CHAPTER VII

ANALYSIS, INTERPRETATIONS AND CONCLUSIONS

7.1 GENERAL

The prime objective of the present investigation is to
delineate mechanical behaviour of jointed rocks subjected to
shear stress fields. It has been recognised that the behaviour
does not conform to the classical behaviour of sliding between
two rigid blocks depriving the benefit of classical mechanics
and avallable mathematlcal models. Need therefore, is to develop
a mechanistic model for the sliding process involved in jointed
rocks and on whlich basis to formulate & mathematical model
implementable through recognized numerical and computational
methods 1in the englineering practice. To deduce the mechanistlc
concept it will be lmperative to analyse and interprete the
experiments conducted specifically to understand the fundamental
aspects of sliding. In perspective of the expositions from the
experimental observations the theoretical background is

adeveloﬁed within. the established frame work of mechanhics. To
test the validity and integrity of the theory it 1is essential to
test it agalnst the laboratory as well as field observations.
Further, to establish the efficlency and efficacy of the
mathematical model, it is obligatory to illustrate its wutility
in solving various engineering cases.

7.2 MECHANISTIC CONCEPT FOR SLIDING OF JOINTED ROCKS

7.2.1 The classical mechanism of friction between the two
bodies assumed that the two bodies were rigid and the surfaces
between the two bodles were absoclutely plane involving no volume
change, represented by saint venant body. It may be possible to
generalise this classical model so as to incorporate variation
in surface characteristics of the conventional nature owing to

153



154

alterations in physico-chemical structure of the surface. But
when the surface variation Is not only physico-chemical but also
geometrical, it may not be possible to extend the classical laws
of friction on simpler consideratlons, The process of sliding
shall necessarily involve complex considerations. The prominent
observatlions in the sliding of jointed rocks as depicted in the
- previous chapter 1indicate clearly that sliding between the
jointed rocks cannot be considered analogous to the sliding
between the two rigld bodies possessing plane surfaces. The
significant difference between the two processes of sliding f{s
change in bulk occuriing on sliding surfaces in case of jolnted
rock vis a vis no bulk change 1in case of classical bodies. It
can be conceived that the change in the bulk may be the result
| of continuous structural distortion of the sliding surfaces.
Owing to this the initial characteristics of the jointed rock
“gets modified as a consequence of the process of sliding,
rolling and crushlng 1in addition to the physico-chemical
variations of the surfaces. To describe the distortion
integrally a parameter is required to be identified. In the
current research practice this structural distortion is known in
terms of dilation expressed in terms of deformation, in terms of
energy or in terms of some mechanistic quantity. Physically it
can be visualized as thickening between the sliding surfaces.
The logical extension of the classical relation of friction -
sliding ' friction - therefore, is to incorporate realistic
parameter of dilation. One of the well recognised parameter in
classical mechanics indicative of distortion 1is a non
dimensional parameter in terms of strain ratio popularly known
as Poisson's ratio. The value of the Poisson's ratio for no
volume change is wunity as assumed in classical frictional
relationship. The classical relation for volume change can be :

T=F(H,V,d) (7.1)

7.2.2 Though the classical laws of friction do not hold good
for sliding of jointed rocks, however, the classical laws should
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hold good for the instantaneous process of slliding between any
sliding, surfaces. Hence the sliding process in a jointed rock is
analogous to sliding on resultant planes modifying continuously
owing to the phenomenon of dilation. The sliding on number of
resultant planes can be 1incorporated by an appropriate
geometrical parameter. The phenomenological process of sliding
in jointed rock is rather complex, since it involves varieties
of phenomena taking place simultaneously during the movement on
a plane. It is not feasible to quantify the phenomenological
process of plastic sliding - elasto-plastic sliding-involving
rollihg, sliding and crushing processes and similar surface
damage factors. To simplify this process an integral factor from
laboratory observations may be identified to be incorporated in
the classical laws of friction.

7.2.3 For wunlubricated plane surfaces, values of Poisson's
ratio are worked out at every stage of shear loading wusing
equation 5.9, These values are tabulated in Table 7.1 to 7.3.
Similar information for regularly aspereted surfaces are
presented 1in Table 7.4 to 7.6. A typical set of calculations
involved in wonrking out Polsson's ratio from given values of
normal and shear dlsplacements corresponding to a given state of
stresses is shown in Appendlx-I.

Using the data from lahle 7.1 to 7.6, plots of variatlon
in Polsson's ratio v versus varlation in normal strain (Eyy) are
presented in Ffig. 7.1 and 7.2 for the plane and aspereted
surfaces respectively. These plots clearly indicate that value
of Poisson's Tatio is below unity when the joint 1s in the
compressional mode, it lnvariably becomes unity when the joint
starts opening mode and it goes on increasing further until a
little earlier of the point of maximum normal strain, when it
starts retarding towards unity. For an aspereted surface, this
curve, as shown in Fig. 7.2, is a typical balloon type curve.

variation of vy versus shear stress O xy is shown In
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TABLE 7.1 : SAMPLE OF UNLUBRICATED PLANE SURFACE

Sample T1B1

Normal stress =dyy = 1.0 kg/cm2 Qconstant)

Shear Normal Shear Shear P&isson's
Sr. stress strain strain strain ‘ratio
No. tO‘xyv 2 'EYY' :nyt 'Exy' f Ty
in kg/cm :
1 2 3 4 5 6
: H
" 0.15 0.0020 0.025 0.012 , 0.85
; !
2 0.29 0.0024 0.031 0.015 ' 0.85
3 0.59 0.0024 0.041 0.020 '0.89
‘4 0.74 0.,0020 0.046 0.023 , . 0.92
5 0.88 0.0012 0.053 0.026 i 0.98
6 0.95 0.0008 0.058 0.029 0.98
. |
7 0.95 0.0004 0.066 D.033 "0.99
8 0.91 0.0004 0.093 0.0456 0.99
9 0.88 0.0000 0.121 0.061 1.00
10 0.85 -0.0008 0.127 0.064 1.01
11 0.79 " -0.0008 0.130 0.065 1.01
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TABLE 7.2 : SAMPLE OF UNLUBRICATED PLANE SURFACE

