
CHAPTER V
THEORETICAL DEVELOPMENTS

5.1 GENERAL

Rock masses are characterised by presence of discon­
tinuities. Movement along the discontinuities govern the 
behaviour of the rock mass. Hence mechanical behaviour of 
a rock mass is nothing but its sliding behaviour. Study of 
friction is therefore of great importance in rock machanics. 
The classical concept of friction is developed for metals. 
As a result most of the investigations on friction were based 
on the frictional behaviour of either flat or non-interlocking 
rough surfaces. Discontinuities in rock mass are rough and 
interlocking. The classical concept of friction is therefore 
not directly applicable to rock joints. During sliding along 
discontinuities volume change takes place. This phenomenon 
of dilation must be considered while evaluating sliding 
processes.

5.2 MECHANISM OF SLIDING IN JOINTED ROCKS
5.2.1 The basic laws of friction are :

(i) Tangential force is directly proportional to 
the normal force.

(ii) Coefficient of friction is independent of contact 
area.

(iii) Static coefficient of friction is greater than 
kinetic friction.

(iv) Coefficient of friction is independent of sliding 
speed.
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5.2.2 Resistance against relative movement along the planes 
of separation in a rock mass is generally referred to as 
friction. In this context, the term friction is used for 
relative movement along pre-existing planes. Different research 
workers have put forward different views regarding phenomenon 
of friction in rocks. Kragelskii (1965) explained friction
in terms of lifting of microasperities over each other. Bowden 
and Tabor (1967) explained friction as a result of overcoming 
the forces of molecular attraction between the two solids. 
Some researchers visualized friction arising from the 
deformation of certain amount of material which is penetrated 
on one solid by the asperity of the other solid, whereas a 
composite theory represents friction as resulting from inter­
locking of the surface roughness and lifting of microasperities 
over each other. Byerlee (1966) considered that tips of
asperities which are subjected to a normal force, crush to
a cert-ain extent under the action of the normal force, and 
on application of shear force, local tensile stresses develop 
on the tip of the asperities which exceed the tensile strength. 
Byerlee's theory, however, does not take into account inter­
locking of asperities. Patton (1966) studied the influence 
of asperities and the phenomenon of interlocking of asperities 
on the failure envelopes. He postulated that failure envelope 
has to be represented by two straight lines. Inclination of 
the upper or the secondary portion is very close to 0r - the
residual strength - and that of primary portion is very close 
to (0/t + i) where 0/f is the basic friction angle and i is 
the angle of inclination of asperity. Einstein et al (1970)
explained the influence of asperities and the phenomenon of 
interlocking in rock friction. According to them the two 
surfaces will normally be not in plane contact but will 
interlock where certain portions are in tip to tip contact 
but major portions will be staggered (Fig. 5.1). At small
to medium values of normal load the asperities slide over
each other and the shear resistance can be represented
by the equation,
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S = N tan (0^ + i) . (5.1)

After a pair of interlocked asperities have ridden over upto 
a certain level the stresses in the asperities will reach 
the strength of the asperity and the asperity will shear off 
at this level. This stage is represented by the equation,

S = K + N tan 0 (5.2)

The riding over of the asperities gives rise to changes in 
the value of deformation at right angles to the direction 
of application of shear force which has been termed as 
dilatancy. A schematic representation of dilatancy is shown 
in Fig. 5.2. According to Rowe, Bardon and Lee (1964) the 
shear force S may be divided into 3 components,

S = S.^ + S2 + (5.3)

where, = shear force component due to external work done 
in dilating against the external force N.

52 = shear force component due to additional internal
work done in friction due to dilatancy.

53 = shear force component due to work done in internal
friction if the specimen does not change in volume 
in shear.

Ladyani and Archambault (1969) carried the argument further 
stating that in shearing along an irregular rock surface, there 
is the fourth component which occurs as a result of the shearing 
of the teeth and the value of this component (S^) may be 
determined by assuming that all the teeth are sheared off 
at the base. Thus,

54 = AK + N tan 0 o (5.4)

where, A is the total projected area of the teeth at the plane
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of shear and K and 0o are the Coulomb shear strength parameters 
for rock substance.

