CHAPTER 5

SUMMABILITY OF ORTHOGONAL EXPANSIONS IN POLYNOMIAL LIKE ORTHONORMAL SYSTEM

Let $\{p_n(x)\}$ (n = 0, 1, 2,) be an orthonormal system (ONS) of $L^2_{S(x)}$ integrable functions defined in the closed interval [a, b], with respect to a positive, bounded weight function g(x). We consider the orthogonal series

(5.1.1)
$$\sum_{n=0}^{\infty} C_n \, p_n(x)$$

with real coefficients C_n's.

The (N, p_n) means and (\overline{N}, p_n) means of the sequence of partial sums $\{S_n(x)\}$ of the orthogonal series (5.1.1) is given by

$$\mathbf{t}_{n}(x) = \frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} S_{k}(x)$$

$$\overline{T}_{n}(x) = \frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} S_{k}(x)$$

where $S_n(x) = \sum_{k=0}^n C_k \phi_k(x)$.

The series (5.1.1) is said to be (N, p_n) summable

to S(x) and, (\tilde{N}, p_n) summable to S(x) respectively if

$$\lim_{n \to \infty} t_n(x) = S(x)$$

and

$$\lim_{n \to \infty} \overline{T}_n(x) = S(x).$$

An ONS $\left\{ {{{\not D}_n}(x)} \right\}$ is called polynomial like if, if its ${n^{th}}$ Kernel

$$k_n(t, x) = \sum_{k=0}^{n} \beta_k(t) \beta_k(x)$$

has the following structure :

(5.1.2)
$$k_{n}(t,x) = \sum_{k=1}^{q} F_{k}(t,x) \sum_{i,j=-p}^{p} \gamma_{i,j,k}^{(n)} \rho_{n+i}(t)$$
$$\rho_{n+j}(x)$$

where p and γ are natural numbers independent of n and the constants $|\gamma_1^{(n)}, j, k|$ have a common bound independent of n, while the measurable functions $F_k(t, x)$ satisfy the condition

$$F_k(t, x) = O(\frac{1}{|t-x|})$$

for every t, x(= [a, b]. We assume that \emptyset_{n+1} with negative index is considered to be identically equal to zero.

Define

$$\overline{N}_{n}(t, x) = \frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} k_{v}(t, x)$$

$$\overline{Q}_{n}(x) = \int_{a}^{b} |\overline{N}_{n}(t, x)| \beta(t) dt$$

$$N_{n}(t, x) = \frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} k_{v}(t, x)$$

and

$$\overline{Z}_n(x) = \int_a^b |N_n(t, x)| \S(t) dt$$

called the n^{th} (\overline{N}, p_n) Kernel, Lebesgue (\overline{N}, p_n) function, (N, p_n) Kernel and Lebesgue (N, p_n) function of the ONS $\{p_n(x)\}$, respectively.

The partial sums $S_n(x)$ of the expansions of an $L_{g(x)}$ - integrable function f(x) in the functions of an $CNS\{D_n(x)\}$ can be represented by

$$I_n(f, x) = \int_a^b f(t) \psi_n(t, x) g(t) dt$$

where

$$\psi_{\mathbf{n}}(\mathbf{t}, \mathbf{x}) = \sum_{k=0}^{n} \beta_{k}(\mathbf{t}) \beta_{k}(\mathbf{x}).$$

The n^{th} sums, of an expansion summed by a linear summation process has also the same integral form, where ψ_n (t, x) denotes the sum

$$\sum_{k=0}^{n} \alpha_{nk} \ \beta_k(t) \ \beta_k(x)$$

The integral $I_n(f,x)$ is said to be singular (with singular point x), if for an arbitrary positive number & and for an arbitrary subinterval $[\alpha,\beta]$ of [a,b], the following condition hold:

(5.1.3)
$$\lim_{n \to \infty} \int_{\infty} \psi_{n}(t, x) \mathcal{G}(t) dt = 1 \text{ and}$$

$$\int \psi_n(t, x) g(t) dt = 0$$

$$n \longrightarrow \infty J$$

with $I = [a, b] n [x - \delta, x + \delta],$

$$J = [\alpha, \beta] - [x - \delta, x + \delta].$$

(5.1.4)
$$|\psi_n(t,x)| \leq \psi(\delta)$$

$$t \leftarrow [a, b] - [x - \delta, x + \delta]$$

where $\psi(\delta)$ is a number depending on δ but independent of n.