Sample T,B, Normal stress = dyy = 1.5 kg/cm2 (constant)
Shear Normal Shear Shear Poisson's
Sr. - stress strain strain strain ratio
No. "oxy! "Eyy!’ ' ¥xy! 'Exy’ Ty
in kg/cm
-1 2 3 4 5 6
o1 0.15 0.0028 0.021 g.011 0.76
|2 0.29 0.0032 0.027 0,013 0.78
f 3 0.44 0,0038 0.035 0.017 0.81
4 0.59 0.0044 ( 0.041 0.020 0.81
0.74 0.0044 U.046 0.023 0.83
6 0.88 0.0044 0.053 0.026 0.85
7 1.03 D.0036 u.06 1 0.03%0 0.89
8 1.18 0.0078 0.069 0.035 0.92
9 1.33 0.0020 0.082 0.041 0.95
70 i 1.329 0.0012 0.110 0.055 0.986
11 1.43 0.0008 0.173 1.087 0.99
12 1.41 0.0000 0.188 0.0%4 V.00
13 1.38 -0.0004 0.204 0. 107 1.00
14 1.35 -0.0004 0.212 0.106 1.00
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TABLE 7.3 : SAMPLE OF UNLUBRICATED PLANE SURFACE
Sample T5By Normal stress =gyy = 2.0 kg/‘cm2 (constant)
Shear Normal Shear Sh;;;:; Palssin's
Sr. stress strain strain strain ratio
No. 'Oxy! 'Eyy! Yxy! YExy! ty!
- in kg/cm
1 2 -3 4 5 6
1 0.15 0.0008 0.002 0.001 0.46
2 0.29 00.0012 0.006 g.0us 0.57
3 0.44 0.0028 0.010 0.005 a.57
4 0.74 0.0036 0.017 0.008 0.64
5 1.03 3.0036 D.026 0.013 0.76
6 1.18 0.0028 0.030 0.015% 0.83
7 1.47 0,0020 0.040 0.020 0.%0
8 1.62 0.0012 0.046 0.023 0.95
9 1.77 0.0008 0.050 0.025 0.97
10 1.92 0.0004 D.056 0.028 0.98
11 1.98 0.0000 0.05%9 0.029 1.00
12 1.95 -0.0004 0.070 0.035 1.01
13 1.92 -0.0012 0.084 0.042 1.03
14 1.89 -0.0016 0.089 0.045 1.04
15 1.84 -0.0024 0.101 0.050 1.05
16 1.81 -0.0032 0.128 0.064 1.05
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TABLE 7.4 : SAMPLE OF REGULARLY ASPIRATED SURFACE

Sample 7,8, ! Normal stress = gyy = 1.0 kg/cm2 (constant)
Shear Normal Shear Shear Poisson's
Sr. stress strain strain strain ratio
No. ) tExy! 2 'Eyy! *Yxy! *Exy! e
in kg/cm
1 2 > 4 5 6
1 0.15 0 0.008 0.004 1.00
2 0.88 0 0.032 0.016 1.00
3 1.03 -0.0004 0.037 0.019 1.02
4 1.18 -0.0012 0.044 0.022 1.06"
5 1.33 -0.0032 0.052 0.026 1.13
6 1.44 -0.0060 0.061 0.030 1.23
7 1.47 -0.0072 0.069 0.035 1.23
8 1.54 ~-0.0128 0.083 0.042 1.35
9 1.62 -0.0192 0.102 0.051 1.45
10 1.73 ~-0.0232 0.030 0.056 1.51
11 1.77 -0.0280 0.129 0.065 1.55
12 1.92 -0.0328 0.148 0.074 1.55
13 2.06 -0.0448 0.183 0.091 1.62
14 2.26 -0.0460 0.190 0.095 1.62
15 2.36 -0.,0472 0.197 0.099 1.61
16 2.50 -.0540 n.216 0.108 1.64
17 2.41 -0.0592 0.228 g.114 1.67
18 2.36 -0.0644 0.240 n.oze 1,70
.19 . 2.36 -0.0736 0.264 0.132 1,73
20 2.30 -0.0784 0.274 0.137 1.76
contd. ..
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TABLE 7.4 (contd...

1 2 3 4 5 6
21 2.26 -0.0876 0.296 0.148 1.79
22 2.21 -0.0924 0.307 0.154 1.81
23 2.06 -0.1028 0.333 0.166 1.84

24 1.92 -0.1056 0.338 0.169 1.85

125 1.77 ~0.1074 0.343 0.171 1.85
26 1.62 -0.1104 0.350 0.175 1.85
27 1.47 -0, 1124 D.358 0.179 1.85
28 1.33 -0, 1136 0.370 0.185 1.83
29 1.18 -0,1136 ().385 0.192 .79
30 0.59 ~0.1056 0.437 0.214 1.61

B
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TABLE 7.5 : SAMPLE OF REGULARLY ASPIRATED SURFACE

Sample TBBB Normal stress =dyy = 1.5 kgicm2 (canstant)
Shear Normal Shear Shear Poissonh's
Sr. stress strain strain strain ratio
No. _ 'Oxy’ 9 tEyy? *¥xy? tExy! iy
in kg/cm , .

1 T2 _'3 4 5 [

1 0.15 0.0016 0.005 0.002 0.45

2 0.44 0.0016 0.015 0.007 0.79

3 0:59 0.0020 0.021 ¢.010 0.82

4 1.03 0.0020 0.038 0.018 0.90

5 1.47 0.0020 0.05% 6.026 0.93

6 Z.é? 0.0020 . 0.075 D.037, 0.95

7 2.36 0.0012 0.083 0.041 0.97

8 2.51 -0.0024 0.092 0.046 1.056

9 2.65 -0.0056 | 0.106 0.053 1.11
10 2.80 ~-0.0196 - 0.142 0.071 1.31
11 2.95 -0.0344 0.186 0.093 1.40
12 3.10 -0.0404 0.203 0.101 1.48
13 3.24 -0.0440 |- 0.216 0.108 1.49
14 3.33 -0.0488 0.228 0.114 1.53
15 3.10 -0.0520 0.239 0.119 1.54
16 2.95 -0.0608 0.265 0.132 1.58
17 2.80 -0.0752 0.309 0.155 1.62
18 2.65 -0.0800 0.322 0.161 1.63
19 2.?1 -0.0852 0.337 0.168 1.65
20 2.36 -0.0896 0.350 0.175 1.66

_ contd...
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TABLE 7.5 (contd...)