5.2.3 Thus, it is seen that sliding of rock blocks over
pre-existing joints is different from sliding of one body 
over the other. There is no dilation or volume change when 
two bodies slide on plane surfaces. This type of behaviour 

can be represented by a saint venant body, whereas, in sliding 
of rock blocks over joints, volume change (dilation) is involved 
due to presence of asperities (roughness) on the sliding 

surfaces. As a consequence of the roughness of the surfaces, 
the contact area between the two surfaces along a joint is 
always discrete, i.e. it occurs at individual points. These 
points in contact are deformed on application of normal load. 

This increases the number of discrete contact points. Depending 
upon the angle of inclination of the asperities (i.e. shape 
of asperities), the distribution of the asperity height and 
mechanical properties of' the material, some of the asperities 

shall be deformed elastically, plastically or crushed and
hence the area of contact will go on changing non-linearly
with increase in load. It is therefore not possible to apply 
the classical concept of friction in rock joints.

5.3 PHENOMENON Or VOLUME CHANGE DURING SHEARING

5.3.1 Only recently, measurement of volume changes associated 
with rock disintegration became of particular interest in 
rock mechanics. Experiments have indicated that volume increases 

with progressive failure. This effect is generally called 
dilation, dilatation or dilatancy. Under low confining pressure, 
dilation may reach a considerable amount. It is believed that 
it results from crack development during increasing axial 
deformation. In case of sliding along a joint, the riding 
over of the asperities gives rise to changes in the value 

of normal deformation which is termed as dilatancy. The term 
dilatancy is used to indicate thickening of a joint, that
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is an increase in the separation of the two joint blocks. 
Dilation can also be looked upon as a consequence of change
in structure of the sliding surfaces. Dilatancy relates normal 
strains to shear strains. A dilatant joint tested in direct
shear set up under condition of constant normal deformation 
will have a higher friction angle than one tested under constant 
normal -stress. This leads to the introduction of dilatancy 
in analysis through an adjustment of friction angle. However, 
dilatancy also affects the amount of deformation of a joint
and hence a stress analysis will not be realistic merely by
adjusting the friction angle. The model of sliding of jointed 
rock should thexefore include the volume change or dilational
parameter.

5.3.2 In order to derive some basic equations relating stresses
and strains, Poisson's ratio and principal strains etc. the
sign convention for stresses shown in Fig. 5.3 is used. As 
compression is more common than tension in Geotechnical 
problems, normal stress components are considered positive 
when they axe compressive. Similar convention is adopted for
strains. It will be noted that there are two conventions for 
shear strains, the V's and the £'s, the former are called 
the engineering shear strains. They are most useful for
experimental work. The latey are called the tensorial shear
strains and axe more useful for theoretical derivations. From 
Fig. 5.4 it can be seen that the engineering definition of 
shear strain includes some rotation but the tensorial definition 
describes a plane deformation. The reason for defining 
a tensorial strain is that the components of complete set
of strains then become a tensor, which obeys all the transfor­
mation laws. It has invariants, principal values and so on.
The two strains are related as

Yij = 2 €ij ' (5.5)

5.3.3 In analyzing the conventional direct shear test and
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for the purpose of defining parameters for a joint element 
the stresses and strains in the joint plane are only required. 
Such a joint element in plane stress condition is shown in 
Fig. 5.5. Using the sign convention shown in Fig. 5.3, the 
normal stress tfyy is considered positive, <fxx is zero and 
<5"xy is positive. Similarly £yy is considered positive if 
compressional and negative if dilational (increase in volume) 
£xx is zero and £xy is positive.

