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CHAPTER 5

SUMMABILITY OF ORTHOGONAL EXPANSIONS IN
POLYNOMIAL LIKE CRTHONOKMAL SYSTEM

Let &g#x)k (n =0, 1, 2, +oes.) be an

orthonormal system (ONS) of Liu? integrable functions
defined in the closed interval [a, b], with respect to a
positive, bounded weight function @(x). We consider the

orthogonal series

(5.1.1 ; c (x)
) neo M Pl x -

- t
with real coefficients Cn S.

The (N, pn) means and (N, pn) means of = the

sequence of partial sums {,sn(X) B of the orthogonal series

(5.1.1) is given by

t.(x) = 1%‘ )

P S .(x)
n n=-k “k

[ o =

o

- 1 n
T.(x) === I  p S (x)
n Pn k=0 k~k

n
where Sn(x) = iockﬂk(x).

k

The series (9.1.1) is said to be (N, pn) summab le



103

to s(x) and, (N, pn) summable to 8(x) respectively if

lim
t(x) = S(x)
n——r o
and
lim -
Tn(x) = S{x).
N«
An ONS<{pn(x) 5 is called constant preserving,
if ¢°(x) = constant.

An  ONS {‘ﬂn(x)g is called polynomial like if,

if its nth Kernel

n
it x) = I A (t) B(x)

has the following structure :

v p (n)
(5.1.2) ko(t,x) = k.f;. F (t, X)i,;;:-p Yi,5,k Preslt)

¢n+j(x)

where p and ¥y are natural numbers independent of n and
the constants [vi&ngs x | have a common bound independent
of n, while the wmeasurable functions Fk(t, x) satisfy the

¢ondition
F (t, x) =0 T¥i:_;l)
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for every t, x(= [a, b] . We assume that 9 with -

n+i

negative index is considered to be identically equal

to zero.
Define
- n
N(t, x) ==b—"T pk,(t, x)
n' "’ Pn veo VYV '
- b L d
Q(x) = [ | N(t, x) |8(t) at
a
(ts x) B0 S k(t, x)
N (t, x) = I p. b'q
n"* Pn veo D=V V !
and

b
Z,(x) = af INCt, x) | §(t)at

h

called the n®™" (W, p,) Kernel, Lebesgue (N, p_ ) function,

n
(N, pn) Kernel and Lebesgue (N, p_ ) function of the "ONS

{ﬁ%(x)k , Tespectively.

The paxtial sums S,{x) of thevexpanéions
of &n L’f(i& - integrable function f{(x) in the functions

of an ONS,{Lh(x) B can be represented by

b
LG, x) = [ #(t) §(t, x) §(t) at
a
where

hoits 0 = T 200 £lx) .
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th sums, of an expansion summed by a

The n
linear summation process has also the same integral form,
where { (t, x) denotes the sum

n

Iooay P lt) P {x)

k=0
The integral I (f, x) 4is said to be singular

(with singular point x), 4f for an arbitery positive number
§ and for an arbitary subinterval [a, B] of [a, b], the
following condition hold :

lim
(5.1.3) J Wn(t. x) §(t) dt = 1 and
n=~¥ w 1
lim
J Y (tox) 9(t) at =0
ne==y « J
with 1l = {a,b]ﬂ[X"SaX‘f‘g]"

J'w [a, )l =[x=8,x +7],

( ess. lub '
5ele4) 19 (t,) | < b (8)

te[a, b];-[x -5, x +6 ]

where §( §) is a number depending on g but independent of n.

If yn(t, x) satisfies uniformly the conditions

(5¢1.3) and (5.1.4) in a x-set E, then the Integral
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In(f, x) 1is said to be uniformly singular on E.

The effect of Lebesgue functions on the conver-
gence of orthogonal series was first investigated by
Kolmogoroff«ﬁeliverstoffl) and Plessner2) for the case of
Fourier trigonometric series. It was extended to the
convergence and Gesdro summability and summability by first

logwsithmic means by . Kaczmarza) 4) 5)

6)

. Tandori /, Meder and

Patel and Sapre

The behaviour of the Lebesgue functions for
polynomial - like ONS 1is investigated by Ratajski7) aﬁd
AlexitsB). The convergence and summability of orthogonal
expansions for polynomial -~ like system has been studied

by Zinovevg) and Alexitslo).