1 2 3 & 5 6
21 2.21 -0.0920 0.361 0.189 1.66
22 2.06 -0.,0936 3.370 0.185 1.65
23 1.92 -0.0948 0.380 0.190 1.64
24 1.77 -0.0956 0.386 0.193 1.63
25 1.62 -0.0960 0.394 0.197 1.62
26 1.47 -0.0960 0.400 0.200 1.61
27 1.18 -0.0932 0.420 0.210 1.55
78 1.03 -0.0884 0.437 0.218 1.50
29 0.88 -0.0800 0.466 0.233 1.4
30 0.80 -0.0672 0.497 0.248 1.31
31 0.74 -0.0580 0.516 0.258 1.25
32 0.70 -0.0480 0.536 0.268 1.20
33 0.65 ~-0.0372 0.565 0.282 1.14




TABLE 7.6 :

Sample T9B9

Normal stress = Gyy

SAMPLE OF REGULARLY ASPIRATED SURFACE

2.0 kg/cm2 (constant)

Shear Normal Shear Shear Poisson's
Sr. stress strain strain strain ratio
No. _ 'oxy' o, ‘Eyy* "Yxy! *Exy"' W
in kg/cm |

1 2 3 4 5 g
-1 0.15 0.0024 0.016 0.008 0.74
: 2 0.59 0.0024 0.026 0.013 0.83
.3 0.74 0.0028 0.029 0.014 0.83
4 1.47 0.0028 0.050 0.025 0.89

5 1.62 0.0024 0.055 0.027 0.91

6 1.77 0.0020 0.061 0.030 0.93

7 1.92 0.0004 0.065 0.032 0.99

8 2.06- -0.000% 0.07g0 0.035 1.01

9 2.21 -0.0008 0.075 0.037 1.02
10 2.36 -{.0008 0.079 0.039 1.02
11 2.51 -0.0012 g.o84 0.042 1.03
12 . 2.65 -0.0012 0.090 0.045 1.03
13 2.80 -0.0016 0.097 - 0.048 1,03
14 2.95 -0.0020 0.104 0.052 1.04
15 3.10 ~-0.0028 0.110 0.05h5 1.05
16 3.24 -(1,0036 0.116 0.1058 1.06
17 3.39 -0.0064 0.128 0.069 1.10
18 3.54 ~0.0152 0.163 0.082 1,20
19 3.69 -0.0184 0.179 0.089 1.22
20 3.83 -0.0208 0.191 0.095 1.24
21 3.98 -0.0224 3.193 0.099 1.25
22 4,13 ~0,0268 0.219 0.110 1.27
23 4,28 -0.0296 0.228 0.114 1.29
24 4.36 -0.0324 0.239 0.120 1.31
25 4,24 -0.0392 0.252 0.126 1.36
26 4.09 -0.0404 0.255 0.127 1.37

contd...

o -
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1 2 3 4 5 6

27 3.97 -0.0438 0.265 0.132 1.39
28 3.83 -0.0456 0.273 0.136 1.40
29 3.69 -0.0604 0.275 . 138 1.54
30 3.54 -0.0668 0.299 0.149 1.56
31 3.39 -0.0696 0. 306 0,153 1.57
32 3.24 -0.0728 U.316 0. 158 1.58
33 3.10 -0.0760 0.329 0.164 1.58
34 2.95 -0.0775 0.335 D.167 1.58
35 2.80 -0.0788 0.340 0.170 1.58
36 2.65 ~-0.0800 0.349 0.174 1.58
37 2.51 -0.0808 U.351 0.176 1.58
38 2.36 -0.0816 0.361 0.180 1.57
39 2.21 -0.0824 0.371 0.185 1.54
40 2.06 -0.0828 0.379 0.189 1.54
41 1.92 ~-0.0828 0.388 0.194 1.53
42 1.77 -0.0824 0.397 0.198 1.51
43 1.47 -0.0780 0.418 0.209 1.45
44 1.18 -0.0656 0.456 0.228 1.33
45 1.17 -0.0580 0.476 0.238 1.28
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Fig. 7.3. The curve‘confirms that the Poisson's ratio continue
to increase for some time beyond peak shear stress. Invetse of
slope of this curve i.e. dV/doxy is worked out at various points
and is plotted versus corresponding shear stress as presented in
Fig. 7.4. '

7.3 GENERALISED FRICTION LAW

7.3.1 Failure envelopes of the unlubricated plane surfaces and
surfaces having regular asperities (having asperity angle of
25°) are presented in Fig. 7.5. The failure envelope fcr the
aspereted surfaces is non-linear while that for the unlubricatled
plane surfaces is a straight line, gassing through origin. The
envelope of the unlubricated plane surfaces can be represe-ted
by the relation,

T = ¢ tan Qu (7.0}
where, T = Shear Resistance

& = Normal Stress

@y = Basic friction angle

The failure envelope of the aspereted surfaces plotted in
Fig. 7.5 gives the nature of the general eguation of the curved
failure envelopes in the form

Ka
T = Ko (7.3)
where, Ky = tan (Bu 4+ ie)
K = Cosig
i, = average angle of asperity

Thus, the above relationship can be expressed as,

T = o tan (@u + 4,) (7.4)
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This 1is applicable to all types of surfaces with or without
_asperities. For plane surfaces putting ip = 0 in the above
equation, it reduces- to the classical friction law.