The usual way of presenting dilational parameter is 
in the form of ratio of vertical (normal) displacement to 
horizontal (shear) displacement. However, this is not invariant. 
It is, therefore, proposed to express it in the form of ratio 
between principal strains. For a 2D plane stress joint element 
shown in Fig. 5.5, the principal strains can be arrived at 
as under :

^ + £yv + ~.^yy)% £xy2 (5.6)

ez = e22 =o (5.7)
= €** + Lrx)2+ (5.8)

For the 2D joint element shown in Fig. 5.5, £xx = 0. Therefore, 
the above equations reduce to,

£, = + 7( ^rf + c1nd <5-s>

£3 = & - t (5.10)

The ratio of principal strains for a continuum in 
classical mechanics terminology is known as Poisson's ratiol). 
Similarly, ratio of principal strains for a joint element
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worked out from above equations is designated as Poisson's 
ratio for the joint element. Thus,

]) for a joint element
£yy/2 - 'ZC£y//2 )2 + C£xyf ■ 
£yy/2 + V(£yy/^2 + C£«y'JJ '

It is obvious from equation 5.11 that the value of Poisson's 
ratio (U) for a joint element shown in Fig. 5.5 is less than 
unity under compressional mode, it approaches unity when the 
joint just strats dilating (£yy = 0) and it is more than unity
under dilational (opening) mode.

5.3.4 For the purpose of working out invariants of stresses
and strains following definitions are followed :

(a) Invariant of stress tensor :

J1 = </xx + dyy + - tx(d') (5.12)

J ^ — 1/2(I2d"-2I2<5') = 1/2 tr(<f)2
O y Q1/2C (dxx + 6yy + <5zz)z - 2 (Oxx.<fyy ~<5xyz

(5.13)

+ 6yy*6zz ~dyz2 + dxx.<5zz -dzx2)] (5.14)

• j2 = 1/2[ (£xx +<5yy +dzz + 2 <5^xy2 
+ 2d*yz2 + 2 <fzx2)] (5.15)

j2 =
dxx2 <dyy2 d"zz2 / 2 /■ 2 /r 2
_— + // + —+<5xy +oyz +ozx (5.16)

For 2D joint element of Fig. 5.5,

= 6 zz = 00 and <5yz =6 zx = 0

. • J1 = <5"yy and (5.17)

, * . <_
J

N)

II

^ ♦ <5xy2
(5.18)
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J2
Thus, =

6 yy/2 + <5xv2
<$ yy2 (5.19)

. J2
‘ ' / = i/2, <%2 (5.20)

. J2
. . o - 0*5 4- tsn 0 (5.21)

. J2
’ * j2 ~ 

J1
0.5 = tan2 0 (5.22)

Similar equations can be developed for strains

where, 1^ = 6yy = 6vol. (5,23)

I 2 and (5.24)

2
2
1

0.5
6 xy2
€yy2 (5.25)

2In other words sliding takes place when 3^/3.j approaches a 
particular value. Sliding (J2/J2) is dependent on characteris­
tics of sliding surfaces. If the surfaces are perfectly plane, 
then sliding will take place without any volume change, i.e. 
rigid plastic movement (ideal Saint Venant body). Equation 
5.22 will therefore yield basic friction value 0/*. If the 
surfaces are not plane which is the case with rock joints, 
then sliding will be associated with volume change. Therefore 
Saint Venant body is required to be modified. Equation 5.22
will then yield a value of (0/4 + i). The implication of volume

2change would be that the ratio J2/J^ will increase depending 
on the surface roughness.
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Volumetric strain is defined as
I

(5.26)

Therefore, for the joint element of Fig. 5.5, volumetric strain,

5.3.5 From the above discussion it is clear that as the, shear 
stress on a joint incxeases, both Poisson's ratio for the 
joint and the volumetric strain increases. Thus, it can be 
said that sliding pherromenoo is associated with change in 
Poisson's ratio of the jnint. Thus, dilatancy can be represented 
by state of Poisson's ratio of the joint. The volume change 
is a consequence of resistance to shearing. Basic friction 
is the resistance to shearing without volume change. During 
sliding on rough surfaces there occurs a volume change due 
to the resistance beyond the basic friction. Hence this volume 
change is due to inherent surface imperfections and resultant 
surface imperfections.

