CHAPTER V

£l

THEORETICAL DEVELOPMENTS

5.1 GENERAL

Rock masses are characterised by presence of discon-
tinuities. Movement along the discontinuities govern the
behaviour of the rock mass. Hence mechanical behaviour of
a rock mass 1is nothing but its sliding behaviour. Study of
friction is therefore of great importance in rock machanics.
The classical concept of friction 1is developed for metals.
As a result most of the investigations on friction were based
on the frictional behaviour of either flat or non-interlocking
rough surfaces. Discontinuities in rock mass are rough and
interlocking. The classical concept of friction 1is therefore
not directly applicable to rock Jjoints. During sliding along
discontinuities volume change takes place. -This phenomenon
of dilation must be considered while evaluating sliding
processes.

5.2 MECHANISM OF SLIDING IN JOINTED ROCKS
5.2.1 The basic laws of friction are :

(i) Tangential force is directly proportional to
the normal force.

(ii) Coefficient of friction is independent of contact

area.

(iii) Static coefficient of friction 1is greater than
kinetic friction.

(iv) Coefficient of friction is independent of sliding

speed.
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5.2.2 Resistance against relative movement along the planes
of seéaration in a rock mass is generally referred to as
friction. In this context, the term friction is wused for
relative movement along pre-existing planes. Different research
workers have put forward different views regarding phenomenon
of friction in rocks. Kragelskii (1965) explained friction
in terms of lifting of microasperities over each other. Bowden
and Tabor (1967) explained friction as a result of overcoming
the forces of molecular attraction between the two solids.
Some researchers visualized friction arising from the
deformation of certain amount of material which is penetrated
on one solid by the asperity of the other solid, whereas a
composite theory represents friction as resulting from inter-
locking of the surface roughness and lifting of microasperities
over each other. Byerlee (1966) considered that tips of
asperities which are subjected to a normal force, crush to
a certain extent under the action of the normal force, and
on application of shear force, local tensile stresses develop
on the tip of the asperities which exceed the tensile strength.
Byerlee's theory, however, does not take into account inter-
locking of asperities. Patton (1966) studied the 1influence
of asperities and the phenomenon of interlocking of asperities
on the failure envelopes. He postulated that failure envelope
has to be represented by two straight 1lines. Inclination of
the upper or the secondary portion is very close to @r - the
residual strength - and that of primary portion is very close
to (@« + 1) where B4 is the basic friction angle and i is
the angle of inclination of asperity. Einstein et al (1970)
explained the influence of asperities and the phenomenon of
interlocking in rock friction. According to them the two
surfaces will normally be not in plane contact but will
interlock where certain portions are in tip to tip contact
but major portions will be .staggered (Fig. 5.1). At small
to medium values of normal load the asperities slide over
each other and the shear resistance can be represented
by the equation,
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S = N tan (B + i) X (5.1)

After a pair of interlocked asperities have ridden over upto
a certain 1level the stresses in the asperities will reach
the strength of the asperity and the asperity will shear off
at this level. This stage is represented by the equation,

S = K+ Ntan @ (5.2)

The riding over of the asperities gives rise to changes in
the value of deformation at right angles to the direction
of application of shear force which has been termed as
dilatancy. A schematic representation of dilatancy is shown
in Fig. 5.2. According to Rowe, Bardon and Lee (1964) the
shear force S may be divided into 3 components,

S = S1 + 52 + 53 (5.3)
where, S1 = shear force component due to external work done
in dilating against the external force N.

52 = shear force component due to additional intermal
work done in friction due to dilatancy.
53 = shear force component due to work done in intermal

friction if the specimen does not change in valume
in shear.

Ladyani and Archambault (1969) carried the argument further
stating that in shearing along an irregular rock surface, there
is the fourth component which occurs as a result of the shearing
of the teeth and the value of this component (S,) may be
determined by assuming that all the teeth are sheared off
at the base. Thus,

S, = AK + N tan @o (5.4)

where, A is the total projected area of the teeth at the plane
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of shear and K and @o are the Coulomb shear strength parameters
for rock substance.