If $\psi_n(t, x)$ satisfies uniformly the conditions (5.1.3) and (5.1.4) in a x-set E, then the Integral

 $I_n(f, x)$ is said to be uniformly singular on E.

The effect of Lebesgue functions on the convergence of orthogonal series was first investigated by Kolmogoroff-Seliverstoff¹⁾ and Plessner²⁾ for the case of Fourier trigonometric series. It was extended to the convergence and Gesåro summability and summability by first logswithmic means by Kaczmarz³⁾, Tandori⁴⁾, Meder⁵⁾, and Patel and Sapre⁶⁾.

The behaviour of the Lebesgue functions for polynomial - like ONS is investigated by Ratajski⁷⁾ and Alexits⁸⁾. The convergence and summability of orthogonal expansions for polynomial - like system has been studied by Zinovev⁹⁾ and Alexits¹⁰⁾.

Alexits 11) has proved the following theorem:

Theorem A: -

If the ONS $\left\{ \rlap/p_n(x) \right\}$ is polynomial – like and the condition

$$\sum_{k=0}^{n} p_k^2(x) = O_x(n)$$

¹⁾ Kolmogoroff = Seliverstoff([59],[60])
2) Plessner [97] 7) Ratajski ([101],[102])
3) Kaczmarz [51] 8) Alexits ([5], p.206)
4) Tandori([127],[135],[137]) 9) Zinovev [147]
5) Meder [76] 10) Alexits ([5], p.267)
6) Patel and Sapre [93] 11) Alexits ([5], p.206,267)

is fulfilled in the set E, then the relation

$$L_n^4(x) = O_x(1)$$

holds almost everywhere in E.

Theorem B:-

Let $\{p_n(x)\}$ be a complete, constant-preserving polynomial - like ONS with respect to the weight function Suppose that the functions $F_k(t, x)$ are continuous a < t < b, a < x < b with eventual exception of the diagonal t = x and that the two conditions

$$\sum_{k=0}^{n} p_k^2(x) = O(n)$$

and

are also satisfied in the subinterval [C, d] of [a, b]. the $L^2_{\beta(x)}$ - integrable function f(x) is continuous [C, d], then its expansion

(5.1.6)
$$f(x) \sim \sum_{n=0}^{\infty} c_n \not p_n(x).$$

is uniformly (C, 1) - summable in every inner subinterval of [C, d], the sum being f(x).

Similar results were proved by Kantawala for Riesz means and Euler means.

In this Chapter we extend the above results to n^{th} Lebesgue (N, p_n) function and n^{th} Lebesgue (\overline{N}, p_n) function for polynomial like ONS and to the (N, p_n) summability and (\overline{N}, p_n) summability of orthogonal expansion for the constant-preserving polynomial-like ONS. Our results are as follows.

Theorem 1:- If the ONS $\{p_n(x)\}$ is polynomial-like and the condition

(5.1.7)
$$\phi_{n}(x) = O_{x}(1)$$

is fulfilled in the set E, then the relation,

$$\bar{Q}_{n}(x) = \mathcal{O}_{x}(1)$$

holds almost everywhere on E.

Theorem 2:- Let $\{\rho_n(x)\}$ be a complete constant preserving polynomial-like ONS with respect to the weight function S(x). Suppose that the functions $F_k(t,x)$ are continuous in the square a < t < b, a < x < b with eventual exception of the diagonal t = x and that the two conditions,

(5.1.8)
$$\phi_{n}(x) = O(1)$$

and (5.1.5) are satisfied in the subinterval [c, d] of [a, b]. If the $L^2_{S(x)}$ - integrable function f(x) is continuous in [c, d], then its expansion (5.1.6) is uniformly (\bar{N}, p_n) summable in every inner sub-interval of [c, d], the sum being f(x).

Theorem 3:- If the ONS $\{p_n(x)\}$ is polynomial like and the condition (5.1.7) is fulfilled in the set E. then the relation

$$\bar{z}_n(x) = O_x(1)$$

holds almost everywhere in E.

Theorem 4:- Let $\{p_n(x)\}$ be a complete constant-preserving polynomial - like ONS with respect to the weight function S(x). Suppose that the function $F_k(t, x)$ are continuous in the square a < t < b, a < x < b with eventual exception of the diagonal t = x and that the conditions (5.1.5) and (5.1.8) are also satisfied in the subinterval [c, d] of [a, b]. If the $L^2_{S(x)}$ - integrable functions f(x) is continuous in [c, d], then its expansion (5.1.6) is uniformly (N, p_n) summable in every inner subinterval of [c, d], the sum being f(x). For proving these theorems we need following Lemmas.