5.4 CEtNSTITOTIVE RELATIONSHIP

5.4.1 A constitutive law represents mathematical model that 
describes behaviour of a material. In other words it is a 
mathematical model that can permit reproduction of the observed 
response of a continuous medium. Establishment of constitutive 
equations can be based on the experimental observations or 
on physical theories of molecular behaviour. The first approach 
can impart physical significance in engineering and physical 
sciences. In formation of a constitutive law the first stage 
is the identification of the relevant constitutive variables 
for a given material. Once such variables or parameters are 
identified, it is necessary to know the relationships among

I £yy (5.27)
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these variables.

5.4.2 Stresses and strains are connected through stress-strain 
laws .which are also known as constitutive laws. A simple 
constitutive law is Hooke's law defining linear elastic 
behaviour which can be written as :

d = E£ (5.28)

when, is the stress, the strain and E the response parameter 
commonly known as the Young's modulus. In general form the 
stress - strain relation is

{<*} = [C]{£} (5.29)

where-, [C] is the stress-strain matrix. For a 'linear elastic 
and isotropic material it is generally composed of two 
parameters, Young's modulus E and Poisson's ratio . Varieties 
of linear and non linear stress-strain relations are used 
in geotechnical engineering. The basic relations between stress 
and sirrain are those of linear elasticity. For most numerical 
pjurpases, it is most useful to write the stresses and strains 
as v-ectors :

«jt = {<f XX
<jyy 6 zz 6 xy 6yz <fzx} (5 .30)

and{£jT = { Exx £ yy 6z 2 E xy Eyz €zx} (5 .31)

When plane stress or plane strain conditi.ons apply, thes
vectors can be reduced to :

1*IT = {tfxx <Syy <$xy) (5 .32)

and = (£xx Eyy Exy } (5 .33)

Since there are 6 independent components of stress and 6 of
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strain, 36 coefficients are needed to relate them linearly 
in the most general way. However, considering the energy stored
in a strained linearly elastic body one can show that the
coefficients must form a symmetric array. This reduces the
number of independent terms to 21. The stress-stain matrix
[C] of equation 5 .29 will have a form :

C11 C-12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C c 3 = C33 C34 C35 C36 (5.34)
C44 C45 C46

Sym. C55 C56
C66

For a plane stress or plane strain condition the number of 
independent terms reduces to 6. Therefore the [C] matrix becomes,

c,,11 C12 C13
CC] = C22 C23 (5.35)

Sym. C33

most useful form of Cc] matrix for a 3D problem is,

1-y v V 0 0 0

V i-y V 0 0 0
E

-(i + y)(i-2») V V 1-V 0 0 0 (5.36)

0 0 0 1-2 V 0 0

0 0 0 0 oCs.CM1

0 0 • 0 0 0 1-2V>
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For conditions of plane stress

[C] =
1 -V‘

1 y
v . 1
0 0

0
0

1 -V

and for condition of plane strain

^ " (1 + y) (1-2V)
1-V V
y 1-v
0 0

0
0
i-2y

(5.37)

(5.38)

The relation of equation 5.29 can also be written in the inverse 
form :

{E}=
where, [D] for a plane stress case is

CD] E
1 -y o

-v 1 o
o o 2 (1+V)

and for a plane strain case

CD] 1+y
E

1-v
-y
o

-V 0 
1-V 0
0 2

(5.39)

(5.40)

(5,41)

In the formulation of this constitutive law, E and are 
considered as constants.

5.4.3 Geotechnical materials and especially jointed rocks 
do not exhibit linear behaviour. Hence in order to represent 
Geotechnical problems realistically it is imperative that 
the non-linearity in material behaviour has to be introduced.
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Various available schemes for defining the constitutive 
behaviour of such geotechnical non-linear materials can be 
divided into three main groups (i) representation of given 
stress-strain curve by using curve-fitting methods, inter­
polation, or mathematical functions, (ii) non-linea.r elasticity 
theories, and (iii) plasticity theories.

The simplest type of nonlinear relation is the bilinear 
one illustrated in Fig. 5.6. The material has initial moduli 
[Ci] until the stress reaches a yield value <5y, after which 
the moduli is changed to [Cy]. The usual way to develop bilinear 
relations is to change the Young's modulus from an initial 
value Ei to a yielded value Ey. Alternatively the nonlinear 
curve can be divided into a number of linear curves leading 
to the so-called multilinear or piecewise linear models 
(Fig. 5.7). This method gives satisfactory and reliable answers 
as does the use of mathematical functions such as polynomials, 
hyperbolas - parabolas and splines. An advantage of the use 
of mathematical functions is that we need only a few parameters 
to describe the curves. Use of mathematical functions essen­
tially constitutes the piecewise linear ap-proach.

