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CHAPOR-V.

THEORETICAL CONSIDERATIONS

5.1.0. GENERAL
The current research in the area of jointed rocks 

is centered around to develop a physical and mathematical 
model amenable to numerical and computational techniques for 
the analysis and design of structures in and on jointed rocks. 
The approach has been to understand the mechanism of sliding 
between the bodies and to delineate the principal factors 
that differ from sliding between the two bodies assumed in 
classical mechanics. In classical approach sliding between 
the two bodies is considered as the energy spent only in 
friction assuming that the sliding bodies are rigid. To con
sider the sliding of, jointed rocks equivalent to sliding of 
two rigid bodies is a gross over simplification and entails 
exclusion of the fundamental factors governing the mechanism 
of sliding. Besides the energy spent in the basic friction, 
the mechanism involves the additional components of energy 
spent in the process of deformations associated with dilatancy. 
However, the proper phenomenological parameter giving the



166quantification of the energy components for dilatancy has 
not been properly established. By incorporating a dilatancy 
parameter it should be possible to modify the classical Mohr- 
Coulomb criterion and consequently generate an equation which 
can be used to develop constitutive relationship for accompl
ishing numerical solutions,
5.2.0. MECHANISTIC CONCEPT OP SLIDING FOR JOINTED ROCKS

It has been established that the ratio of energy
input to the energy out put on an element consisting of two 
sliding rigid bodies is minimum if these two bodies slide at 
a critical orientation consistant with the classical laws of 
friction. The critical angle of sliding depends on the fric
tional properties of the interface. If the sliding bodies 
are made to slide at an orientation deviating from the critical 
orientation there will be change in the ratio of energy in
put to energy output which is reflected in the deformation 
of element subjected to stress. In case of interface material 
following Coulomb's law the effect would be the shear defor
mation associated with volume change reflective of dilatancy. 
The approach therefore should be to consider the equilibrium, 
conditions for sliding between two bodies to determine the 
critical angle of sliding so as to slide under minimum energy 
ratio and to evalute the effect of dilation resultant due 
to the sliding of the bodies at an orientation deviating from 
the critical angle of sliding.
5.3.0. FAILURE CRITERION FOR JOINTED ROCK

Figure 5.1 represents a basic equilibrium diagram
for two elemental blocks in contact on a sliding plane having



physical properties of cohesion and friction 

Refer Pig. 5.1
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Resolving the cohesion forces in P and Q directions 
and balancing by friction, the resultant forces are:

P - x SecpCosJi * R ....5.3.1

Q + Cf x Sec p Sin « T ....5.3.2
Now considering the frictional forces, we get,

| = tan 0 - tan (0f+p ) ....5.3.3

Substituting fpr R and T from equations 5.3.1 and 5.3.2 

We get,
P - Cf x
——---------- - ■ tan( 0 + Ji) ....5.3.4
Q + Cf x tan Ji

From which

P - Qtan (0f )

oCf x Sec p
+-------- ----- i .....

1 - tan 0£ tan j
....5.3.5

For axisymmetrical stress conditions as in case of conven
tional triaxial compression test where 0^ > (X> = 0^ the 
equilibrium equations can be obtained by integrating the 
principal stresses along a sliding plane oriented at an 
angle c-i to the major principal plane.
Refer Fig. 5.2 (a) and 5.2 (b)

P= (Xjb, Q = (Jjbtan*cand x = b tan <<

Substituting these values into equation 5.3.5 We get,
2tan<klSec p

01= 01 tan°c tan(0-+p) + --------------- ....5.3.6
1 1 1-tan-p tan 0f

0^ Cf tan<Sec2/3
— - tan®£ tan( 0f+A) +~^ 1 - tanptan 0f ..5.3.7
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FIG. 5-1 BASIC EQUILIBRIUM DIAGRAM

FIG-5-2 EQUILIBRIUM DIAGRAM FOR AXiSYMMETRiCAL 
STRESS CONDITIONS ( 0-,> 0-2. = (7^ )



Refer Fig. 5.3
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When the cylindrical specimen is subjected to stress 

conditions Oq>0^, = 0^ there will be changes in the major 

and minor principal strains denoted by and respec

tively. It can be shown by the geometry that the ratio of 

principal strains will be given by;

2
i

= tan«c tan fS .... 5.3.8

As a consequence of strain increaments due to 

stress increments there will be increment in internal work 

which can be given by 

A W

Or aw » (x, <se1
(Xj 6e1 - 2cr36£3

~1-2(r3^%
....5.3.9 

....5.3.10

The ratio of ENERGY INPUT to ENERGY OUTPUT at any instant

will be given by

A E _ CC 6 t . cq^ b —1----- L - — tanoCtanB ....5.3.11
2c^6e3

Substituting in equation 5.3.10 We get,

Aw - cq 1 1
1 * 

AE
For minimum A W ,the A E must be minimum. 

For AE to be minimum, 

dAE
----- = 0

d]3

This gives,

. •..5.3.12

....5.3.13

Pc - ( 45 - 0f/2) ....5.3.14



f 70

FIG.5-3 STRESS AND STRAIN RATIO RELATIONSHIPS



It is the critical direction of sliding so as to absorb 
minimum work.
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Substituting ft - (45 - 0^/2) in equation 5.3*7 We get,

o; 0<1 tan0^380^(45-0^/2)
= tan<=ctan (45+ —1

<T,

Which will reduce to

2 ' Oj 1-tan(45+ 0f/2) tan0 ..5.3.

0^ = tanoc cr3 tan(45+0f/2) + 2 C^J ....5.3.16

And, substituting ft =(45-0;f/2) in equation 5.3.8 We get,

2 <Sfc ~ = tanoCtan(45-0j>/2)

tan^c
tan(45+ 0f/2)

The volumetric change, in a specimen is:

:1

___ 5.3.16 (a)

....5.3.16 (b)

. St-,, + (-2 se3)
Therefore,

2 <St
61.