5.2.3 Thus, it 1is seen that sliding of rock blocks over
pre-existing Jjoints 1is different from sliding of one body
over the other. There 1is no dilation or volume change when
two bodies slide on plane surfaces. This type of behaviour
can be represented by a saint venant body, whereas, in sliding
of rock blocks over joints, volume change (dilation) is involved
due to presence of asperities (roughness) on the sliding
surfaces. As a consequence of the roughness of the surfaces,
the contact area between the two surfaces along a joint is
always discrete, i.e. it occurs at individual points. These
points in contact are deformed on application of normal load.
This increases the number of discrete contact points. Depending
upon the angle of inclination of the asperities (i.e. shape
of asperities), the distribution of the asperity height and
mechanical properties of the material, some of the asperities
shall be deformed elastically, plastically or crushed and
hence the area of contact will go on changing non-linearly
with increase in 1load. It is therefore not 'possible to apply
the classical concept of friction in rock joints.

5.3 PHENOMENON OF VOLUME CHANGE DURING SHEARING

5.3.1 Only recently, measurement of volume changes associated
with rock disintegration became of particular interest in
rock mechanics. Experiments have indicated that volume increases
with progressive failure. This effect 1is generally called
dilation, dilatation or dilatancy. Under low confining pressure,
dilation may reach a considerable amount. It is believed that
it results from crack development during increasing axial
deformation. In case of sliding along a Jjoint, the riding
over of the asperities gives rise to changes in the value
of normal deformation which is termed as dilatancy. The term
dilatancy 1is wused to indicate thickening of a joint, that
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is an increase 'in the separation of the two Jjoint blocks.
Dilation can also be looked upon as a consequence of change
in structure of the sliding surfaces. Dilatancy relates normal
strains to shear strains. A dilatant joint tested in direct
shear set up under condition of constant normal deformation
will have a higher friction angle than one tested under constant
normal -stress. This leads to the introduction of dilatancy
in analysis through an adjustment of friction angle. However,
dilatancy also affects the amount of deformation of a joint
and hence a stress analysis will not be realistic merely by
adjusting the friction angle. The model of sliding of jointed
rock should therefore include the volume change or dilational
parameter. )

5.3.2 1In order to derive some basic equations relating stresses
and strains, Poisson's ratio and principal strains etc. the
sign convention for stresses shown in Fig. 5.3 1is used. As
compression is more common than tension in Geotechnical
problems, normal stress components are considered positive
when they are compressive. Similar convention 1is adopted for
strainms. It will be noted that there are two conventions for
shear strains, the Y's and the &'s, the former are called
the engineering shear strains. They are most wuseful for
experimental work. The latey are called the tensorial shear
strains and are more useful for theoretical derivations. From
Fig. 5.4 it can be seen that the engineering definition of
shear strain includes some rotation but‘the tensorial definition
describes a plane deformation. The reason for defining
a tensorial strain is that the components of complete set
of strains then become a tensor, which obeys all the transfor-
mation laws. It has invariants, principal values and so on.
The two strains are related as

Yij = 2 €1 ' (5.5)

5.3.3 In analyzing the conventional direct shear test and
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for the purpose of defining parameters for a joint element
the stresses and strains in the Jjoint plane are only required.
Such a Jjoint element in plane stress condition is shown in
Fig. 5.5. Using the sign convention shown in Fig. 5.3, the
normal stress dyy is considered positive, ¢'xx is zero and
Oxy 1is positive. Similarly Eyy 1is considered positive if
" compressional and negative if dilational (increase in volume)
Exx is zero and Exy is positive.