Lemma 1¹⁾ := If
$$\{p_n\} \in M^{\alpha}$$
, $\alpha > \frac{1}{2}$ then,
$$\lim_{n \to \infty} \frac{n}{p_n^2} \sum_{k=0}^{n} \frac{p_k}{(k+1)^2} = \frac{1}{2\alpha - 1}$$

Lemma 2^2 : In order that an ONS $\{p_n(x)\}$ should be complete, the validity of Parseval's equation

$$\int_{a}^{b} f^{2}(x) d\mu(x) = \sum_{n=0}^{\infty} C_{n}^{2}$$

for all $f \in L^2_{\mu}$ is necessary and sufficient.

Lemma 3^3 : If the function $f(t) \in L_{\S(t)}$ is uniformly continuous in a subset E of [a, b] and the conditions (5.1.3), (5.1.4) and

$$\int_{a}^{b} |\psi_{n}(t,x)| \, \Im(t) \, dt = O(1)$$

are uniformly satisfied for $x \in E$, then the relation

$$I_n(f, x) \longrightarrow f(x)$$

holds uniformly in E.

¹⁾ Meder [78]

²⁾ Alexits ([5], P. 15)

³⁾ Alexits ([5], P. 260)

3)
Lemma 4:- A monotone sequence of continuous functions,
whose limit function is continuous, converges uniformly.

Proof of Theorem 1 :- We have

$$\vec{\mathbf{Q}}_{\mathbf{n}}(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{b}} |\vec{\mathbf{N}}_{\mathbf{n}}(\mathbf{t}, \mathbf{x})| \ \mathbf{g}(\mathbf{t}) \ d\mathbf{t}$$

and

$$\tilde{N}_n(t, x) = \frac{1}{P_n} \sum_{v=0}^n P_v k_v(t, x)$$

Let $P_n(t,x)$ and $N_n(t,x)$ be the characteristic functions of the sets in which

$$\sum_{v=0}^{n} P_{v}k_{v}(t, x) > 0 \text{ and } < 0 \text{ respectively.}$$

From the defination of n^{th} Lebesgue (\bar{N}, P_n) functions

$$\vec{Q}_n(x) = \int_a^b |\vec{N}_n(t, x)| g(t) dt$$

(5.1.9)
$$Q_n(x) = \frac{1}{P_n} \int_a^b P_n(t,x) \sum_{v=0}^n P_v k_v(t,x) g(t) dt$$

$$-\frac{1}{P_n} \int_a^b N_n(t,x) \sum_{v=0}^n P_v k_v(t,x) g(t) dt$$

³⁾ Alexits ([5], P.266)

Now our aim is to show that each of the sum on R.H.S. of (5.1.9) is of the order of magnitude $\bigcirc_{\chi}(P_n)$ for every $x (= E \cap (a + E, b - E))$ with arbitrary E > 0 and therefore, $\overline{Q}_n(x) = \bigcirc_{\chi}(1)$ holds for almost every x (= E). We divide the integral

$$\int_{a}^{b} P_{n}(t, x) k_{v}(t, x) g(t) dt \text{ for } n > n_{E} > \frac{1}{E} \text{ in to}$$
two parts:

Now,

$$I_{v1} = \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} I_{v2} = \int_{x+\frac{1}{n}}^{x+\frac{1}{n}}$$

We first estimate | Iv1 | .

Using Schwarz's inequality

$$I_{v1}^{2} < \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} p_{n}^{2}(t, x) g(t) dt \int_{x-\frac{1}{n}}^{x+\frac{1}{n}}$$

$$k_v^2$$
 (t, x) $S(t)$ dt

Now the condition (5.1.7) and P_n (t, x) \leqslant 1 implies that

$$\sum_{v=1}^{2} \left(\frac{x + \frac{1}{n}}{x - \frac{1}{n}} \right) P_{n}^{2}(t, x) \Re(t) dt \sum_{k=0}^{v} p_{k}^{2}(x)$$

$$= O_{x}(vn^{-1}).$$

Hence by Cauchy's inequality and Lemma 1

$$\sum_{v=0}^{n} p_{v} | I_{v1} | \leq \left\{ \sum_{v=0}^{n} p_{v} \sum_{v=0}^{2} I_{v1} \right\}^{\frac{1}{2}}$$

$$= O_{x}(1) \left\{ \sum_{v=0}^{n} p_{v} \sum_{v=0}^{2} v_{n}^{-1} \right\}^{\frac{1}{2}}$$

