Qacunary orthogonal series (9.,1.1) have as 3 maiorant a2

—— o oo - -

positive monotone decreasing sequence of numbers {qn}

———— O - WO TOE A S > W o

satisfying the condition (9.1.3) and (9.1.2). Then the

orthogonal series (9.1.1) is (N, pn) summable almost

everywhere,

s oo v e o o 4 4P

Theorem 2 : Let {th denote a strictly increasing

>‘vn + 1
i
\
>‘v
n

(S.144) | <R &

where & and k are constants, independent of n _and the

T ——— - W~ -

have ac s majorant a positive wmonotone decreasing number

LD T T T R L -~

sequence {q ) satisfying the condition (9.1.3) and

D T B T - - - - ——

{9.1.2). Then the series {9.l.1) is (R, M

Whe o - - n

» 1) _summable

.almost everywhere,

If we take in to consideration that between
the indices n and 2n there are exca@tly n free places,
then 1in the above theorem we may exclude the condition

of Racunardty
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This remark enables wus to point out a special
wase from Theorem 1 and Theorem 2,  1in which the condi-
tion of Lacunarity does not more appear.

Theorem 3 lf the coeff1c1ents of the orthogonal series

{9.1.1) have as a majorant 2 positive, monotone decreasing

- - - — WO ER RO BTN WS S L SN - -

sequence {qn& satisfying the condition

W - a=

q
—wde < o and

(9.1.5)
1 Y{n

18

N

(9.1.3) holds, then the orthogonal series (9.1,1) is (N,p )

- D S @ - T W

summable almost everywhere.

zheorem 4 3 Lf the coefficients of the orthogonal series

o e A DD T R e D S G e O D B

(9.1.1) have as a majorant a positive, monotone decreasing

- - - e S S ANS WD N D W G NS G W W S S N S G e

sequence {an satisfying the condition (9.1 5) and

(9.1.3), then the orthogonal series (9.1.1) is (R, )h’ 1)

> - —— - - -

summable almost everywhere,.

. S oo AN O

While, discussing the convergence of )\(rﬂ

.lacunary orthogonal series Alexits™ has proved the follo~

wing theorem.

Theorem B If the coefficients of a \(n) - lacunary
series ($.1.1) have as a majorant the positive monotone

decreasing sequence {qnj for which



e ’

q,” logfn < o o & EE2)

]

n=1

holds, then the condition

Ain) =) (—2—<— )
" (D(logzapn

implies the convergence of the orthogonal series {9el.l)

almost everywhere,

In this chapter we generalize the above

result for higher order,

Theorem 5 :  If the coefficient of a A(n) - lacunary

orthogonal series (9.1.1) have as a majorant the positive

T T R GRS B S G S AEN W S WS et M sl suw W - = e -

monotone decreasing sequence {_qn} for which,

o > b
(9.1.6) £ oq (logn) < {0 & B < 2)

n=1

holds, then ths conditio

2 S S P o I X D W

P
(9¢1.7) Mn) = QO (—55—) 0o <p ¢l
. log n

implies the convergence of (9.1.1l) orthogonal series.

almost everywhere,

For proving this theorem we need the following Lemmas.

173
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1)
Lemma 1 : If the coefficients of a XN(n) pacunary

orthogonal series have as a majorant a positive monotone
decreasing sequence {qn} , satisfying the condition
(9.1.2) then the condition (9.1.3) implies the (C, a)

supmability almost everywhere of orthogonal series(9.l.1).

Lemma 2 : The series

o

T 1
n=2 (logn)2pn2'p

is convergent.

Proof ¢ Here

= 1 2% 1
K=2 (klogZ)Qp ol 2-p)k
o™ kp-k
=0O(1) £ —— 2 ,
k=2 2p

By ratio test,

2
Tk (k+1)°P okip-1)
Lim p-l ( " )Zp
- k._'»? oo - k‘}'l
p~-1
= 2 .

1) Alexits G.{ [5]), p. 130
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Therefore, the given series is convergent 1if p <1.

1)

Lemma 3 : Under the condition (9.1.3) the relation

o~

Sy (x) - Oy (x) = ox(l) is valid almost everywhere
n n

v
n+1l

v
n

for every index segquence {YH‘B with >aqa> 1.

2)
Lemma 4 3 I1f the real numbers a , a, a; ---+ 3y

and the eorthonormal system i‘wnﬁx)} are arbitrayily
given, there exist an Lu2 - integrable function

SN(x) > o with the condition.

R

Max vV
Ioa 40| ¢ )

b 5 2 N a 2

Jo85 () alx) = QOlleg N) ko

a k=0

in order to prove the above theorems we need the
following Lemmas.

_3)

&gmma‘E : Let {pn} be a nonnegative monotonic

increasing or decreasinyg seygu2nce of real numbers such
that Pn - o as n ~¥» o and np, = C)(Pn).