The wusual way of presenting dilational parameter is
in the form of ratio of vertical (normal) displacement to
horizontal (shear) displacement. However, this is not invariant.
It is, therefore, proposed to express it in the form of ratio
between principal strains. For a 2D plane stress joint element
shown in Fig. 5.5, the principal strains can be arrived at
as under :

2
E‘ - EXX Z‘ EYY + \/(EXX; EYY)+ Exyz (5.6)
€, = €zz =0 o7
Exx+ Evy _  JEXx=EYY Vi £ vz
Es = 2 - (*w__zwwn.) Xy (5.8)

For the 2D joint element shown in Fig. 5.5, €xx = 0. Therefore,
the above equations reduce to,

2
R C O and (5.9)
& 2
55 = ng - V/(jgi) + Exy2 (5.10)

The ratio of principal strains for a continuum in
classical mechanics terminology is known as Poisson's ratio V.
Similarly, ratio of principal strains for a Jjoint element
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worked out from above equations 1is designated as Poisson's
ratioc  for the joint element. Thus, ’

..E_g'. - Eyyl2 — \/(Eyy/z )2+ (Exy)z_
€1 Eyyl2 + \(Eyy/2 )% + CExy)?

Y for a joint element = (5.11)

It is obvious from equation 5.11 that the value of Poisson's
ratio (V) for a joint element shown in Fig. 5.5 is less than
unity under compressional mode, it approaches unity when the
joint just strats dilating (Eyy = 0) and it is more than unity
under dilational (opening) mode.

5.3.4 For the purpose of working out invariants of stresses
and strains following definitions are followed

(a) Invariant of stress tensor :
34 = d xx +Oyy +8zz = tr(4) (5.12)
3, = 1/2(1%6-2120’) = 12 tr(d)? (5.13)
Co= 12 Exx +4yy +622)2 - 2(6xx.Gyy -»d-xy2

+6yy.627_~6y22 +Oxx.622 -—dzxz)] (5.14)

s = 12[(6;x +6§/y +Jzzz+26xy2
+20’y22+2 Gz2x%)1 (5.15)

Z 2 Z ~
3y = 6;" + 6%'3" + 6§Z +5xy‘+5y22 +6 252 (5.16)

For 2D joint element of Fig. 5.5,

GExx =Gzz = 00 and Oyz =86zx = O

3, = Gyy and (5.17)
2

J = Syy® + dxy2 (5.18)

2 2
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2
J 2
Thus, —% _ Syyr2 ;ny (5.19)
J1 ny
J 2z
—% - 1/2+§——"-§ (5.20)
31 d&y
3L
. —g— = 0.5 + tan @ (5.21)
I
3
.- —%— - 0.5 = tan? @ (5.22)
J9

Similar equations can be developed for strains

where, I, = €yy = Evol. (5.23)
I = Eyy? 2
2 -—%ﬁf— +  Exy and (5.24)
I £..2
< = 05 o+ X (5.25)
I Eyy

In other words sliding takes place when JZ/J% approaches a
particular value. Sliding (JQ/J%) is dependent on characteris-
tics of sliding surfaces. If the surfaces are perfectly plane,
then sliding will take place without any volume change, 1i.e.
rigid plastic movement (ideal Saint Venant body). Eguation
5.22 will therefore yield basic friction value @u. If the
surfaces are not plane which 1is the case with rock joints,
then sliding will be associated with volume change. Therefore
Saint Venant body 1is required to be modified. Equation 5.22
will then yield a value of (B« + i). The implication of volume
change would be that the rétio JZ/J% will increase depending

on the surface roughness.,
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Volumetric strain is defined as,
Ev = 11

= Exx +.Eyy + Ezz (5.26)

Therefore, for the joint element of Fig. 5.5, volumetric strain,
EV - I,] »: Eyy (5-27)

5.3.5 From the above discussion it is clear that as the, shear
stress on a joint increases, both Poisson's ratioc for the
joint and the volumetric strain increases. Thus, it can be
said that sliding phenomenon 1is associated with change in
Poisson's ratio of the joint. Thus, dilatancy can be represented
by state of Poisson's ratio of the joint. The volume change
is a consequence of Tesistance to shearing. Basic friction
is the resistance to shearing without volume change. During
sliding on rough surfaces there occurs a volume change due
to the resistance beyond the basic friction. Hence this volume
change is due to inherent surface imperfections and resultant
surface imperfections.