$$= O_{x}(1) \left\{ \sum_{v=0}^{n} \frac{p_{v}^{2}}{(v+1)^{2}} n \right\}^{\frac{1}{2}}$$

$$= O_{x}(1) \left\{ -\frac{n}{p_{n}^{2}} \sum_{v=0}^{n} \frac{p_{v}^{2}}{(v+1)^{2}} p_{n}^{-2} \right\}^{\frac{1}{2}}$$

$$= O_{x}(1) \left\{ -\frac{n}{p_{n}^{2}} \sum_{v=0}^{n} \frac{p_{v}^{2}}{(v+1)^{2}} p_{n}^{-2} \right\}^{\frac{1}{2}}$$

$$= O_{x}(1) O(p_{n})$$

$$= O_{x}(p_{n}).$$

(5.1.10)
$$\sum_{v=0}^{n} P_{v} | I_{v1} | = O_{x} (P_{n}).$$

Now we proceed to estimate,

$$\sum_{v=0}^{n} p_{v} \mid I_{v2} \mid$$

$$\sum_{v=0}^{n} p_{v} | I_{v2} | = \sum_{v=0}^{n} p_{v} | (\int_{a}^{x-\frac{1}{n}} + \int_{x+\frac{1}{n}}^{b}) P_{n}(t, x)$$

Let us put,

$$g_{k}(t, x) = \begin{cases} P_{n}(t, x) F_{k}(t, x) & \text{for } t(-[a, x - \frac{1}{n}] \cup [x + \frac{1}{n}, b] \\ 0 & \text{otherwise} \end{cases}$$

Since the system $\{p_n(x)\}$ is polynomial like and therefore using defination (5.1.2) of the Kernel $k_n(t,x)$, we have

$$\sum_{v=0}^{n} p_{v} | I_{v2} | = \sum_{v=0}^{n} p_{v} | (\int_{a}^{x-\frac{1}{n}} + \int_{x+\frac{1}{n}}^{b}) P_{n}(t, x)$$

$$\sum_{k=1}^{Y} F_k(t, x) \sum_{i,j=-p}^{p} \gamma_{i,j,k}^{(V)} \rho_{V+i}(t)$$

$$\rho_{v+1}(x)$$
 $f(t)$ at |

Using the defination of the function $g_k(t, x)$, we obtain,

$$P_n(t, x) F_k(t, x) \phi_{v+1}(t) g(t) dt$$

$$= O_{x}(1) \sum_{k=1}^{v} \sum_{i=-p}^{p} \sum_{v=0}^{n} P_{v} | \int_{a}^{b} g_{k}(t, x) \not p_{v+i}(t) g(t) dt |$$

$$\int_{a}^{b} g_{k}(t, x) \phi_{v+i}(t) g(t) dt |$$

Now
$$F_k(t, x) = O(\frac{1}{|t-x|})$$
 and $|t-x| \geqslant n^{-1}$,

imply that

$$|g_{k}(t, x)| \le P_{n}(t, x) |F_{k}(t, x)|$$

$$= O(n)$$

i.e. $g_k(t, x)$ is bounded for fixed n,

i.e. g_k (t, x) is integrable, which means that integrals on the R.H.S. of the above relation are expansion - coefficients of $L_{\text{S(t)}}^2$ integrable function. So,

$$\sum_{v=0}^{n} p_{v} \mid I_{v2} \mid = O_{x} (1) \sum_{k=1}^{v} \sum_{i=-p}^{p} \left\{ \sum_{v=0}^{n} p_{v}^{2} \left\{$$

Now by Bessel's inequality,

$$\sum_{v=0}^{n} \left\{ \int_{a}^{b} g_{k}(t, x) \not \otimes_{v+1}(t) g(t) dt \right\}^{2} \leq \int_{a}^{b} g_{k}^{2}(t, x) g(t) dt$$

$$= O_{x}(n)^{1}$$

So,

$$\sum_{v=0}^{n} p_{v} | I_{v2} | = O_{x} (1) \sum_{k=1}^{r} \sum_{i=-p}^{p} \left\{ n \sum_{v=0}^{n} p_{v}^{2} \right\}^{\frac{1}{2}}$$

$$= O_{x} (1) \sum_{k=1}^{r} \sum_{i=-p}^{p} \left\{ \frac{n}{p_{n}^{2}} \sum_{v=0}^{r} \frac{p^{2}}{(v+1)^{2}} p_{n}^{2} \right\}^{\frac{1}{2}}$$