T = ¢ tan @u . | (7.5)

The most significant exposition accruing from the equations 7.4
and 7.5 1s that the asperity angle is a purely geometric
. parameter against dilation angle which is dependent on normal
stress and therefore not a pufely geometric parameter. Thus
© equation 7.4 is a general law of friction with the only
modification of introduction of average angle of asperity (iq)
present on the sliding surfaces. It is easier to arrive at an
average asperity angle for a given surface with the help of a
profilometer. Thus eguation 7.4 is a convenient form to handle
with.

7.3.2 Another important fall out of the pfesent investigation
is that it is possible to estimate average dilation angle for
the given normal stress. Comparing the dilation curves for
different normal stresses (superimposed on an asperity) shown in
Fig. 7.6, it 1is seen that the average dilation angle (igy)
decreases with increasing normal stress as the asperities are
sheared through more and mote. It is also seen that the average
dilation angle (igy) can be correlated with normal stress as
shown in Fig. 7.7. This will take a form of

K

. 2. -
,(_ch ='§40w6 (7.6)

Wheve, the power K is related as,
2 Pu 2
K= tan (45-35) = tan B¢ - (7.7)

where, the angle Be = (45 —%? ) is the critical direction of
sliding which absorbs minimum energy in friction.
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7.3.3 Now, it 1is possible to propose a generalized friction
equation’ with dilation parameter incorporating classical
equation of friction for no volume change, as under

T = @ tan ( ¢,u+ iqy) (7.8)
, . -K
or T = ¢ tan (Qu+ileo ) (7.9)

If there s no volume change, 1., becomes zero, thereby
degeneratirz the classical equation of friction.

Equation 7.4 and 7.9 are two alternative forms of general law of
friction +2r Jjointed rocks Iincorporating average angle of

initial  s-oerity (ig} and average dilation angle  (igy)
respectivel.. The resulting failure envelopes are shown in
Fig. 7.5.

-4

7.4 CONSTITUTIVE MODELLING FOR THE JOINTED ROCKS

In order *o translate the mechanistic model of sliding of
Jeinted rocx, a plausible amneable, mathematical model 1is
reguired to be developed for its utilisation in wunderstanding
the various engineering situations with reference to Jjointed
rocks. Any mathematical modelling, if it is to be valid, should
conform the well established analytical systems.

It has been recognised that sliding behaviour in jointed
rock can be explained by introducing a joint element in which the
characteristics of a joint fully reflect. In the Chapter V a new
joint element has been developed incorporating a structural
parameter in terms of Poisson's ratio in its constitutive matrix.
The matrix is as under :~

1 0 g
0 ’ 1-V 1-V (7.10)
0 0 1+V

1
(bl = ¢
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and
1 0 0
(0] = ;— 0 20(1-v){1+2V) © (7.11)

0 8] T+VY

The observed and predicied displacements for the aspereted
samples tested are tabulated in Table 7.7. Fig. 7.8 to 7.10 are
the typical plots showing t{m»e comparision- of predicted and
observed shear stress versu> normal displacement curves. Fraom
these 1t 1is evident that th- constitutive matrix of the joint
element which has been developeda during the present investigation
reasonably predicts tﬁe experimental observations. Thus the joint
element developed in the pres«nt investigation, provides a tool
to investigate intc the mecha~icail behaviour of jointed rocks.

7.5 MECHANICAL BEHAVIOUR CF JOINTED ROCK
OBSERVED IN LABORATORY

7.5.1 Relationship between shear stress and shear strain of
samples of regularly aspe:eted surfaces 1s presented in
Fig. 7.11. It is seen that all samples Indicate an initial shear
modulus G egual to 25 kgscm*  which drops to 7 kg/cm® after
certain shearing. The shear stress or the shear strain at which
such a change occures depends upon the normal stress. Thus the
shear stress-strain relationship of fig. 7.11 can be modelled by
a bilinear model having egquation,

Oxy = 50 Exy.... vons cees if Exy < Exye

Cfxy = B0 Exyc + 14 (Exy— Exyc ). if Exy>£xy€

(7.12)

where, €x =3 ¥ xy and Exyc is the critical shear strain at which
the slope of the curve changes. It can be specified as,

-25
Exyc = 005 Oyy (7.13)

Alternatively, the corresponding critical shear stress d xyc can
be specified as
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Oxye = 112 (Syy)'™ (7.14)

It 1is possible to model the above behaviour by a hyperbolic
function,

— Y
Sxy = b+ dExy (7.15)

Where,'% is the initial shear modulus equal to 25 so that
b =0.04 and ‘'a' will be different for different normal
stresses.

7.5.2 The developed constitutive relationships are applied to
test data of laboratory direct shear tests generated by Dave
(1987), as reported in para 6.4. Table 7.8 exhibits normal and
shear displacements observed during some of these tests. The
displacements predicted by the developed constitutive relations
are also shown. The observed and predicted displacements are
plotted against shear stress in Fig. 7.12 to 7.16. It is evident
that the constitutive relationships for the new joint element are
efficient in reasonably predicting displacements for tests
conducted by other research workers. It is also evident that
constitutive relationship containing dilation parameter D =-%§i
as given by equation 7.11 is more efficient in predicting the

displacements.

7.5.3 Similar attempt 1is made to apply the constitutive
relationships for the new joint element to the test data of
cyclic direct shear tests, generated by Shah (1987) as reported
in para 6.5. Normal and shear displacements observed during a
few typical 1loading cycles of these tests are tabulated in
Table 7.9. The predicted displacedents using constitutive
relationships developed are also shown in this table. The same
are plotted versus shear stress in Fig. 7.17 to 7.19. It is seen
that there is reasonable correlation between the observed and
the predicted displacements.
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TABLE 7.8 : COMPARISION OF OBSERVED AND PRED]LTLD DISPLBF‘ .Eb{ FOR