5.4 CONSTITUTIVE RELATIONSHIP

5.4.1 A constitutive law represents mathematical model that
describes behaviour of a material. In other words it 1is a
mathematical model that can permit reproduction of the observed
response of a continuous medium. Establishment of constitutive
equations can be based on the experimental observations or
on physical theories of molecular behaviour. The first approach
can impart physical significance in engineering and physical
sciences. In formation of a constitutive law the first stage
is the identification of the relevant constitutive variables
for a given material. Once such variables or parameters are
identified, it 1is necessary to know the relationships among
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these variables.

5.4.2 Stresses and strains are connected through stress-strain
laws which are also known as constitutive laws. A simple
constitutive law 1is Hooke's law defining linear elastic
behaviour which can be written as

8= EE (5.28)

when, is the stress, the strain and E the response parameter
commonly known as the Young's modulus. In general form the
stress - strain relation is

{6}= [cl{E} (5.29)

where, [C] is the stress-strain matrix. For a linear elastic
and isotropic material it 1is generally composed of two
parameters, Young's modulus E and Poisson's ratio . Varieties
of linear and non 1linear stress-strain relations are used
in geotechnical engiheering. The basic relations between stress
and strain are those of linear elasticity. For most numerical
purposes, it is most useful to write the stresses and strains
as vectors :

©y = {dxx &yy Gzz GExy &Eyz &zxj (5.30)
and{E}T = { Exx Eyy &zz Exy Eyz Ezx) (5.31)

When plane stress or plane strain conditions apply, these
vectors can be reduced to :

(1" {6xx  Syy &xyj (5.32)

and {€J1

{€xx Eyy Exy } (5.33)

Since there are 6 independent components of stress and 6 of
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strain, 36 coefficients are needed to relate them linearly
in the most general way. However, considering the energy stored
in a strained linearly elastic body one can show that the
coefficients must form a symmetric array. This reduces the
number of independent terms to 21. The stress-stain matrix
[C] of equation 5.29 will have a form :

Civ G2 Gz By G5 Cyg
4 Cop  Ca3 Cpy Cy5 Ty
[C] = Cs5 C3; Czg5  Cyy (5.34)
Cas C4s  Cue
Sym. Css  Csg
Cs6
L -

For a plane stress or plane strain condition the number of
independent terms reduces to 6. Therefore the [C] matrix becomes,

11 G2 Gy
{ci = 022 C23 (5.35)
Sym. 033
The most useful form of [C] matrix .for a 3D problem is,
vy v 0 0 0
)% 1-Y Y 0 0 0
Cl=rmmyayy | Y Y v o 0 0 (5.36)
' 0 0 0 1-2V 0 0
0 8] 0 0 1-2V 0
0 o - 0 0 0 1-2V
R -
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For conditions of plane stress

. 1 vV 0
[c] = —E— y 1 0 (5.37)
1=V 0 ’ 0 1=V -
2
and for condition of plane strain
1-V Vv 0
E
{cl = 1% 1-v 0 (5.38)
(1+v) (1-2V) . . 1-2V
2

The relation of equation 5.29 can also be written in the inverse
form

{€}= (ol{d} (5.39)

where, [D] for a plane stress case is

1 ) 0
(0] = —%— -y 1 0 (5.40)
0 0 2(1+V)

and for a plane strain case

1-v -y 0
[(D] = 1%2 -y 1=y 0 (5.41)
§] 0 2
In the formulation of this constitutive 1law, E and are

considered as constants.