3 6V-- 0 - —)St

..#.5.3.17

....5.3.18
1

Thus, tan<=*c
tan (45+ 0J2)

represents the measure of dilation at

sliding denoted by J)
If there is'no dilatancy' 0 whence
tan = tan(45+0f/2)

i.e. -4.= 90°- ft. - 45° +
0,

--- 5.3.19

15



172
Mohr-Coulumb failure criterion is strictly appli

cable if<5V=* 0. 0, Mohr-Coulumb failure criterion

needs to be modified for dilatancy effect.

The classical Coulumb law is:

^f “ Cf + °f tan ^f ....5.3.20

This law is required to be modified for the effect 

of dilatancy, which can be achieved by dividing major principal 

stress dj with a dilatancy parameter, <P * tan©c/tan(45+0£/2) 

Figure 5.4 is the represantation of Coulumb's 

equation modified for dilatancy.

* X + 0^ tan V ....5.3.21

where

<p <rt -(
jo

+C5^)f

C* “Xsec2 0. Sin 0£ = tan ''f

In context of a unified numerical solution on the 

basis of plasticity the failure equation needs to be expressed 

in convenient form of stress invariants, , Jg and J^. For 

mathematical amenability Nayak and Zienkiewick (1963) proposed 

an alternative form for third stress invarient as:

Sin 30o ....5.3.22

and - K /6 0 ^7T/6

Thus, the three principal stresses of OT. can be

given as for dj > <X> > 0^



HG.5-4 MOHR COULOMBS EQUATION MODIFIED FOR PJLATANCY
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0,1

2

*>

Sin(0D+ 2/3A)
r

V*

°i Sin (80

4

+_____K
________

Jl/3 .

°3
--

Sin(0 +-JTC ) 
k. J J

V3

From above equation 5.3.23, Mohr-Coulomb failure

criterion can be expressed as 

F « J-,/3 Sin 0f Cos ^o
V j2

•vf Sin 0QSin0f-C cos0f..5.3.24

Figure 5.5 shows yield surface in the principal 

stress space for the equation 5.3.24 which is a right hexa

gonal pyramid, the axis of which is inclined with the stress 

axis. The intersection of the pyramid with/t plane O^+CTj+CJ^O 

is shown by the dotted line.

Drucker and Prager (1952) proposed an approximation 

to Mohr-Coulomb law as a Heuber-Mises yield criterion in the 

form of circular cone with the intersection shown in figure 

5.6. The generalized criterion can be written as below:-
F=n/J2-^J1-K =0 ....5.3.25

Where and K are positive material parameters.

Refer Fig. 5.6

The values of ?) and K can be expressed in terms of 

angle of internal friction 0^ and cohesion C^. The values of 

> and K for conventional triaxial compression test where 

the circular cone with the intersection shown in Fig. 5.6. 

the constants are
2 sin 0-

* » —----------i  ....5.3.26 (a)
V3(3-sin 0f)

6 C cos 0£

3-sin 0f)

and
K ....5.3.26 (b)
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FIG.5-5 INTERSECTION OF PYRAMID WITH -n PLANE
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FIG. 5*6 MODIFICATION OF MOHR COULOMB LAW BY
DRUCKER PRAGER
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and another cone with an intersection with the inner circle 
in figure 5.7 the constants will he

2 sin 0~* = 7=----------- ....5.3.27 (a)
43 (3+sin 0f)

6 C cos
K =7=--------- - ....5.3.27(b)

a/ 3 (3+sin )

5.4.0. CONSTITUTIVE RELATIONS FOR JOINTED ROCKS
It has been the contention of many research workers 

to treat jointed rock as blocks separated by joints with 
special properties as against treating the jointed rock as 
continuum and proposed joint elements for conducting finite 
element analysis.

The approach is similar as solid elements that is 
-the development of stiffness matrix J^K~j

i 
v

where [IbJ = transformation matrix 

v * volume
i“ constitutive matrix

Then the element equations are written as
[k] ± [g] ■= {q] ....5.4.2

B dv .5.4.1

where = vector of nodal displacement
» vector of nodal forces.

The constitutive matrix for the jointed element can be 
written as



where = vector of incremental relative displacement. j
The first part of constitutive matrix can be 

obtained by considering the behaviour as linear elastic or 
non linear elastic such as hyperbolic simulation through 
theory of elasticity.

The second part of consitutive matrix may be 
obtained on the basis of yield and flow criterion of theory 
of plasticity.

.In article 5.3.0 an yield function as suggested by 
Drucker-Prager is a modification to Mohr-Coulomb criterion 
for facilitating the use of frame work of theory of plasticity. 
The yield function is expressed as euqtion 5.3.25 

F * VX, - ^ J1 - K * 0
To evalute the normal vector the derivation of yield function 
with stresses is determined for its use in general numerical 
solution progress.

3F. Ci D ( V3) + c2 +Cj aj,
^ ■ter} "3 y J a(cr} ••”5-4-5

For Drucker-Prager case, ^ a 3 ^ , C2 = 1, * 0, ,
5.5.0. CONCLUDING RERSMARKS

A mechanistic model for the shearing behaviour of 
jointed rock is proposed from first principles. An approximate 
but in convenient form a yield function in terms of stress 
invarients is presented and a possible approach for developing 
the constitutive relationship has been indicated. With the 
theoretical development presented it should be possible to 
analyse the experimental investigations proposed for the pre
sent project and should be able to contribute a step further in 
understanding a shearing behaviour of jointed rock.