Hence by Lemma 1 we have,

(5.1.11)
$$\sum_{v=0}^{n} p_{v} | I_{v2} | = O_{x} (P_{n}).$$

Hence it follows from (5.1.10) and (5.1.11) that

$$\sum_{v=0}^{n} p_{v} \int_{a}^{b} P_{n}(t, x) k_{v}(t, x) \Re(t) dt = O_{x}(P_{n}),$$

is true for almost every x(-E)[a+E, b-E] and in similar way we obtain that the estimate

$$\sum_{v=0}^{n} p_{v} \int_{a}^{b} N_{n}(t, x) k_{v}(t, x) S(t) dt = O_{x}(P_{n})$$

holds almost every $x \leftarrow E \cap [a + E, b - E]$.

¹⁾ Alexits ([5], p. 7)

Hence due to (5.1.9) we estimate

$$\overline{Q}_n(x) = O_x(1)$$

holds almost everywhere in E.

This completes the proof of our theorem.

Proof of Theorem 2:-

For
$$x \leftarrow [C + \delta, d - \delta]$$

We have.

$$\begin{vmatrix} \begin{pmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) & \overline{N}_{n}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \begin{pmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \frac{1}{p_{n}} & \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \frac{1}{p_{n}} & \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

$$= \begin{vmatrix} \int_{a}^{x-\delta} + \int_{x+\delta}^{b} \end{pmatrix} & f(t) - \sum_{v=0}^{n} p_{v} k_{v}(t, x) & g(t) & dt \end{vmatrix}$$

Now let us put,

$$h_k(t, x) = \begin{cases} f(t) F_k(t, x), & t \in [a, x-6] U[x+6, b] \\ 0, & \text{otherwise.} \end{cases}$$

We have

$$| \left(\int_{a}^{x-\delta} + \int_{x+\delta}^{b} \right) f(t) | \tilde{N}_{n}(t, x) g(t) | dt |$$

$$< \frac{1}{P_{n}} \sum_{k=1}^{g} \sum_{i,j=-p}^{p} \sum_{v=o}^{n} p_{v} | V_{i,j,k} | p_{v+j}(x) |$$

$$| \left(\int_{a}^{b} h_{k}(t, x) p_{v+i}(t) g(t) | dt | \right)$$

$$= O(1) \frac{1}{P_{n}} \sum_{k=1}^{g} \sum_{i=-p}^{p} \frac{1}{P_{n}} \sum_{v=o}^{n} p_{v} | \int_{a}^{b} h_{k}(t, x)$$

$$p_{v+i}(t) g(t) | dt |$$

$$p_{v+i}(t) g(t) | dt |$$

By Cauchy's inequality we have,

$$| (\int_{a}^{x-\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) dt |$$

$$= O(1) \sum_{k=1}^{y} \sum_{i=-p}^{p} \frac{1}{p_{n}} [\sum_{v=p}^{n} P_{v} \sum_{v=o}^{p} P_{v} {\begin{cases} \int_{a}^{b} h_{k}(t, x) \\ a \end{cases}}]$$

$$| (\int_{x+\delta}^{x-\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) dt |$$

$$= O(1) \sum_{k=1}^{y} \sum_{i=-p}^{p} \frac{1}{p_{n}} [\sum_{v=o}^{n} P_{v} \sum_{v=o}^{p} P_{v} {\begin{cases} \int_{a}^{b} h_{k}(t, x) \\ a \end{cases}}]$$

$$| (\int_{x+\delta}^{x-\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) dt |$$

$$= O(1) \sum_{k=1}^{y} \sum_{i=-p}^{p} \frac{1}{p_{n}} [\sum_{v=o}^{n} P_{v} \sum_{v=o}^{p} P_{v} {\begin{cases} \int_{a}^{b} h_{k}(t, x) \\ a \end{cases}}]$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t) | \tilde{N}_{n} (t, x) g(t) | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b} f(t, x) g(t) | dt | dt |$$

$$| (\int_{x+\delta}^{x+\delta} + \int_{x+\delta}^{b}) f(t, x) g(t) | dt | dt | dt |$$

i.e.