5.4.3 Geotechnical materials and especially jointed rocks
do not exhibit linear behaviour. Hence 1in order to represent
Geotechnical ©problems realistically it is imperative that
the non-linearity in material behaviour has to be introduced.
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Various available schemes for defining the constitutive
behaviour of such geotechnical non-linear materials can be
divided into three main groups (i) representation of givgﬁ‘“
stress-strain curve by wusing curve-fitting methods, inter-
polation, or mathematical functions, (ii) non-linear elasticity

theories, and (iii) plasticity theories.

The simplest type of nonlinear relation is the bilinear
one illustrated in Fig. 5.6. The material has initial moduli
[Ci] until the stress reaches a yield value &y, after which
the moduli 1is changed to [Cyl. The usual way to develop bilinear
relations 1is to change the Young's modulus from an 1initial
value Ei to a yielded value Ey. Alternatively the nonlinear
curve can be divided into a number of linear curves leading
to the so-called multilinear or pilecewise linear models
(Fig. 5.7). This method gives satisfactory and reliable answers
as does the use of mathematical functions such as polynomials,
hyperbolas - parabolas and splines. An advantage of the use
of mathematical functions is that we need only a few parameters
to describe the curves. Use of mathematical functions essen-
tially constitutes the piecewise linear approach.

The widely used function for simulstion of stress strain
curves in finite element analysis is the Hyperbolic relation
illustrated in Fig. 5.8, which can be stated in eguation form

as
62 bEaE (5-42)
OR -E—: b+a€

where, % is the initial Young's modulus and % is the compressive
strength.

The Ramberg - 0Osgood function can provide an alternative
simulation procedure. This model can be expressed as,
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FIG 5.6 BILINEAR MODEL FOR NONLINEAR MATERIAL
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L.y (yiem
where, N = (Gﬁ 1) (Ei)

Here m 1is an exponent defining the shape of the curve and
G,is the ratio E2/E1 (Fig. 5.9).

The approach of spline function uses cubic and bicubic
splines for simulation of a set of stress - strain data
(Fig. 5.10). The spline function provides continuous first
and second derivatives and hence 1is formed to provide better
simulation of curves compared with that given by hyperbola.

If the stress -~ strain data are summarized by a set
of (n + 1) pairs of stress - strain data, it is easy to fit
an nth order polynomial through the points.

The stress - strain laws based on the generalized Hooke's
law represent the lowest order of the higher order elasticity
models that have been used in Geotechnical Engineering. It
is possible to employ higher order elastic or hyperelastic
and hypoelastic constitutive 1laws for aescription of the
behaviour of geologic materials allowing incorporation of
a number of factors that cannot be accounted for by the
piecewise linear approximation discussed earlier. The
hyperelastic models rely on finding constitutive laws by
differentiation of a strain - energy function. Different orders
of hyperelastic models can be obtained by retaining different
order terms. In the hyperelastic law, the stresses are expressed
as functions of strains whereas in hypoelastic formulation rate
of stress is expressed as a function of rate of deformation.

The hyperelastic and hypoelastic models require number
of material parameters to be determined from representative
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laboratory tests. It usually requires curve fitting and
regression analysis to determine the parameters from a set
of laboratory tests. Often the question of uniqueness arises
as it 1is possible to fit more than one set of parameters to
a set of laboratory data. Therefore further research in
hyperelastic and hypoelastic approaches 1is needed before they
can be reliably applied.