DATA OF LABORATORY DIRECT SHEAR TESTS CONDUT BY DAVE
(1987)
Predicted Predicted
Observed displacements displdcements
Test Normal Shear Shear |Poisson's Yogr\g's dlsplacements as per as per
Sample stress stress | modulus ratlo modulus squation 7.10 equallon 7.11
Na. Syy Sxy o e e Normal | Shear | Normal | Shear | Normal | Shear
9 2 9 9 dv du dv du dv du
kg/em | kg/em | kg/cm kg/em cm cm cm cm cm em
1‘\2 23.42 10.09 250 102 1000 -0.004 0.400 -0.011 0400 ~0.005 0.400
2342 16.06 350 1.05 1500 -0.010 0.450 -0.020 0.440 -0.010 0.440
23.42 21.52 414 105 1500 -0.013 0.525 -0.023 0.520 -0.010 |, 0.520
Aé 74.79 14.56 650 0.99 2500 +0.001 0.225 +3.007 0.225 +0.003 0.225
74.79 41.72 800 1.04 3200 -0.010 0.525 -0.023 0.525 ~-0.010 0.525
74.79 46.85 700 1.06 2900 -0.021 0.675 ~0.039 0.675 -0.019 0675
74.79 5364 440 1.04 1800 ~-0.026 1.225 -0.046 1,225 -0.020 1.225
AB 96.04 52.81 5280 1.10 22000 -0.005 0.100 -0.011 0.100 -0.005 0.100
96.04 63.90 3651 1.09 15000 ~-0.007 0175 ~-0.016 0.178 ~0.007 0.178
96.04 71.18 1900 1.06 7800 -0.010 0.375 -0.020 0.376 ~0.009 0.376
96.04 72.84 834 1.04 3400 -0.015 0.875 -0.031 0.874 -0.014 0.874
86 565.28 28.53 1700 1.10 7200 -0.007 ’0.1 50 -0.023 0.160 -0.012 0.160
;65.28 3331 1400 1.13 6300 ~-(.014 0.225 -0.036 0.226 -0.017 0.226
I055.28 3605 1100 L14 470N -7 0.325 -0,050 0320 -0.025 0.320
D1 9.27 1.96 78 1.36 370 N “:[).[139 0.250 -0.100 0.250 -0.450 0.250
9.27 491 140 1.54 700 ~-(.053 0.350 -0.12% 0,320 -0.066 0.320
9.27 6.06 121 1.27 550 -1.063 0.500 -0.130 0.500 -0.060 0.500
C2 21.09 11.75 224 102 905 j”[;:{‘;ﬂﬂ 1,525 -0.02 0.524 ~[.005 024
21.09 12.25 196 1.03 800 -0 L.625 —l).f)}?ﬁ 0.620 ~-(.010 0.620
21.09 1241 177 104 723 -0.013 0.700 -0.0 3'(“)""‘ Mt;[iDD ~0.014 0.0
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TABLE 7.9 : COMPARISION OF OBSERVED AND PREDICTED DISPLACEMENTS FOR
DATA OF CYCLIC DIRECT SHEAR TESTS CONDUCTED BY SHAH (1987)

Predicted Predicted

Observed displacements displacements

Test Normal Shear Shear |Poisson's! Young's displacements as per as per

Sample | stress stress | modulus ratio modulus equation 7,10 equation 7.11
No. Syy Oxy Qr ty i Normat Shear | Normal Shear | Normal | Shear
2 2 ? 7 dv du dv du dv du
kg/em kg/cm kg/em kg/cm om cm cm cm cm cm
A 2 20.87 3.28 328 1.00 1300 0.000 0.100 0.000 0.100 0.000 0,100
Fan 20.87 344 312 1.04 1276 -0.002 0.110 -0.014 0.110 -0003 0.110
!

20.87 3.93 302 1.08 1260 -0.005 0.130 -0.030 0,130 -0.006 0.130
2P.87 3.93 280 1.09 1170 ~-0.006 0.140 -0.033 0.140 -0,008 0.140
A 6 62.63 23.44 1962 L 6350 nano 0.150 0.000 0.150 0.000 0.150
F{v) 62.63 23.60 1388 101 5560 -{.001 0.170 -0.002 0.176 -0.00051 8,170
62.63 23,93 1087 1.0 4416 -0.003 0,220 ~0:010 0.220 -0,002 0.220
62.63 24.10 588 102 2379 -0.005 0.410 -(.010 0.410 -0.003 0410
c 4 41.50 21.30 790 1.00 3150 Ry} 0.270 0.000 U270 ,U00 D.27)
FQtv) 41,50 22,12 630 1.01 2540 ~0002 | 0350 | -o4bs | dash | -pGoos| 0350
41.50 22.29 582 1.02 2350 -0,004 0.400 -0.009 1J.400 000171 0400
41.50 2245 430 104 - 1760 ~0.011 g.520 -0.024 0.520 -0.004 0.520
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SHEAR STRESS (6xy) kg/cm
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7.5.4 The test data of insitu shear tests on concrete-rock
interface generated by.Datir’(1981) is already reported in para
6.6. The observed displacements during some of these tests are
tabulated alongwith those predicted by the developed constitutive
relations in Table 7.10. The observed and predicted normal
displacements are also plotted in Fig. 7.20 to 7.25. The
constitutive relationships have shown their efficiency in closely
predicting the data of insitu tests., The constitutive
relationship of equation 7.11 is found to be more efficient than
the other ocne. ‘

7.6 APPLICATIONS "OF DEVELOPED JOINT ELEMENT

7.6.17 General.

In order to verify the applicability of the developed constitu-
tive matrices in the established finite element programmes, it is
decided to incorporate the developed constitutive matrix of
equation 7.11 in the 2D plane stress/plane strain 1isoparamatric
element finite element programme developed by Owen and Hinton
(1977). The programme listing is given in Appendix-II. The part
of the.programme incorporating constitutive matrix is modified to
allow for the developed constitutive matrix of the joint element
as ~given in equation 7.11 to be incorporated. The changes made
are -also shown in Appendix-II.