Alexitsll) has proved the following theorem :

zheorem Al ~

If the ONS {ﬁn(x)‘} is polynomial - like and

the condit@on

: o8 00 )

£ x) = (n

k=0 k <)x
1) Kolmogoroff - Seliverstoff(([59) [60)]
2) Plessnerx 97 ( g )‘7 Ratajski ([101], noz2j)
3) Kaczmarz 8; Alexits ({5],p. )
4 Tandori({m?} f135),[137]) 9) Zinovev [147
5) Mede 76] ; 103 Alexits ([5], p.267)
6) Patel and Sapre [93] 11) Alexits ([5], p.206,267 )
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4s fulfilled in the set E, then the relation

L": {x) = C’XU»)‘

holds almost eveswhere in E.

Ihg Qrem E $=

Let {ﬂn(x)}be a complete, constant=preserving
polynomial - like ONS with respect to the migh@ function
8(x). Suppose that the functions F, (t, x) are continuous

in the square a§ t ¢ b, a g x &b with eventual

exception” of the diagonal t = x and that the two conditions

n 2 '
: p%x) = Ofn)

k=0

and

(5.1.5) o< @(x) ¢ constant RadiRaS

\

are also satisfied in the subinterval” [C, d] of [a, b].

If the L23(x:)’ - integrable function f(x) is continuous
in [C, d], then its expansion

(5.1.6) £l ~ I G, 8,00

is uniformly (C, 1) ~ summable in every inner subintei‘val

of [C, d], the sum being f(x).
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“Similar results were proved by Kantawala]f)

for Riesz means and Euler means.

In this Chapter we extend the above results to

th th

n Lebesgue (N, p’n) function and n Lebesgue (N, Pn)
function for polynomial like ONS and to the (N, pn) summa-
bility and (ﬁ, pn} summability of orthogonal expansion

for the constant-preserving polynomial-like ONS, Our results

are as follows,

. W - hadeadad od - o W W S T W WD o =

- - W - > - -

is fulfilled in the set E, then the relation,

an(x) = O (1)

holds almost everywhere on E.

- ay

Theorem 2 :« Let {pn(x) } be a complete constant pre~

servin_g polynomial-like ONS with respect to the weight

function ©(x). Suppose that the functions F (t,x) are

- - . e - e am -

continuous in the square a< t b, al x<hb with

W —— G o - - - - - - -

eventual exception of the diagonal t = and that the two

S v e e awr Sub e e os B o > RO D o ey -

ccndltionsﬂ;

T A0S T8 YR £39 W20 D o R
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(5.1.8) p(x) = O(1)

and. (5.1.5) _are satisfied in the subinterval [c, d] _of
[a, b]. If the ng(x) ~ integrable function f(x) is conti-

A TN D W I G R WS I O W - - — y— -

nuous in [c, d}, _then its expansion (5.1.6) _is wnifoxmly
(ﬁ,pn) summable in every inner sub~interval of (¢, dj,

SRR SREROR  EPER D W e

the sum being f{x).

L2 L Y T S T T ] o s o e

Theorem 3 :- If the ONS {pn(x) ‘3 is polynomial

like _and the condition (5.1.7) is fulfilled in the set E,
then the relation

z(x) = O (1)

holds almost everywhere in E.