(5.1.12)
$$\int_{a}^{x-\delta} + \int_{x+\delta}^{b} f(t) \tilde{N}_{n}(t, x) g(t) dt$$

$$= O(1) \sum_{k=1}^{\gamma} \sum_{i=-p}^{p} \left[\frac{1}{p_n} \sum_{v=0}^{n} p_v \left\{ \int_a^b h_k(t, x) \right\} \right]$$

$$\varphi_{v+1}(t) g(t) dt$$

The integral on the R.H.S. of the above relations are $(v+i)^{th}$ expansion coefficients of the function $h_k(t,x)$. Also the system $\{p_n(x)\}$ is complete and hence with fixed i and by Lemma 2 we have,

(5.1.13)
$$\sum_{k=-1}^{\infty} C^{2}_{k+1}(x) = \int_{a}^{b} h_{k}^{2}(t, x) g(t)dt.$$

Now we proceed to prove that the function

 $G_k(x) = \int_a^b h_k^2(t, x) g(t) dt$ is continuous on $[C+\delta, d-\delta]$, it is given that f(t) is continuous in [C, d].

Define f(t) = 0, $t \notin [C, d]$.

Since F_k (t, x) is continuous in the square $a \leqslant t \leqslant b$, $a \leqslant x \leqslant b$.

except for the diagonal points t = x, for each t and for every $x(-[a, b], x \neq t, F_k(t, x))$ is continuous as a

function of x only. Hence given $\xi > 0$, $\{ \xi \}_{X} > 0$, such that

o < | h | <
$$\delta_{1x}$$
 < 6 < $\frac{\varepsilon}{4k}$ implies,
| F_k^2 (t, x + h) - F_k^2 (t, x) | < $\frac{\varepsilon}{2M_1^2$ (d - C)

where M_1 denotes the bound for f (since the 6 chosen above is arbitrary, we may like $6 < \frac{\epsilon}{4k}$, where k > 0 denote the bound for the function $f^2(t) F_k^2(t, x)$ and $f^2(t) F_k^2(t, x + h)$ in the intervals [x - 6, x - 6 + h] and [x + 6, x + 6 + h] respectively. This is possible as f(t) is continuous in the interval [x - 6, x - 6 + h] and [x + 6, x + 6 + h] as the function of t.

Now for x(- [C+5, d-6] and o < | h | < δ_{1x} < 6 < $\frac{\varepsilon}{4k}$ We have,

$$|G_{k}(x+h) - G_{k}(x)| = |\int_{a}^{b} h_{k}^{2}(t, x+h) g(t) dt$$

$$-\int_{a}^{b} h_{k}^{2}(t, x) g(t) dt |$$

$$= |(\int_{a}^{x+h-6} + \int_{x+h+6}^{b}) f^{2}(t) F_{k}^{2}(t, x+h)$$

$$g(t) dt - (\int_{a}^{x-6} + \int_{x+6}^{b})$$

$$f^{2}(t) F_{k}^{2}(t, x) \S(t) dt$$

Let us put,

 $E = [a, x - 6 + h] \cup [x + 6, b] \cap [C, d] \text{ then the}$ continuity of $F_k(t, x)$ is true for any $t \leftarrow E$ and all x.

Hence,

$$|G_{k}(x+h) - G_{k}(x)|$$

$$= |(\int_{E} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt - \int_{x+\delta}^{x+\delta+h} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt) - (\int_{E} f^{2}(t) f^{2}(t) f^{2}(t) dt - \int_{x-\delta}^{x-\delta+h} f^{2}(t) f^{2}(t) dt - \int_{x-\delta}^{x-\delta+h} f^{2}(t) f^{2}(t) dt - \int_{x-\delta}^{x-\delta+h} f^{2}(t) dt - \int_{x-\delta+h}^{x-\delta+h} f^{2$$

$$\begin{cases}
\int_{E}^{2} (t) | F_{k}^{2}(t, x + h) - F_{k}^{2}(t, x) | g(t) dt \\
+ \int_{x-6}^{x-6+h} f^{2}(t) F_{k}^{2}(t, x) g(t) dt \\
+ \int_{x+6}^{x+6+h} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt
\end{cases}$$

$$\begin{cases}
\int_{E}^{x+6+h} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt \\
+ \int_{x+6}^{x+6+h} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt
\end{cases}$$

$$\begin{cases}
\int_{E}^{x+6+h} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt \\
+ \int_{x+6}^{x+6+h} f^{2}(t) F_{k}^{2}(t, x+h) g(t) dt
\end{cases}$$

Hence it follows that $G_k(x)$ is uniformly continuous. Now, we proceed to prove that $C_n(x)$ is also uniformly continuous in [C+f], d-f. As noted above, since for each t and for every $x \leftarrow [a, b]$, $x \neq t, F_k(t, x)$ is continuous as a function of x only.