The widely used function for simulation of stress strain 
curves in finite element analysis is tha Hyperbelie relation 
illustrated in Fig. 5.8, which can be stated in equation form 
as :

OR

(S -
£

b + a£
£4 = b + a£
6

(5.42)

i 1where, ^ is the initial Young's modulus and — is the compressive
strength.

The Ramberg - Osgood function can provide an alternative 
simulation procedure. This model can be expressed as,
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FIG 5-6 BILINEAR MODEL FOR NONLINEAR MATERIAL

FIG:5-7 MULTILINEAR MODEL FOR NONLINEAR MATERIAL
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where, 7\

£
<

1 (5.43 )

Here m is an exponent defining the shape of the curve and 
©jis the ratio E2/E1 (Fig. 5.9).

The approach of spline function uses cubic and bicubic 
splines for simulation of a set of stress - strain data 
(Fig. 5.10). The spline function provides continuous first 

and second derivatives and hence is formed to provide better 
simulation of curves compared with that given by hyperbola.

If the stress - s.train data are summarized by a set
of (n + 1) pairs of stress - strain data, it is easy to fit 

t f"lan nL order polynomial through the points.

The stress - strain laws based on the generalized Hooke's 
law represent the lowest order of the higher order elasticity 
models that have been used in Geotechnical Engineering. It 
is possible to employ higher order elastic or hyperelastic 

and hypoelastic constitutive laws for description of the 
behaviour of geologic materials allowing incorporation of 
a number of factors that cannot be accounted for by the 
piecewise linear approximation discussed earlier. The 
hyperelastic models rely on finding constitutive laws by 

differentiation of a strain - energy function. Different orders 
of hyperelastic models can be obtained by retaining different 
order terms. In the hyperelastic law, the stresses are expressed 
as functions of strains whereas in hypoelastic formulation rate 
of stress is expressed as a function of rate of deformation.

The hyperelastic and hypoelastic models require number 
of material parameters to be determined from representative
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FIG 5*10 SPLINE FUNCTION MODEL

FIG: 5-11 ASSOCIATED FLOW RULE FOR PLASTICITY
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laboratory tests. It usually requires curve fitting and 
regression analysis to determine the parameters from a set 
of laboratory tests. Often the question of uniqueness arises 
as it is possible to fit more than one set of parameters to 
a set of laboratory data. Therefore further research in 
hyperelastic and hypoelastic approaches is needed before they 
can be reliably applied.

5.4.4 All the constitutive relations described so far relate 
stress directly to the strain even though they may be expressed 
in the form of an instantaneous or tangent modulus. The 
relations arising from plasticity theory are usually incre­
mental, i.e. the stresses and strains are related entirely 
by their incremental or differential behaviour. A central 
concept in plasticity theory is the theory of plastic potential 
and the associated flow rule. This states that when a material 
is in the plastic state, the differential increments of strain 
are proportional to the outward normal to the yield criterion. 
Fig. 5.11 illustrates this. The rule can also be expressed 
by stating that the strain increments are proportional to 
the gradient of the yield criterion,

(5.44 )

In this equation X is a factor of propaxtionality, aad
r CP)C5j represents the plastic strain increment. Although the 

dot connotes a time derivative (or rate) and this term is 
often called the strain rate, it is not really a rate because 
no time derivative is involved. It is instead a differential 
increment. The nonfrictional perfect plasticity criterion 
ignores the fact that the geotechnical materials do have 
frictional components to their shear strengths. Drucker-Prager 
suggested an incremental stress - strain law based on the 
frictional criteria as under :

= [CeP]{d£j (5.45)
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where, [Ce|3] is the elastoplastic constitutive matrix expanded 
in Table 5.1. In the frictional criteria with associated flow 
rules, yielding actually occurs well below the failure envelope 
of the Mohr Coulomb equation. To overcome this^difficulty capped 
yield models have been proposed. The theory has been subject 
to extensive research. Desai et al (1986) have proposed a 
Hierarchical concept for the development of constitutive models 
to account for various factors that influence behaviour of 
geologic materials. It permits evolution of models of 
progressively higher grades from the basic model representing 
isotropic hardening with associative behaviour*. Factors such 
as non-associativeness, induced anisotropy due to friction, 
cyclic loading and softening are introduced as corrections 
or perturbations to the basic model.