The programme utilises 8 nodel isoparamatric elements for
the continuum. It is proposed to use similar elements for the
joint elements also. Thus the joint elements are considered same
"as solid elements in geometry. Thickness of the joint elements
will be appropriate to the problem wunder study. Thus joint
elements will have some thickness like the thin element proposed
by Desai (1984). The properties of Jjoint elements such as
Poisson's ratio and Young's Modulus are considered as variables.
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TABLE 7.10 COMPARISION OF OASERVED  AND  PREDICTIED  DISPLACEMLNTS
FOR DATA OF IN SITU SHLAR TESTS REPURTED BY DATIR (1981v)
' Predicted Predicted
Observed displacements displacements
Test Normal Shear Shear |[Polssan’s| Young's displacemenls as pef as per
Sample stress stress | modulus ratlo modulus equation 7.10 sqyatipn 141
No. &y Sy @ i i Normel | Shear | Motmal | Sheat | Nofmal | Shem
2 2 2 y dv du v chu tu du
kg/em™ | kg/em” | kg/om kg/em cin cm cm cm cm om
1 6.76 10.34 17200 1.10 76000 ~0.001 0.018 -0.001 0.817 -0.0007 | 0017
7.00 11.20 16000 1.22 71000 -0.002 6.020 ~08u24 1 0.020 ~0.0018 0.020
7.57 13,35 6675 147 33000 ~-0.011 0.060 -0.0138| 0.060 | -0.010 0.060
7.80 14.21 2842 1.74 16000 ~0.041 0.140 ~0.048 0.140 -0.039 0.140
2 5.77 3.66 30500 1.31 140000 -0.0005} 0.0035 | -0.0011] G.0036 | -0.001 0.0036
6.81 7.54 25000 1.32 111000 ~-0.001 0.009 -0.0013 § 0009 -0.0011 1 0009
8.02 12.06 8614 1.53 43600 -0.010 0.042 -0.012 0.042 -0.010 0.042
8.14 12.49 3900 1.54 20000 -0.020 0.0%96 -0.027 0.095 -0.021 0.095
3 (1) 10.91 9.82 7000 111 30000 -0.002 0.041 ~0.0035 | 0.041 -0.0031] 0.041
12.15 14.22 5270 117 23000 -0.005 0.082 -0.009 0.080 -0,007 0.080
13.07 17.94 1200 114 5100 -0.030 0.450 -0.038 0.450 ~-0.028 0.450
13.55 19.67 855 1.30 4000 -0.086 0.687 -0.078 0.680 ~0.087 0.680
4 9.00 11.20 28000 103 113680 -0.0002 1 0012 -0.0005 | 0.012 -0.0003 | 0.012
9.23 12.06 14000 1.59 73000 -0.006 0.026 -0.008 0,026 ~0,007 00126
1 9.42 1243 11300 1.43 55000 -0.007 0.033 ~0.008 0,033 ~0.007 0,133
9.80 14.2% S 157 $ 30004 -gule 0.067 ~0.018 0.066 ~0.017 D.066
s.(111) 18.83 27.05 3a6a3 1.27 172000 'G‘UOZ 0.023 -0.0024 | 0.020 ~p2002 0020
19.87 30.88 28072 171 152000 u.0u8 0.034 -0.012 0.053 ~0.010 0.033
20.90 34.74 26723 175 14 11U 3.013 0.046 ~-(.014 0.059 ~(.012 0.039
5(1v) 6.17 7.72 19300 .1;; . 93{;U|:~ (:.(:G: 0.0925 | -0.0035 ) (.012 ~ 04002 .1 2“.-"
8.24 15.44 15440 1.4 86600 ~{11310 B2y -0 0.030 - 0.007 0,030
10.31 236 8000 Z-.‘;l;: 59100 =0.045 0.086 .02 0086 -(3.090 0.086
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It is proposed to apply this finite element programme to
following cases '

(1) . Laboratory direct shear tests conducted on
regularly aspereted samples. '

(ii) Laboratory direct shear tests conducted and
reported by Dave (1987).

(iii) Laboratory cyclic direct shear tests conducted and
reported by Shah (1987).

(iv) In situ direct shear tests coeonducted by Datir
(1981).

(v) Single joint element discussed by Desai et al
(1984).

(vi) Two dimensicrnal case discussed by Oesal et al
(1984).

$1}

(vii) Case of =& t-ick circular cylinder, typical of a
tunnel in & ipinted rock, discussed by Hinton and
Owen (1977;.

The details of tnese applications with results obtained
are discussed in the following paras.

7.6.2 Laboratory Tests conducted on Aspereted Samples

Regularly aspereted sample tested in laboratory is
discretized as shown in Fig. 7.26. Shear stress - shear strain
curves of these samples are shown in Fig. 7.27 to 7.29. From
these curves values of G at various stages of shear load are
evaluated by drawing(radial lines from origin. From.such value of
G and corresponding value of V shown in Table 7.4 to 7.6, value
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of E 1is worked out. These values of E and V are fed in the
computer input data for the joint elements. Appropriate values of
these material properties are selected for other material
elements. -Observed and computed values of normal displacement at
various stages of shear load are presented in Fig. 7.30 to 7.32.
It is evident that the developed joint element has remained
successful in estimating accurately the . observed normal
displacements for all the tests.

7.6.3 Laboratory Tests conducted by Dave (1987)

Sample tested by Dave (1987) is discretized as shown in
Fig. 7.33. For simplicity the sample has been discretized in only
three elements. An average asperity angle is estimated to be 15°.
Therefore, a geometrical asperity of this value is introduced in
the joint element. Values of G, V and E for the joint element are
selected in the similar manner as discussed under para 7.6.2. The
observed and éomputed values of normal displacements are
presented in Fig. 7.34 to 7.36. The general observed trerd of
variation of normal displacement has been followsz &y the
computed values, although the numerical values are differing. The
difference between observed and computed values is attricuted to
variation in the size of the sample. Sample tested wzs 10cm x
10cm x 10 cm whereas the size of the element selected was i5cm x
15¢m x 15cm, for convenience. Therefore, the load/unit area has
" reduced and hence the computed values of displacements appear to
be on lower side. The other reason could be the fact that the
sample is discretized in only three elements for simplicity. .