{heorem 4 :- Let {;bn(x) H be a complete constant-pre-

serving polynomial -~ like ONS with respect to the weight

function §(x). Suppose that the function Fk(t, x) are

continuous in the square a t¢ b, ag x b with even-

tual exception of the diagonal t = x _and that the conditions

e o

(3.1.5) and (5.1.8) are also satisfied in the subinterval

[e. d) of {a, b], If the L23(x) ~ integrable functions

f{x) is continuous in [g,d], then its expansion (5.1.6)

is uniformly (N, p, ) summable in every inner subinterval

- A S e e an S A S W g - -

of. [c, dl, the sum being f(x). For proving these ‘theotems

we need foliowing Lemmas.
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Lemma ll) $o If {.pn\ e W, a >% then, :
2
lim n ?: 'P,,ls____z. I S
Pde p 2 kmo (k1) 2 - 1

Lemma 22) S In order that an ONS &pn(x)s should

be complete, the validity of Parseval’s equation

b 2 o
J £9x) duw(x) = r ¢
a =

for all f €& I.,Z&'t is necessary and sufficient.

3 .
_‘;M - If the function f(t) € L?“) is uniformly

continuous in a subset E of [a, b] and the conditions
(5.1.3), (5.1.4) and '

O(1)

b ,
J ol (tx) | 2(t) at
a R

are uniformly satisfied for x € E, then the relation

In(f’ X) r— f(X)

holds uniformly 4in E.

1) Meder -{78]
2)  Alexits ([5], P. 15)

3)  Alexits ([5], P. 260)
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3)
Lemma 4 2= A monotone sequence of continuous functions,

whose limit function is continuous, converges uniformly.

Proof of Theorem 1 t~ We have

- b .
Gix) = [Nt )] #(1) ot

and

- n
N.(t, x) = == T ¥ k (t,x)
n Pn V=0 viyy !

Let Pn(t,x) and Nn(t,x) be the characteristic functions

of the sets in which

n
)3 kav(t, x) >» 0 and < O respectively.
v=0

From the defination of nth Lebesgue (N ’ Pn) functions

b -
SN (t, x) | @(t) at

Q. (x) .

4

#

- A 0 L
(5.3‘..9) _Q'f*(X) 3 af P (t,x) E.o P (t,x) @ (t) dt

n

b
--g:- JNpltx) VEO Pk, (t,x) Q(t)at

3) Aexits  ( [5], p.éée)
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Now our aim is to show that each of the sum on R.H.S.

of (5.,1,9) is of the order of magnitude ()x(Pn) for every

xt= EN(a+E, b=f ) with arbitery €£> o and therefore,
an(x) = CBx(l) holds for almost every x(~-E. We divide

the integral

b
af Polt, x) k,(t, x) §(t) dt for n yng > -%— in to

two parts:

Now,
X+ " X =" b
Iy = J I, = J v
vl v2
X w“%“ ? a X +~%~

¥

2 n
Ig < f! P,° (t, x) 8(t) dt [
x-n x-n

2
kV (tv x) 9(1’,) dt

2
Now the condition (5.1.7) and P (t, x) €1 implies

that
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.

2 no 2 v 2
N | P, (t, x) 8(t) at L P (x)
vl x . k=o Kk
n
= O, (wn~1) .

Hence by Cauchy's inequality and Lemma 1

. n | | n 2 n 2 2
Z P I £ I p £ 1
Vo v vl A v=o VYV v=o vl

P

#

n 2 2
Ox(l)&z Py ?:vn"l\l

V=0 V=0

= () (lj 2 Y
X V=0 (v + 1)2
2

P i 2

Pn vz=o (v + 1) n

“

O 1) O

#

i

O, ( P, ).

n
(5.1.10) v:o P, 1,1 =0, ().

Now we proceed to estimate,
n

L p, | I, |
V=0 v v2
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n n , x-—%— b ~
L I1,| =% p,| ([ + [ ) P_(t, x)
V=0 Pv | v2 v=o0 ¥ a x+—k n
Let us put,
) Pn(t, x) Fk(t, x) for t(= [a, x= -%-] U
gk(tp %X = - [x . .rl‘_. ' b]
o otherwisge

Since the system {Pn(x)ﬁ is polynomial like and there=-

fore using defination (5.1.2) of the Kernel kn(t, x) ,

wé have
. . x_-—l— ‘
T ool I, | ool e 5 )Pt x)
I p = p X
vao VY v2 veo ¥ A - n ':
’ n
(v)
. LR ) 2 v Pyt