5.5 A NEW APPROACH INCORPORATING DILATAMCY 
5.5.1 A New Constitutive Relationship

It is seen from the ab o-ve discussion that constitutive 
laws for geologic materials have tree® defined in number of 
ways following different concepts. However, very few of them 
allow inclusion of dilatency. Such models are very complex 
and need determination of a number of material parameters 
which make them unwieldy. On the other hand it is also seen 
that during sliding on rock joints having asperities, structural 
changes take place continuously which are represented by changes 
in Poisson's ratio of the joint element. Thus Poisson's ratio 
can -be considered as a dilation parameter for formulation 
of a constitutive relationship. A new approach, directly 
incorporating this dilation parameter in terms of Poisson's 
ratio is therefore developed and proposed. This approach is 
simple and accomodates both changes in Poisson's ratio and 
associated changes in Young's modulus in stages.
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TABLES.! : STRESS-STRAIN MATRIX FOR DRUCKER-PRAGER MATERIAL MODEL

’-Mr", -"iW -<T,V (Tl^j)
( \ 

d£
11

d<r
22 -(v.,*y 1-T2VR2 -<t2W -<w -(T2V -(T2V dE22

VTT3 = 2 G -(T3622+R3) '-T,VS -(T <*" )
3 12

"{T3<23) “(T3^35

<

d£33

dtf12 ~T1 *12 -T (S'
2 12

-T3^2 1/2-C<S^2 -C <J*
12 23

_C 12*13 d£12

drf23
’

-T <f
1 23

-T <T
2 23

-T 6
3 23

-C „<T.
12 23

1/2-C<^3 'C 13^3 d£23

drf13
v J

%

-T <T
1 13

-T <f
2 13

-T <f
3 13

-C <$
12 13 -

-C <3"
13 23

’/2-C^
d£13

Where, T
a

= A + C(f 
aa

and R = A <T 
a aa

+ B; a = 1, 2, 3

h
P'K

(1 + 90CK/G) 
K

-K (P'-D 
6K v/lzD

2h2 \Tjzb
P'K

, 3<*K 1
( ~— + TT—C )

2G 6/Fd
z

3»K
E

2h

1+9« K/G

3£K
E

2KP'/J?D
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Following constitutive relationship for joint is proposed 

to be used for a 2D plane stress case :

where,
1

(5.46)

0

[D] C1-172) (1-P)

0 0 (1 + V)

This relationship differs from that given by equation 5.40.' 
It indicates that normal strain is not only dependent on <1 yy 

but is also dependent on dxy. As the strain vector includes 
the tensorial shear strain £xy instead of engineering shear 
strain Yx y the term in the place in the [D] matrix is

(1+13) instead of 2(1 + V) as given in equation 5.40. The relation 

given by equation 5.46 can also be given in the inverse form 

as :

{d}- [C]{£} (5.47)

where,
0 0

[C]

0

1

0

(1 + V)2 

1
1+V

This [C] matrix is, however, not symmetrical and 

therefore may not be suitable for application in Finite Element 
Analysis. Following alternative [D] matrix is therefore proposed 

to be used for plane stress case.



74

[D] 0

0

2D(1-1>)(1+2V)

■ 0

Inverse of this matrix can be written as,

[C] 1
2D {1 - y) (1+2 V)

0 0

0

1 +

0

1
1 +y

In the above matrix D is a parameter defined as,

i.
D

where, i.

av
"o

average angle of asperity, and

(5.48)

(5.49)

(5.50)

'av
average dilation angle under given normal 

stress observed during the direct shear test.

