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CHAPTER - 9

ON THE CONVERGENCE OF LAC UN MY 

ORTHOGONAL SEKIE5

Let ^0^ (x)^ ( n = o, 1, 2, ................ ) be an

2ortnonormal system of L - integrable functions defined 

in the closed interval [a, b] . Let A(x) N< x denote a 

positive function, concave from below, defined for x } 1 

and increasing monotonely to infinity. We shall call the 

orthogonal series

(901.1) £ cn0n(x)
n=o

A(n) lacunary , if the 

coefficients with n <

Furthermore we shall say 

positive number sequence 

relation

number of non-vanishing 

k 2n does not exceed A< n) .

th at the coefficients have 

as a majorant if

the

the

u = 0<q„ )

holds.

The notations £ (x), T^(x) and cr^C A > x)

1) Alexits ' [5], p. 130)
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have the same meaning as considered in Chapter 2.

The Cesaro summability of order a of X(n) - 

lacunary orthogonal series (9*1.l) was discussed by 
Alexits1^, He has proved the following theorem :

Theorem A : If the coefficients of M n) j.ac unary

orthogonal series (9.1.1) have as a majorant a positive 

monotone decreasing number sequence .^q^ > satisfying 

the condition

(9.1.2)
V”>Xn)q

then the condition

(9.1.3) l C 2 < * ,
n=o n

implies the (C, a) summability almost everywhere of the 

orthogonal series (9.Id).

The (E, q) summability for q > o of the 
rv

J^acunary orthogonal series (9.1.1) was discussed 
2 \by Sapn&o end Bhatnagar ' „ Similarly Norlund summability

3)
was discussed by Kantawala P.S.

In this chapter we extend the above results

1) Alexits G. ([5], p. 130) 3) Kantawal a P ,S. [50]
2) Sapre' and bhatnagar [107]
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to (N, pn) summability and Riesz summability of order 1. 

Our results are as follows.

Theorem 1 : Let pn(~ M and the CQ£lXi£i£Bi.S pf ^(n)-

J6.acunary orthogonal series have j ffijj.flE.sD.l iJ

positive monotone decreasing sequence of numbers Wi 

satisfying the condition (9.1.3) and (9.1.2). Then the 

orthogonal series (9.1.1) is (N, pn) suirunable almost

everywhere *

Theorem 2 : Let -^vn|j deno te a strictly in ere asing

££9H£S££ satisf^in^ the condition

X
(9.1.4) | < ix<

v + 1 
n "5 k

n

where JL and k are. coos^ants,, independent of _aQ.<i the 

coefficients of X(n) Xacunary orthogonal series (9.1.1)

a P°s^tive monotone deereasinc|_ number 
(qni c<>ndijtion_ (J?_.JU3) and

(9.1.2) . Then the series^ (901.1) JLs_ (_R_,_ Xn, 1) _sun®able 

.almost everywhere.

If we take in to consideration that between 

the indices n and 2n there are exc&tly n free places 

then in the above theorem we may exclude the condition 

of |.acunairi:>ty
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This remark enables us to point out a special 

itase from Theorem 1 and Theorem 2, m which the condi­

tion of Jlacunaxity does not more appear.

if

(9.1.1) have as

sequence

the coefficients of the
«»es»au mm mm — ■— —

a majorant a positive, 

satisfying the condition

orthogonal series

monotone decreasing

(9.1.5) £
n=l

< oo and

(9.1.3) holds, then the orthogonal series £9.1.1) is (N,pn) 

iummable almost everywhere.

Theorem 4 s if the eoef fth e orthogonal series

(9.1.1) have as a majorant a positive, monotone decreasing 

sequence satisfying the condition (9.1.5) and

(9.1.3), then the orthogonal series £9.1.l£ is (R, X , l) 

surnmable almost everywhere.

While, discussing the convergence of ^(n) 

.lacunary orthogonal series Alexits~ has proved the follo­

wing theorem.

Theorem B t If the coefficients of a XCn) - 1-acun ary 

series (9.1.1) have as a majorant the positive monotone 

decreasing sequence / for which
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CO Co s< ps< 2 )

holds, then the condition

^Cn) «Oc—irp— )
log n

implies the convergence of the orthogonal series (9.1.1) 

almost everywhere.

In this chapter we generalize the above 

result for higher order.

Theorem 5 : If the coefficient of a <X(n) - iacunary

o_r,thog,on,al„ se_ries (9_. .U 1 have_ as^ a_ !^jDr_ant_ the_ po_si_tive 

monotone sej^uenc_e i qn \ for^ wn_ich_,

implies the convergence of (9.1.1) orthogonal series 

almost everywhere.

oo o rp(9.1.6) £ q (logn) < «,
n=l

io $ # ^ 2)

ho.l.d3, „tba,n the_ ^SJiditi^n

(9.1.7) X(n) » 0 -----  )P
log ~pn

o < p < 1

For proving this theorem we need the following Lemmas.
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Lemma 1 i If the coefficients of a <X(n) lacunary 

orthogonal series have as a majorant a positive monotone 

decreasing sequence • satisfying the condition

t9ole2) then the condition (9.1.3) implies the (C, a) 

suipmability almost everywhere of orthogonal series(9.1.1) .

Lemma 2 ; The series

n=2 (logn)2pn2~p is convergent.