For given $\varepsilon > 0$ \exists $\delta_{2x} > 0$, $0 < |h| < \delta_{2x} < \delta$ \exists

$$|F_{k}(t, x + h) - F_{k}(t, x)| < \frac{\varepsilon}{M_{1} |E|^{\frac{1}{2}}}$$

Now, for $x \leftarrow [C + \delta, d - \delta]$ and $|h| < \delta_{2x}$, by Cauchy's inequality,

$$| C_{n}(x+h) - C_{n}(x) | = | \int_{a}^{b} h_{k}(t, x+h) \phi_{n}(t) g(t) dt$$

$$- \int_{a}^{b} h_{k}(t, x) \phi_{n}(t) g(t) dt |$$

$$< \left[\int_{a}^{b} \left\{ h_{k}(t, x+h) - h_{k}(t, x) \right\}^{2} g(t) dt \int_{a}^{b} p_{n}^{2}(t) g(t) dt \right]^{\frac{1}{2}}$$

$$= \left[\int_{E}^{2} (t) \left(F_{k}(t, x+h) - F_{k}(t, x) \right)^{2} g(t) dt \right]^{\frac{1}{2}}$$

$$= \left[M_{1}^{2} - \frac{E^{2}}{M_{1}^{2} E_{1}^{2}} \right] |E| \right]^{\frac{1}{2}}$$

Hence, it follows that $C_n(x)$ is uniformly continuous on $[c+\delta]$, $d-\delta$. Consequently, it follows that from (5.1.13) and by Lemma A that the series

$$\sum_{v=+i}^{\infty} C_{v+i}^{2} (x)$$

Converges uniformly and therefore, it follows that the sequence $\left\{C_{v+i}^2(x)\right\}$ converges uniformly to zero as $n \to \infty$ and this implies the $n^{th}(\bar{N}, P_n)$ means of $\left\{C_{v+i}^2(x)\right\}$ converges uniformly to zero. i.e.

$$\frac{1}{P_{\mathbf{n}}} \sum_{\mathbf{v}=\mathbf{o}}^{\mathbf{n}} P_{\mathbf{v}} \left\{ \int_{\mathbf{a}}^{\mathbf{b}} h_{\mathbf{k}}(\mathbf{t}, \mathbf{x}) \, \phi_{\mathbf{v}+\mathbf{i}}(\mathbf{t}) \, g(\mathbf{t}) \, d\mathbf{t} \right\}^{2} = o(1).$$

Thus it follows from (5.1.12) that

$$(\int_{a}^{x-\delta} + \int_{x+\delta}^{b}) f(t) \bar{N}_{n}(t,x) g(t) dt = O(1).$$

Since, this relation is true for any $L_{g(t)}^2$ - integrable function continuous in [c, d], in particular taking f(t) = 1, $t \in [a,b]$, We have,

$$(5.1.14) \left(\int_{a}^{x-6} + \int_{x+6}^{b} \right) \tilde{N}_{n} (t,x)$$
 $g(t) dt = O(1).$

Now.

$$\frac{1}{P_n} \sum_{v=0}^{n} p_v k_v(t,x)$$

$$= \frac{1}{P_n} \sum_{v=0}^{n} p_v \sum_{m=0}^{n} p_m(t) p_m(x).$$

$$= \frac{1}{P_n} \sum_{m=0}^{n} p_m(t) p_m(x) \sum_{v=m}^{n} p_v.$$

Hence it follows from the constant preserving polynomial property of the system $\{\emptyset_n(x)\}$ that

$$\int_{a}^{b} \overline{N}_{n}(t,x) g(t) dt = \frac{1}{P_{n}} \int_{a}^{b} \left\{ \sum_{m=0}^{n} \emptyset_{m}(t) \emptyset_{m}(x) \sum_{v=m}^{n} P_{v} \right\} g(t) dt.$$

$$= \frac{1}{P_{n}} \sum_{m=0}^{n} \frac{\emptyset_{m}(x)}{\emptyset_{o}(x)} \sum_{v=m}^{n} V_{a} \int_{e}^{b} \emptyset_{m}(t) \emptyset_{o}(x) g(t) dt$$

$$= \frac{1}{P_{n}} \sum_{v=0}^{n} P_{v}$$

= 1.

Consequently, it follows from (5.1.14) that

(5.1.15)
$$\int_{x-6}^{x+6} \bar{N}_n(t,x) \quad g(t) \quad dt = 1 + o(1)$$

Thus it follows from (5.1.14) and (5.1.15) that the relation (5.1.3) is uniformly satisfied in the $[c + \{, d-\{\}\}]$ with $\psi_n(t,x) = \tilde{N}_n(t,x)$.