Pyyylx) $(t) at |

Using the defination of the function gk(t, x), we obtain,

I I
N k=l 1, jmep Vm=o0 Py [ Yi,j,k I ¢V+3(x) | (af +x£ )

Pt x) F(t, x) @ 1(t) §(t) at |



115

) vV p n b
= I I (t, x) (t) 9(t) dt |
Ox( l) kzl i,_-;..p V=0 pv l af gk X pv.*_i

. L] Y n
z 1,1 = O, (1) & § I p

k=l im=p v=0 v

b
| Jog, (t, x) B, ,(t) &(t)at |
a

Now F, (t, x) = O ~d—) and | t-x| 3 n? 3

|t~ x| 7
imply that

| g, (t, )1 & Py (8, x) | F (8, x) |

= O(n)

ie. g, (t, x) is bounded for fixed n ,

. gy (t, x) 4is integrable, which means that
integrals on the R.H.S. of the above relation are

expansion - coerficients of L?as integrable function.

o
<

s
<
N

)

b p n n
O, T4 1 p?
k=) i=-p V=0 V=0

L
b 212
a.f g lty x) 2 .o (t) 8(t) df}
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Now by Bessel's inequality,

n b 2 b o
z i e (g (8 8 dtk ¢ 920t ) St
V=0 a v+i a
1
= Ox {(n) )
So,
n V o) n 2 2
= O >
V‘I‘:'O Py l Iv2 l (1) kel i=p { n veo Py }

n

(5.1.11) L eyl I, = O, (p ).

Hence it follows from (5.1.10) and (5.1.11) that
n b , 0
top, J P (t, x)k (%, x) 9(t) dt = B A

is true for almost every x{~ Efl[a +€, b =% ] and

in similar way we obtain that the estimate

n b '
£ N_ (¢t, k. (t, (t) dt = O P
L Py éf n x) k, (t, x) 9(t)  C Py )

holds almost every xt- E N [ay & , b-€ ].

1) alexits ([5], p. 7)
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Hence due to (5.1.9) we estimate

@, (x) = O,(1)
holds almost everywhere in E.

This completes the proof of our theorem.

groof of Theorem 2 =

For xt [C+ &, d-& ]
We have,

x- b -
FC L+ [ ) f£(t) N_(t, x) 9(t) dt |
a é n

x+

| ( fx-s fb ) flt)—= I pok.(t, x) 8(¢t)
a x+§ pn V=0 Pviv g l

x=8 b n
s~ ([ + [ )£t) T p, E Flt, x) T
n a %+ § V=0 k=1 i yJ==p

(V)
\ po(t) g (x) 8(t) at |
i v+ §

sk s

Now let us put,

f(t) _Fk(t, x), t€ [a; x=8) U[x+§, b]
hk(t, X) =

0 ’ otherwise.

We have
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X+

X=f b -
VA fg ) £lt) N (t, x) 8(t) dat |
a8

A p n (y)
\<""L"2 z val'V'

n ksl L,js-p v=0 1,5,k

L 1o ()|
v+]

b
[(n (e, 0 8 (8) 8(%) at |
o v+l

n k=l i=-p pn V=0

¥ p n b -
=0 g= T 4= = op | Snlt, %
a

g (t) 8(t) dt |

v+i

By Cauchy's inequality we have,

x=b b -
| (5f + [y £(t) N (t, x) 8(t) at |

x+6

¥ p - n n b
=0(1) ¢ © —& £ h, (t
O k=l i=~p Pn [ é‘b"v V=0 Pv af kt ot x)

-
0.2
g (t) g(t) dt} :]

v+i
i;e.

wf b
(5.1.12) | ([« [0 H0 T (60 s(0ar

a X+
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¥

¥ P 1 n b I
= A z L h, (t, )

Ogl) k=1 i==p Pn V=0 pv{‘a ! k X
—-L—

o 2
¢ (t) 8(t) dt} ]
i

v+
The integral on the R.H.S. of the above relations are

(v+ 1)t expansion coefficients of the function h (t, x).