7.6.4 Cyclic Direct Shear Tests conducted by Shah (1987)

Sample tested by Shah (1987) was similar to that tested by
Dave (1987), which is discretized as shown in Fig. 7.33. The only
difference is that the geometrical asperity of 20° is introduced

in place of 15°. The observed and computed values of normal
displacements for a few loading cycles are shown in Fig. 7.37 and
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7.38. The trend are similar in observed and computed values as in
case of Dave (1987). The reason for difference in numerical
values is same as discussed in case of Dave (1987).
7.6.5 1Insitu Shear Tests conducted by Datir (1981)

The insitu test block 1s discretized as :shown in
Fig. 7.39. An average asperity angle is estimated to be 36°.
Therefore a geometrical asperity of this angular value Iis
introduced in the joint element &s shown in the figure. Values of
G, V and E are obtained as discussed in previous cases. Observed
and computed values of normal displacements have been plotted
versus shear stress and presented in Fig. 7.40 to 7.42 which
indicate a close conformity.

7.6.6 Case of a Single Element (Desai et al (1984))

Desai and Zaman (1984) have discussed application of a
thin layer interface element developed by them to single element
shown in Fig. 7.43, considering linear elastic material. The
linear elastic material properties assumed are

E = 1000 units
V = 0.3
G = 10 units

Diﬁensions of the element and loading are shown in the figure.
Results compute® by them are shown in Table 7.11. It is claimed
that the computed shear stress is very close to the applied
shear stress, and the computed displacements at the top- nodes

are close to the exact solution.

The new joint element is analysed by the FEM programme
discussed earlier incorporating the developed constitutive
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CASE OF A SINGLE ELEMENT

Gauss Shear stress Shear stress pomputed for
Point repotted by Desai et al (1984) ;
No. V=03 V =0.99 V=15
1 10.00350 10.0000 10,0000 9.9985
2 9.9982% 10,0000 10,0000 9.9985
3 HLDD 350 10,000 1.000 @.9985
4 10.00350 92,9994 10.0000 10,0020
5 10.00350 9.9994 10.0000 10,0000
6 10.00351) 10,0000 10,0000 9.9985
7 9.99835 10,0000 100000 9.9985
8 1000350 13.0000 10.0000 9.9985
Normal displacoment Notmal displacrement computed for Xﬂn)a
l\;:):e eporied by Desal et al {1984) -
’ -4 USSR V=099 V15
X1 e S I
1 0.00000 0.00000 4300000 {06000
2 0.00000 0.00000 .00000 0.00000
3 0.00000 0.00000 0.00000 0.000040
4 1608272 383087 0361916 -6.84017
5 - 1.68272 ~3.H83057 ~(L101916 684017
[ 227373 S.4720 (1135848 -g.12001
7 000000 0.00000 b.00000 0.00000
8 -2.27373 -5.10720 ~(.135888 9.11998
Node Shear displacement Shear displacemsnt computed for X152
No. reported by Desal et al (1984)
x“—)Z V =0.3 V=099 V=15
1 0.00000 0.00000 0.00000 0.00000
2 0.00000 0.00000 0.00000 0.00000
3 0.00000 8.00000 0.00000 0.00000
4 0.500177 0.769444 0.502518 0.399620
5 0.500177 0.769443 0.502518 0.399620
6 1.00035 1.53914 1.00504 0.798784
7 099827 1.53914 1.00504 0.798784
8 1.00035 1.53914 1.00504 0.798784
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relationship given by equation 7.11. Keeping.other data same, the
valuve of VYV 1is varied to represent compression, sliding and
dilation, considering it in three stages as V= 0.3, V= 0.99 and
V = 1.5, As discussed earlier, V = 0.3 indicates compressional
modé, VY = 0.99 (approximately equal to unity) corresponds to a
stage of no volume change or the onset of dilation and , Vv = 1.5
indicates advance stage of dilation. A typical output from the
computer analysis is given in Appendix-III. "The computed values
of Y displacements and shear stresses are compared with those
reported by Desai et al (1984). These are incorporated in
Table 7.11. It i1s seen from this table that for the stage of no
volume change (i.e. V = 0.99), the distribution of shear stress
is more even than reported by Desai et al (1984). The normal
displacements are also almost negligible (very small in
comparision to those reported by Desai et al (1984)). The shear
displacements are similar to those reported by Desai et al
(1984). For the stage corrresponding to V = 0.3 (compressional
mode) the computed normal displacements are higher than those
reported by Desai obviously because of compression. However, the
nature of displacement at each node is same as reported by Desal.
This means that normal displacements reported by Desai are for
compressional mode. The distribution of shear stress is still
even. The shear displacements are 1.5 times those at V = 0.99.
For the stage corresponding toV = 1.5, the sign of the normal
displacements are reverse than those at ¥V = 0.3 and V 0.99.
This clearly indicates dilation. The values of normal displace-

H

ments are much higher indicating an advance stage of dilation
(under =zero normal stress considered in the problem). The
distribution of shear stress is not as even as that atV = 0.3
and ¥V = 0.99, <ut the distribution is still considerably even.
The shear displacements are smaller than those at V = 0.3 and V =
0.99 indicating that during shearing with dilation the shear
displacements would be smaller than those during shearing without
dilation or without volume change and this is obvious too.

Thus, the concept of variation in Poisson's ratio is
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proved and the consitutive matrix developed during the present
investigation has been tested to prove its ability to compute
logical results which are also comparable with those reported in
the literature.

[y

7.6.7 Two Dimensional Case (Desai et al (1984))

Desai and Zaman (1984) have discussed application of thin
layer interface element developed by them to two dimensional
case shown in Fig. 7.44, considering linear elastic behaviour.
Geometry and loading are shown in the Figure. The properties of
the solid and interface elements considered are as under

Solid elements 4 Interface element
E = 10000 psi E = 1000 psi
V =0.3 V = 0.3

Gi = 20 psi

The results of vertical displacement of two typical points A and
B computed by them are given in Fig. 7.45. The problem 1is
analysed with the new joint element and its constitutive matrix.
Keeping other data same, value of V has been changed as V = 0.3,
V = 0.99 and V = 1.5. The computed values are superimposed in
Fig. 7.45. It can be seen that as discussed in the previous
application, the shear displacement is minimum when V = 1.5.
Reasons for such behaviour are already discussed in previous
para. Thus, 1in this application’also, the developed Jjoint
element has computed logical values of displacements which are
comparable with those reported by Desai et al (1984). There is,
however, some difference in numerical values of displacements.
This is probably due to the fact that the data input by Desai is
in FPS syétem of units where as the FEM programme utilised 1in
the present analysis accepted the same values in MKS units.