5.4.4 All the constitutive relations described so far relate
stress directly to the strain even though they may be expressed
in the form of an instantaneous or tangent modulus. The
relations arising from plasticity theory are usually incre-
mental, i.e. the stresses and strains are related entirely
by their . incremental or differential behaviour. A central
concept in plasticity theory is the theory of plastic potential
and the associated flow rule. This states that when a material
is in the plastic state, the differential increments of strain
are proportional to the outward normal to the yield criterion.
Fig. 5.11 1illustrates this. The rule can alsc be expressed
by stating that the strain increments are proportional to
the gradient of the yield criterion,

«(P) daf
£.. = A= s
In this -equation A is a factor of proportionality, and

E;;) represents the plastic strain increment. Although the
dot connctes a time derivative (or rate) and this term is
often called the strain rate, it is not really a rate because
no time derivative is involved. It 1is instead a differential
increment. The nonfrictional perfect plasticity criterion
ignores the fact that the geotechnical materials do have
frictional components to their shear strengths. Drucker-Prager
suggested an incremental stress - strain 1law based on the

frictional criteria as under :

{do'} = [Cep]{dﬁ} (5.45)



A

where, [c®P1 is the elastoplastic constitutive matrix expanded
in Table 5.1. In the frictional criteria with associated flow
rules, yielding actually occurs well below the failure envelope
of the Mohr Coulomb equation. To overcome this‘difficulty capped
yield models have been proposed. The theory has been subject
to extensive research. Desai et al (1986) have proposed a
Hierarchical concept for the development of constitutive models
to account for various factors that influence behaviour of
geologic materials. It permits evolutipn of models of
progressively higher grades from the basic model representing
isotropic hardening with associative behaviour. Factors such
as ‘non—associativeness, induced anisotropy due to friction,
cyclic loading and softening are introduced as corrections
or perturbations to the basic model.

5.5 A NEW APPROACH INCORPORATING DILATANCY
5.51 A New Constitutive Relationship

It is seen from the above discussion that constitutive
laws for geologic materials have been defined in number of
ways following different concepts. However, very few of them
allow inclusion of dilatancy. Such models are very complex
and need determination of a number of material parameters
which make them unwieldy. On the other hand it is also seen
that during sliding on rock joinmts having asperities, structural
changes take place continuously which are represented by changes
in Poisson's ratio of the joint element. Thus Poisson's ratio
can -be considered as a dilation parameter for formulation
of a constitutive relationship. A new approach, directly
incorporating this dilation parameter in terms of Poisson's
ratio is therefore developed and proposed. This approach is
simple and accomodates both changes in Poisson's ratio and
associated changes in Young's modulus in stages.
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TABLE 5.1 : STRESS-STRAIN MATRIX FOR DRUCKER-PRAGER MATERIAL MODEL
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Following constitutive relationship for joint is proposed
to be used for a 2D plane stress case

€)= [Dl{s} (5.46)
where, ' - —-
1 0 0
(0] = —— |o (1-9%) (1-)
0 0 (1+V)

This relationship differs from that given by equation 5.40:'
It indicates that normal strain is not only dependent on &yy
but 1is also dependent on dxy. As the strain vector includes
the tensorial shear strain €&xy instead of engineering shear
strain ¥xy the term in the place 033 in the [D] matrix is
(1+¥) instead of 2(1+¥Y) as given in equation 5.40. The relation
given by eguation 5.46 can also be given in the inverse form

as
{6}= [c1{€} (5.47)
where, — _
1 0 0
[c] = E 0 — Y
5 ° ™

This [C] matrix is, however, not symmetrical and
therefore may not be suitable for application in Finite Element
Analysis. Following alternative [D] matrix is therefore proposed
to be used for plane stress case.
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1 0 0
[D] = —E}—» 0 20 (1-V) (1+2V) 0 (5.48)
o -0 1+
L -

Inverse of this matrix can be written as,

prm oy

1 0 0
1
[c] = E 0 BTV (172 V) 0 (5.49)
1
0 0 T+
o -
In the above matrix D is a parameter defined as,
i
D = .-I%‘i : (5.50)
0
where, io = average angle of asperity, and
iav = average dilation angle wunder given normal

stress observed during the direct shear test.