Also the system 40 (x)'% is complete and hence with
n

fixed i1 and by Lemma2we have,

8

(5e1,13)

1 o3t

c? (x S’ (
vy Gy = I (t, x) g(t)at .

Now we proceed to prove that the function

2

- b )
G, (x) = [ h, (t, x) §(t) dt 1is continuous on
a

[c+8§, d=-§] , it is given that f(t) is continuous in

[c, d].

Define £(t) = o, t/é[c, d] .

Since E, (t; x) 1is continuous in the square a § t ¢ p,
as x ¢ k;o

.except for the diagonal points -t '= x, for each t and for

every xbk [a, b}, x £ t. F (%, x) is continuous as a
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function of x only. Hence given ¢> o, 4 &, > o, such

that

, €
o< | h}<« slx <6< ~ix~ lmplies,

£
2M12 (d - C)

| B2 (4, x+ h) = B2 (4, x) | <

where Ml denotes the bound for f (since the § chosen
above is arbitary, we may like 6¢ "36'1{" y where k > o

denote the bound for the function f2 (t) sz (t, x) and

2
£ (t) sz (t, x + h) in the intervals [x - § , x = & + h]

and [x+6 , x+ 6 + h] respectively. This is possible as
f{t)is continuous in the interval [x -6 , x = & + h] and

[x+& , x+ & + h] as the function of t.

Now for xi~ [C+6§ , d=§ ] and o< | h| < $ s<2‘§"
We have,
b
delx+h) =G (x) = | [ 02 (t, x+n) 8(t) at
a
b 2
- af h (t, x) 8(t) at |
_x+h=8§ b
= Haj +x+£+s ) £2 (L)F(t,x+h)

x-5 b
gty at - + [

a x+%
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2 (1) F2 (t, x) 8(t) at |

Let us put,

E=[a, x-86+h)] U[x+% , b ]0 [C, d] then the

continuity of F, (t, x) is true for any tE and all x.

Hence,

| G (x+h) =G (x)|

x¢ 8§+ h
= | (Ef f2 (t) Fk2(t, x + h) 8(t) dt - [

X+ 6

fz(t)sz(t, x +h) 8(t) dt ) - ( [ £2(¢t)
£

2 X=§ +h 2
Fo(t, x) 8(t) dat - f& £°(t)
X -

F2 (t, x) 8(t) dt ) |

S S E2 (¢, x+h) 8(t) dt - [ £(F(t,x)
E E

X=§ +h

o(t) at | + | J £ (t) F 2L, x) 8(t)at
X=§
+ 6§ +h
- fx £2(t) sz(t. x + h) @(t) dt |
X+ £ ~
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S gfz (t) | sz(t, x + h) « Fk2(t, x) | £(t) dt

- h
+ fx b £2 () Fk2(t. x) 8(t) dt
X= £ ‘

x+ & +h 5

v £2 (1) F2(t, x+h) 8(t) dt
X+ § .

€
2 | E] + 2k | h| < é% + 2k 7¢

Hence it follows that Gkﬁx) is uniformly continuous.

Now, we proceed to prove that Cn(x) is also uniformly

continuous in [C+8 , d =6 ]. As noted above, since for

each t and for every xt[a, bl, x # t F (t, x) is

continuous as a function of x only.

Forgiven6>0562x>o, o <| h| X S2x<6 ?

| F (t, x +h) = F (t, x) | < £ 1
M| E] 2

Now, for xe~[C +6 , d=$] and | h | < 82x , by Cauchy's

inequality,

b
| Catxrh) =Gy ) | = | Sy (5, x+ h) By (1) 8(2) at

b
- af h(t, x) g (t) 8(t) dt |



b 2 b2
& LT {nles on) - n(tx] g (et 18, (0) S(e)at]

2 2 1/2
= [F () (Flt,xmm) = F(t,x0)" 8(8) at ]
E
52 1/2
2 ,
=C M —— |&l 1]
: o El -

¥

Hence, it follows that Cn'(x) is uniformly continuous on
[c+8 , d-86 ]. Consequently, it follows that from
(5.1.13) and by Lemma £ that the series

2

o
L Cv+i

va=]i

{(x)

Converges uniformly and therefore, it follows that the
sequence {Ci«ri (x)'B ' converges uniformly to zero as

n =» o and this implies the nth (ﬁ, Pn) means of
2
{Cwi(x)} converges uniformly to zero, i.e.
| 2

n V=0

n b . ’
S Pv{af he(tox) B, () §(t) dtB = b(1).