Further for $x \in [c+\delta, d-\delta]$ and $t \in [a,x-\delta]U[x+\delta,b]$

$$|\overline{N}_{n}(t,x)| = |\frac{1}{P_{n}} \sum_{v=0}^{n} P_{v}k_{v}(t,x)|$$

$$= \left| \begin{array}{cc} \frac{1}{P_n} & \sum\limits_{v=0}^{n} p_v \sum\limits_{k=1}^{v} F_k(t, x) & \sum\limits_{i,j=-p}^{p} V_{i,j,k}^{(v)} \end{array} \right|.$$

$$\phi_{v+i}(t) \phi_{v+j}(x)$$

$$\langle \frac{1}{P_n} \sum_{k=1}^{V} \sum_{i,j=-p}^{p} |F_k(t,x)| | \sum_{v=0}^{n} p_v ||V_{i,j,k}^{(v)}| \rangle$$

$$| \phi_{v+i}(t) | | \phi_{v+j}(x) |$$

$$= O(1) \frac{1}{P_n} \sum_{k=1}^{V} \sum_{i,j=-p}^{p} |F_k(t,x)| P_n$$

$$= \bigcirc (1) \sum_{k=1}^{V} |F_k(t, x)| = \bigcirc (\frac{1}{|t-x|})$$

$$= \bigcirc (\frac{1}{K})$$

Hence,

$$|\bar{N}_{n}(t,x)| < \phi(\delta)$$

i.e. the relation (5.1.4) is uniformly satisfied in the interval [c+6,d-6] with $\psi_n(t,x)=\overline{N}_n(t,x)$. In otherwords we have proved that the (\overline{N},p_n) means of the expansion

$$f(x) \sim \sum_{n=0}^{\infty} C_n \phi_n(x)$$

are uniformly singular in the interval [c+6, d-6]. Also from Theorem 1 the validity of the relation

$$\vec{q}_n(x) = 0$$
 (1)

follows for every subinterval [c+6,d-6] of [c,d). Consequently it follows from Lemma 3 that,

$$I_{\mathbf{n}}(\mathbf{f}_{s}\mathbf{x}) = \overline{I}_{\mathbf{n}}(\mathbf{x}) = \frac{1}{P_{\mathbf{n}}} \sum_{\mathbf{v}=\mathbf{o}}^{\mathbf{n}} P_{\mathbf{v}} S_{\mathbf{v}}(\mathbf{x})$$

$$= \frac{1}{P_{\mathbf{n}}} \sum_{\mathbf{k}=\mathbf{o}}^{\mathbf{n}} C_{\mathbf{k}} p_{\mathbf{k}}(\mathbf{x}) \sum_{\mathbf{v}=\mathbf{k}}^{\mathbf{n}} P_{\mathbf{v}}$$

$$= \frac{1}{P_n} \sum_{v=0}^{n} p_v \sum_{k=0}^{v} C_k \beta_k(x)$$

$$= \frac{1}{P_n} \sum_{k=0}^{n} (\int_a^b f(t) \beta_k(t) \beta(t) dt \beta_k(x) \sum_{v=k}^{n} p_v)$$

$$= \int_a^b f(t) \left\{ \frac{1}{P_n} \sum_{k=0}^{n} \beta_k(t) \beta_k(x) \sum_{v=k}^{n} p_v \right\} \beta(t) dt$$

$$= \int_a^b f(t) \left\{ \frac{1}{P_n} \sum_{v=0}^{n} p_v \sum_{k=0}^{v} \beta_k(t) \beta_k(x) \right\} \beta(t) dt$$

$$= \int_a^b f(t) \left\{ \frac{1}{P_n} \sum_{v=0}^{n} p_v \sum_{k=0}^{v} \beta_k(t) \beta_k(x) \right\} \beta(t) dt$$

$$= \int_a^b f(t) \left\{ \frac{1}{P_n} \sum_{v=0}^{n} p_v k_v(t,x) \right\} \beta(t) dt$$

$$= \int_a^b f(t) \left\{ \frac{1}{P_n} \sum_{v=0}^{n} p_v k_v(t,x) \right\} \beta(t) dt.$$

converges to f(x) uniformly in $[c+\xi, d-\xi]$ with this the theorem is proved.

Proof of Theorem 3:- Proof follows on the same line as of theorem 1.

Proof of Theorem 4: — Proof follows on the same line as of theorem 2.