Proof * Here

n=2 (logn)2pn2”p

L 2k=2 (klog2)2p 2^2_p^k

0(D 2
kp-k

k=2 ^2p

gy ratio test, 

lira

k —> co

(k+l)(p-l)
2

(k+1)

2p
k___
JTFTT

lire

oo

p-1 , 2p2 f-JS— ) P
^ k + 1 '

P-1

1) Alexits G, ( [5j, p, 130)



Therefore, the given series is convergent if p < 1

Lemma 3 : Under the condition (9.1=3) the relation

5 (x) - a (x) = o (1) is valid almost everywhere
Vn Vn x

for every index sequence ^vn with n+1 X q > 1

2)
Lemma 4 s If the real numbers a^ * a^, a^* *••• a^
and the orthonormal system x)^j are arbitrarily

2given, there exist an L - integrable function 

£^(x) 'y ° with the vcondition-.j

Max 

v .< N

V
l

k=o
s< N

(x)

b/
a

(x) dp(x)
2 N 2 

0Uog N) Z ak 
k=o

In order to prove the above theorems we need th 

following Lemmas.

3)
Lemma 5 :

increasing 

that Pn --

Let |^Pn j ke a nonnegative monotonic

or decreasing sequence of real numbers such 

• oo as n —oo and npn = Q(Pn).

1) Alexits G. ( [5], p. 118) 9) Sharma J.P.! [UO]
2) Alexits 0. ( [5] , p. 79)
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Let be an arbitary increasing sequence of numbers

satisfying the following condition of Jtac unarity.

1 < q ^ 1 4 r for k = o, 1, 2..............

where q and r are constants. Then the orthogonal 

series (9.1.1) with coefficients satisfying the condition 

(9.1.3) is (N, ) summable almost everywhere , if the
sequence of partial sums ^sn (x)^j is convergent almost

everywhere.

1)
Lemma 6 ; Let ^Vn|] denotes a strictly increasing 

sequence satisfying the condition (9.1.4). In order 

that orthogonal series (9.1.1) should be summable 

U, 1) in a set E almost everywhere, it is necessary
and sufficient that the sequence Klxpi of partial sums

should converge In E almost everywhere.

Proof of Theorem 1 :

2)
Under the condition (9.1.2) and (9.1.3), Alexit G. 

has proved the convergence almost everywhere of the 
sequence {s (x)\ of the partial sums of the orthogonal

l 2n 3

1) Meder J . [ 76] 2) Alexits G. ( [5] , p.130 >
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series (9.1.1). Hence by Lemma 5 J the series is (N,pn) 

summable almost everywhere .

Proof of Theorem 2 s

By Lemma 6, the result directly follows in the

direction of theorem 1.

Proof of Theorem 3 :

Alexits^ has proved that the condition (9.1.5)

implies the condition (9.1.3).

But the condition (9.1.5) is a special case of 

(9.1.2) corresponding to X(o^ = n anc* therefore this

case is as mentioned above, satisfied for every series. 

Hence our theorem follows from theorem 1.

Proof of Theorem 4 :

Kesult follows from \heorem 2, in the direction 

of theorem 3.

Proof of Theorem 5 j

Here ,

£
n-0

QO V7XHT qn

n

1) Alexits 132)
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= OU) £ q_

JB. _ i 2 x 
n

n=2 •n
( log n)

Applying Schwarz| inequality, we have
\

= OU) L
n=2

O pp co

q (log n) 1 
n n=2

1

(log n)
2p 2-p

n

1
2

by Lemma 2 we have,

« 0(1) i"-2

pp
(log n)

]
1
2

< OO

Obviously we have (9.1.3) from (9.1.6). By Lemma 

1 the series (9.1<A) ii- ( C, a > o ) summable almost 

everywhere, so oy Lemma 3 the convergence almost every­

where of the sequence s m(x ) follows. It remains to show

that apart from a set of measure zero the relation,,

(9.1.8) sn(x) - s (x) = ox(l) (n-> oo, 2m<ns<2m+1), 

holds.
A

Let C , (i = 1, .............. M ) denote tvhe positive,
y, v, mj n Sx

in rn+1nonzero coefficients with indices between 2 and 2 , by

Lemma 4 there exist such a function A (x) that
w m
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(9.1.9) | sn^x) ” s mU) ^ (2m < n < 2mtl)

Mb 0 o ni o
and / Sm (x) dP(x) = 0U°g- . 2 Cv. ^

a i = l 1

are satisfied since Mm = Q{\(2m)) and

c 2, , 4 V(m) s< %m li= l- ••••> 'V hold’ an
V. vnU i 2

account of (9.1®7) we have,

by y • “m 2
/ 6m Cx) d^Cx) = O (log Mm) ^ Cv.(m)

o 9^* P 9

= Ouog (--srp-iT > )q m %
log 2 2

= 0(1) log2 (———r? B)p )*
(I7,(iog2))u"pjp

2 2mp
Q2m (mlog2)^2“^p

(2—p)p
= 0(1) [ log2mp - log ((mlog2) )J

p m -
2mp

(m 1ocj2)(‘2"p^p

2
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** 0(1) (™P
(2-fi)p 2 2

log m ) q m
2 m

2mP
C2Tp7p

r\ rs (2— jB)p 2 2 pmp
QU) [ m P + dog o ^ m(5-(j'Jp'

= Od) [®V + ®2(2-p)Vj q'm -j2Tp)p

2 2

,2 2-, 2 2mp

’9m m®2 ra
- 0(1) -*£- 2mp

m

OU) ^ q2m 2mP .
2

Hence,

W K/ A, w , ,

2 / G ‘ lx) dx = 0(1) 2 mP*3
m=2 a

q mm=2 2m

~ Oil) I q 2 (log n)
m=2 n

2^?

Hence by B. Levy's theorem, the series

es rj

2 (k) converges almost everywhere.
m*2 m

■l.e. Cm( x> -4- o almost everywhere.

Hence from (9.1.9) the relation (9.1,8) .is 

satisfied almost everywhere.

Hence the proof.