The [C] matrix given in equation 5.49 is symmetric and therefore, 

acceptable in FEM analysis. It is also easy and simple to 

conduct a direct shear test on sample of rock joint and obtain 
relation between Poisson's ratio \> and shear stress <fxy. Values 

of shear modulus G and Young's modulus E can be obtained from 
following relationships, at different shear stresses <^xy

G
6 xy
Wy

6 xy 
2£xy (5.51 )

E = 2(1 + V)G (5.52)
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It is also conveniently possible to measure average angle 
of asperity (iQ) by a profilometer and to evaluate the value 
of average dilation angle igv from a direct shear test from 
following relationship,

i = tan-1( Total vertical displacement (dv) % av “ ^ Total horizontal displacement (du) '

The parameters namely, V , G and E have to be evaluated for 
different stages of shear loading <5"xy. The nature of shear 
stress (<fxy) shear strain (ifxy) relationship is likely to 
be nonlinear. Because of this nonlinearity the value of G 
is changing from stage to stage. As the shear test proceeds 
the value of V is also changing as discussed earlier. Value 
of V is less than unity under compre-S-sional mode, it tends 
to unity when the joint is just tending to dilate and it becomes 
more than unity when the joint dila-tes- It goes on Increasing 
beyond unity till the joint continuers to dilate and thereafter 
it again fails bark to unity. Berceuse of the variation in 
the values of G and V , value of E also goes orn changing as 
the shear stress 6xy changes.

Thus having determined the parameters as stated above 
at different stages of the test, it Is possible to formulate 
[C] matrix given try equation 5.-47 or [D] matrix given by 
equation 5.46 for different stages erf shear loading and use 
it to predict dis-pl-a-cements, strains or stresses under given 
conditions using an appropriate Finite Element Programme.

5.5.2 A New Joint Element
A new joint element is proposed to be used for appli­

cation in Finite Element Method analysis of jointed rocks. 
The joint element is considered as a solid element like other 
solid elements. It has a small initial thickness. Thus it 
differs from the joint element proposed by Goodman which is 
having initial zero thickness. The constitutive matrix of
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the joint element directly includes a dilation parameter in 
terms of> Poisson's ratio.

5.6 , CONSTRAINT OF THE CONSTITUTIVE RELATIONSHIP AND
ITS PRACTICAL RELEVANCE

5.6.1 Constraint

The constituent relationship proposed for a joint element 
incorporates an approximation of nonlinear relationship between 

, xy and xy into a piecewise linear form. This may introduce 
some errors. In the FEM analysis it is proposed to consider 
ijoint element similar to other solid elements but having very 
small thickness. Thus the aspect ratio of the joint element 
jwould be very high as compared to that for the adjoining 
’elements. This may also introduce some errors, which may not be 
of engineering significance.
5.6.2 Practical Relevance

With a view to verify the practical relevance of the 
proposed constitutive relationship for the Joint element, 
it is proposed to .analyse some typical cases. It is also 
proposed to study a . case of underground opening with the 
proposed constitutive relationship.

5.7 IMPLEMENTATION OF THE CONSTITUENT RELATIONSHIP

In order to verify the constituent relationship proposed 
in two alternative forms, it. is proposed to implement it to 
,the test data to be generated .1 ri the present laboratory
i

investigation. It is also proposed to implement it to the 
test data generated by other research workers, during laboratory 
and in situ testing. With a view to verify its applicability 
in Finite Element Analysis, it is proposed to implement it



in the Finite Element Analysis of the test samples of laboratory 
and in situ tests.

5.8 CONCLUDING REMARKS

From the theoretical developments it is obvious that 
in the present state of art, there is no simple and yet 
realistic approach for the analysis of jointed rocks which 
directly incorporates effect of dilatancy in the constitutive 
relationship. A constitutive relationship is tnerefore developed 
incorporating a dilation parameter in terms of Poisson's ratio. 
It is proposed to apply it to the laboratory and field testing 
data and to some typical cases. The results will be oresented 
to verify efTIcieocy and efficacy of the proposed relationship.