Thus)it follows from (5.1.12) that

-§ b - f
(F 7 L) s Rt (4 v = O(1).

a x+§

3
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Since, this relation is true for any L Q(t) ~ integrable

function continuous in [¢, d], in particular taking

f(t) =1, t €[a,b], We have,

X~ b -
(5.1 C S+ [ ) N (t,x) 8(t) at = O(1).
a X+ §
Now,
CN(6x) = == TPk (tyx)
n v=0 v Vv
L oI, Iop(v) g
T Ph veo ¥V omo B Pplx).

S W 2
= P nioﬂm(t) p(x) T P .

n vV=m M

Hence it follows from the constant preserving polynomial
property of the system ‘{ﬁn(x):y that

124

b _ ) b n ]
af Nn(t’X) $ie) av - .?;c'g{mio pm(t) pm(x) Vimpvs §(t) at.
p (x) n b
-k 3 _m
Pl mmo B0 i v L falt)P WSt at

L
ol
[ or ]
ke
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Consequently, it follows from (5.1.14) that

X+6 o
(5.1.15) S N (t,x) Q(t) dt = 1+ »o(1)
X=§

Thus it follows from (5.1.14) and (5.1.15) that the
relation (5.1.3) 4is uniformly satisfied in the [c + ¢, d-§ ]
with %’nﬂtQX) o3 ﬁn(tQX)o

Further for x € [c+§, d-& ] and t€ [a,x~6 JU[x+6 ,b]

I (tx)| = | = 2 Pk (t,x) |

n v=o
y n v p (v)
= | == I P, I FJ(t, x) = v, . .
pn V=0 v k=l k 4 i,jz.‘-p i’J ’k
¢v+i(t) }Z)Wj(x) |
v P n
<= I : [Fo(t,x)] |z opo Y .
pl’l k=1 i,j=-p k* o v=o0 VY H i,),k ‘

| ¢V+i(t) || ¢v+j(") l

’ v iy
= O(1) =+ 1 % F,(t,x)| P
O pn “k=1l 1,j=-p l k g ‘ n
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= O(1)

= OC-)

| ﬁn(t, x) | < g(8)

Fd
i o<
ot

le(t, x) | = O(ﬁ%;r)

Hence,

i.e. the relation (5.1.4) 1is uniformly satisfied in the
interval [c+6,d-8 ] with Y (t,x) = fin(t, x).

In otherwords we have proved that the (N, pn) means of

the expansion

oo

£ I C_ @ (x)
{x) ey oG Polx

are uniformly singular in the interval [c +§, d -8§]. Also

from Theorem 1 the validity of the relation
g, - = 0O

follows for every subinterval [c +§, d =81 of [c, d).
Consequently it follows from Lemma 3 that,

n
-z p s (x)

v
Pn v=o v

it

In(fgx) = ?n (X)

Eocp(x) I
= — Z C X r p
P, Pk v
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v
z C P (x)
o Y k=o k"k

b
([ E(t) p () 8(2) at B(x) Zop,)
a

v=k

L]

® .
o

Lo

et

"

S
r—r‘«-\
“F

B.(t) B(x) T p_ h8(t) at
k kx v:kpv’\!

<

g, (t) ¢k(Xﬂj € (t) dt

1]
w
ey
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converges to f(x) uniformly in {c +§ , d - & ] with this

the theorem is proved.

groof of Theorem 3 3~ Proof follows on the same line as of

theorem 1.

Proof of Theorem 4 ¢— Proof follows on the same line

as of theorem 2,