224

VERTICAL DISPLACEMENT (UNITS)

—ommnn REPORTED BY DESA!I ET AL 1984

COMPUTED FOR V= 043
— e COMPUTED FOR VM= 1.5

HORIZONTAL DISTANCE (UNITS)

0 50 100

150

00 T Y Y Y T T T v T T T T

054

LY o

F1G:7-45 TWO OIMENSIONAL CASE-COMPUTED DISPLACEMENTS




225

7.6.8 Case of Thick Circular Cylinder, typical of a Tunnel in a
Jointed Rock, discussed by Hinton and Owen (1977) ’

Hinton and Owen (1977) have discussed a case of a thick
circular cylinder. This is analogous to a circular opening in a
jointed rock mass. The discretization used in the present
analysis is shown in Fig. 7.46. A joint element is introduced in
this discretization which was absent in the computations made by
Hinton and Owen. The comparision of the two cases therefore
directly gives the behaviour of the joint element. Radial étress
distribution due to internal pressure loading along the centre
line of the joint element is plotted in Fig. 7.47 as arrived at
by Hinton and Owen (without joint element) and as arrived at in
the present analysis (with joint element). It can be seen that
for V = 0.3 the stress distribution reported by Hinton and Owen
is comparable with stress distribution computed by the present
analysis. Under this condition the stress concentration in the
joint element near the face of the opening is 0.65. As VY
increases to 0.99 the stress concentration falls down to 0.41.
This 1s due to sliding without volume change. However, as V
increases beyond one, additional resistance to sliding 1is
generated because of dilational mode and as a result, stress
concentration increases to 0.80.

7.7 EFFICIENCY AND EFFICACY OF THE DEVELOPED JOINT ELEMENT

The joint element and its constitutive matrix developed in
the present analysis have proved their applicability in the well
accepted finite element programme. The constitutive matrix is
first proved against the tests conducted on aspereted samples
during the present investigation. Later on it is applied to
laboratory direct shear, cyclic and insitu shear tests conducted

by other investigators. The predicted behaviours are close to the
observed one in most of the cases.

In order -to prove the applicability of the joint element
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developed, it 1is incorporated in the 20 plane stress/plane
strain Finite Element Programme deveibped by Hinton and Owen
(1977). The same is then applied to the test data of laboratory
direct shear, cyclic and insitu shear tests. The joint element
has not only proved its applicability béyand doubt but has also
predicted displacements comparable (and in most of the cases
close) to the observed one.

The joint element is later on applied to two hypothetical
cases reported by Desal et al (1984) and one reported by Hinton
and Owen (1977). 1In all the cases the joint element and the
constitutive matrix have proved their ability in predicting
logical and meaningful‘ behaviocur. Thus the efficiency and
efficacy of the developed joint element are self evident.

7.8 CONCLUSIONS

Significant conclusions that accrues from the analysis
are summarized as under

(i) The «classical laws are followed in case of sliding on
plane surfaces, whether lubricated or unlubricated, while
deviation from the classical laws of friction is observed
in case of sliding over aspirated surfaces. The deviation
is a consequence of volume change occurring during
sliding. The classical friction -eguations, independent
of volume change, therefore, need to be generalized by
incorporating an appropriate parameter for volume change.

(ii) The generalized equation of sliding friction for all
types of surfaces, shall be the integration of the
classical sliding friction equation, rigorously true at
every instant. The process of integration should include
the consideration of distrotion of plane at every
instant. The resultant distortion of plane at every
instant of sliding can be accounted for in terms of a



(1ii)

(iv)

(v)
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geohetrical parameter, consisting of ratio of principal
strains, well _known as Poisson's ratio in classical
mechanics. The classical eguation,

T =FfF (M, )

must have a generalized form of
T =f(HM,V,q)

The phenomenon of sliding on discontinuities in jointed
rock is analogous to the phenomenon of sliding on
aspirdted surfaces. The sliding in jJointed rock
therefore, 1is associated with continuous alterations of
surface characteristics. In physical terms, the process
of sliding 1is occurring at new plane of orientation
continuously. The phenomenological parameter represen-
tative of the alteration of surface characteristics has
been identified in terms of change of Poisson's ratio at
every instant.

The operative equation to describe the sliding behaviour
in jointed rock as deduced from the experimental
observations in laboratory as well as in field is,

€oS lo

T = & tan ( Qu+ {o)

Alternatively,

where,
o tan" (45 - pa/2)

Lay :ﬁ'io
A new Jjoint element has been developed from the basic
phenomenon of sliding in jointed rock, by incorporating
change in Poisson's ratio at every instant in the

constitutive matrix. The constitutive matrix can be given
in the following forms



(vi)

(vii)

(viii)

1 0 0
(D) = % 1-y? 1-y
0 1+V
Alternatively,
1 0 0
(D) = —— 0 20(1-V)(1+2Y) O
E 0 0 1+V

The developed joint element has a utility as a solid
element in a finite element method. The utility has been
demonstrated in predicting the behaviour of jointed rocks
observed in laboratory as well as in field as also in
engineering situations.

The efficiency and efficacy of the proposed new joint
element has been established by realistic predictions of
not only the generalized parameters of stresses and
displacements but also the particular parameter
associated with volume change, which is the distinguish-
ing characteristics of the mechanical behaviour of
jointed rock.

The superiority of the new element developed during this
investigation 1is the incorporation of the phenomeno-
logical parameter of dilation in terms of change in
Poisson's ratio, consequent upon which it is possible to
delineate various deformation modes 1like compression,
sliding and dilation.

In bravity, the mechanical behaviour of jointed rock can

be realistically predicted only if the phenomenon of dilation is
appropriately incorporated in the constitutive relationship.