The [C]I matrix given in equation5.49 is symmetric and therefore,
acceptable in FEM analysis. It 1is also easy and simple to
conduct a direct shear test on sample of rock joint and obtain
relation between Poisson's ratic YV and shear stress 6xy. Values
of shear modulus G and Yocung's modulus E can be obtained from
following relationships, at different shear stresses Sxy

ny _ S xy

YXy = ZExy (5.51)

G =

2(1+V)G (5.52)

m
i
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It is also conveniently possible to measure average angle
of asperity (io) by a prof‘ilometeﬂr and to evaluate the value

of average dilation angle iav from a direct shear test from

following relationship,

*

i - tan”( Total vertical displacement (dv) )
av. ~ Total horizontal displacement (du)

The parameters npamely, Y , G and E have to be evaluated for
different stages of shear loading dxy. The nature of shear
stress (dxy) shear strain (¥xy) relationship is 1likely to
be nonlinear. Because of this nonlinearity the value of G
is 'changing from stage to stage. As the shear test proceeds
the value of VYV is also changing as discussed earlier. Value
of YV is less than wunity under compressicnal mode, it tends
to unity when the joint is just tending to dilate and it becomes
more than unity when the Jjoint dilates. It goes on increasing
beyond unity till the joint continues to dilate and thereafter
it again falls back to wunity. Because of the variation in
the values of G and V, value of E also goes on changing as
the shear stress dxy changes.

Thus having determined the parameters as stated above
at different stages of the test, it is possible to formulate
[C] matrix given by eguation 5.47 or [D] matrix given by
equation 5.48 for different stages of shear loading and use
it to predict displacements, straims or stresses under given
conditions wusing an appropriate Finite Element Programme.

5.5.2A New Joint Element

A new Jjoint element is proposed to be used for appli-
cation in Finite Element Method analysis of jointed rocks.
The joint element is considered as a solid element like other
solid elements. It has a small initial thickness. Thus it
differs from the joint element proposed by Goodman which is
having initial zero thickness. The constitutive matrix of



76

the joint element directly includes a dilation parameter in
terms of Poisson's ratio.

5.6 CONSTRAINT OF THE CONSTITUTIVE RELATIONSHIP AND
ITS PRACTICAL RELEVANCE

5.6.1 Constraint

The constituent relationship proposed for a joint element
incorporates an approximation of nonlinear relationship between
, Xy and xy into a pilecewise linear form. -This may introduce
'some errors. In the FEM analysis it is proposed to consider
?joint element similar to other solid elements but having very
small thickness. Thus the -aspect ratioc of the Jjoint element
%would be very high as compared to that for the adjoining
lelements. This may also Introduce some errors, which may not be

of engineering significance.

5.6.2 Practical Relevance

With a view to verify the practical relevance of the
proposed constitutive relationéhip for the Jolnt element,
it 1s proposed to ,anaiyse some typlcal cases. It 1is - also
proposed to study a case of underground opeﬁing with the
propose? constitutive relationship.

5.7 IMPLEMENTATION OF THE CONSTITUENT RELATIONSHIP

In order to verify the constituent relationship proposeq
in two alternative forms, it is proposed to implement it to
the test data to be generated in the present laboratory
‘investigation. it is also proposed to implement it to the
test data generated by other research workers, during laboratory
and in situ testing. With a view to verify its applicabillty

in Finite Element Analysis, it 1is proposed to implement it
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in the Finite Element Analysis of the test samples of laboratory
and in situ tests.

5.8 CONCLUDING REMARKS

From the theoretical developments it 1is ocbvious that
in the present state of art, there is noc simple and yet
realistic approach for the analysis of Jjointed rocks which
directly incorporates effect of dilatancy in the constitutive
relationship. A constitutive relationship is tnerefore developed
incorporating a dilation parameter in terms of Poisson's ratio.
It is proposed to apply it to the laborateory and field testing
data and to some typical cases. The results will be presented
to verify efficiency and efficacy of the propcsed relationship.