-

1)  Alexits Go( [5], p. 118) 3) Sharma J.P. [110]
2) Alexits Go ([5], pe 79




Let {nkg be an arbitary incressing sequence of numbers

satisfying the following condition of.ﬁacunarity.

PN

l(q \S‘ I fork:O’ l, 2,00'1-0

where q and r are constants. Then the orthogonal
- series (8.1.1) with coefficiants satisfying the condition
(9.1.3) is (N, Ph ) summable almost everywhere , if the

sequence of partial sums {Sn (x)} is convergent almost
K

everywhere,

1)

Lemma 6 : Let {vnB denotes a strictly increasing
sequence satisfying the condition (9.1.4). 1In order
that orthogonal series (9.1.1) should be summable

(R, )\n, 1) in a set E almost everywhere, it is necessary

and sufficient that the sequence {Sv (x)} of partial sums
n

should converge in £ almost everywhere,

¥roof of Theorem 1 :

2)
Under the condition (9.1.2) and (9.1.3), Alexit G.

has proved the convergence almost everywhere of the

sequence {s n(x)‘% of the partial sums of the orthogonal
2 -

1) Meder J. [76] 2) Alexits G.( [5], p.130}



series (9.1.1). Hence by Lemma 5 the series is (N,pn)

summable almost everywhere,

groof of Theorem 2 :

By Lemma 6, the result directly follows in the

direction of theorem 1.

Proof of Theorem 3 :

Alexitsl) has proved that the condition (9.1.5)
implies the condition (9.1.3).

But the condition (9.1.95) is a special case of
(9.1.2) corresponding to \(n) = n and therefore this

case 1s as mentioned above, satisfied for every series.

Hence our theorem follows from theorem 1.

Proof of Theorem 4 :

-

Hesult follows from 'heorem 2, in the direction

of theorem 3.

Proof of Theorem 5

Here,

0o Y.}\(n) qn

N=

2 n »

gr——— s o0 A \H
= (l)\ Z) 0 ( o )
C) n=2 " logz'ﬁn

Njo

1) Alexits g}knE%;Kpg 132)
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n=2 n P—%‘E
(log n)

Applying Schwarz;inequality, we have

\\

N

it ’ - pp
= O(l){ iz q, (log n) ]

[

1
2p 2-p }
2 (log n) n

by Lemma 2 we have,

1

oo p 2

= O(l){~ L qn‘2 (log n)pﬁ}
n=2

o

Obviously we have (9.1.3) from (9.1.6). By Lemma
1 the series {9.l.d)ic { C, @ > o ) summable almost
everywhers, so by Lemma 3 the convergence almost every-

where of the seguence s m&x) follows. It remains to show
(2]

4z

that apart from & set of meassure zero the relation,

. - m m+l
(9.1.8) snix) - szm(x) = ox(l) (n> e, 27 < ng277),
holdse
~y
s s \ N N\ c L
Let Cvi{m) (i =1, vovenn, M} denote the positive,

nonzerc coefficients with indices between 2™ and 2m+l’ by

Lemma 4 there exist such a function 5H}x) that
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(9.1.9) §sn(x) - szm\x) < gm(x) (2™ < n < Qm*l)

m

Cv.2 (m)

M
z
= 1

nd fb 6 2(x) dp(x) = C)(logg M)
o m mio1

are satisfied since M_ = Q(XN?2")) eanc

2
2 i = l, v o0y l\ﬂm) holdp an

2
\<" qV;(m) \< c‘2m (l -

Cvi (m)

account of (9.1.,7) we have,

fbs'2<>du = O(log? )
., m VX W x = °og M

2 2" P 2
=0 log” ( === ) Ja, My
log“ P2 2

i

2 2P
1) 1 ).
QUi tos™ (o o -)p

2 omp

q2m (m Q)IQ-B)P

log

(2-g)p 2
O{1) [ log2™ _ log ((mlog?2) P p)l

il

2 oMp
9 m -
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(2-p)p 2 2 ~ P
N () 1 ) P—
= (O(1) {(mp - log m qu I;(‘Q‘:m
(2-p)p 2 ) ~>Mp
=) (1) [ m°p? + (log m ) Ym TTFTp

: 2 2, 22 2 _ 2"
O (1) [n%? + n°(2-5)%p"] Lm TTZF)p

m2 2 " b mp
O) Bg— a2

(1

O) P ¢, 2™
2

Hence,
w b \ w0 . 2
: f gmz(x) ax = O(1) = PP q_ 2™
m=2 a m=2 2
® 2
= O(1) z q° (log n)
m:2
£ o .
Hence by B. Levy's theorem, the series
by 2
Z g{qéx) converges almost everywhere.
M=2 !

- Sm(x) —-» ¢ almost everywhere.

Hence from (9.1.9) the relation (9.1,.8) .is

satisfied almost everywhere.

Hence the proof.



