CHAPTER - VIIT

CERTAIN MISCELLANEQUS RESULIS

8.1 INTRODUCTION

As the title indicates, this concluding Chapter
embodies certain miscellancous results associated with the
polynomials fi(x) and other related polynomials, In
section 2 of this Chapter we present an expansion formula
for the product of a finite number of polynomials belonging
to the class {f;(xi}. Section 8,3 dealg with a
generglization of the generating functions given in
Chapter II, and in the last section we introduce yet another
extension of Boas and Buck's generating relation 7.1(3),
7.1(5)-7.1(7), and derive certain recurrence relations for

the polynomials defined by that generating function,

8,2 EXPANSION FORMULA

Following the work of Erdelyi[l], who obtained a
multiple variable hypergcometric representation 5.1(5) for
the connecting coefficients in the expansion of the
product

ayq oty
%H&ﬁﬂ N.Iﬁp(%g)

in terms of Ln(x), we obtain here an analogous

representation in terms of gencraliged multiple
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hypergeometric series due to Srivasbava and Daoust (1],

for the comnecting cocfficients in the expansion of the

product
cy Cy

fnl(alx,yl, Tysm) .. fnp(apx, Ypr Tpo m).

In the derivation of the dcrived result we shall

assume that “vh occuring in the definition 2,1(4) of

c
fn(x,y,r,m) is representable in the form

(1) '\(Il = B

and'we shall also make use of the notations given by
7.2(5). The gencraliged multiple hypcrgeometric series of
Srivastava and Dacust, that we shall employ here is
defined as below ( Srivastava and Daoust[1] , Eq.(4.1) )
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Now we begin by considering the product
1 °p
fnl(aixs MR ris m... fnp(apxs yps I'ias m)
which for the sake of brevity, is denoted by .t’). In view

of 2.1(5) and 3.2(7), we can express {1 in the form
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which can be further simplified to

*
N (nls---snp) ¢

(4) L= = D (x),
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where the coefficients Dq are given by
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Now, if we replace 'Vn by the expression given by (1) and

make use of the identities
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The above representation for Dq when
interpreted in terms of the definition (2), leads us to

the desired formula
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In (10), if we set B = B and b; = e; for i=1,2,.,.4,B,

we shall get the multiple hypergeometric series representation
for the coefficients involved in the expansions of the product
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c c
}jﬂ (%4¥,7ym) denotes the particular case of £ (x5, 1,m)
n

discussed in Chapter V. This resulting expaﬂsionAcan be
further particularized to yield the formula 5,1(4)-5.1(5)

derived by Erdelyi [17.

8.3 A GENERAL GENERATING FUNCTION

A few years ago,in an attempt to present a unified
treatment of the various polynomial systems introduced into
analysis from time to time Srivastava and Buschman [I] gave

the following s
Theorem (Srivastava and Buschmanl1}], p.368)

Corresponding to the power series

o n
(1) Y(w = n-foﬂ‘rn W, ey £ 0
let

(o) b/d]  (-n) , (14

. U -, ak ‘OH—(Q'F]_)H)'AK k
(2) Sn,q (>\9X) = kEO (1+Cﬁ+ﬁn)(?\+q)k \/igx 3
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(3) 6(nyq; a,f, Vv, A; w)
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k=0 ¥ +(p+1 )i n / L n k™ 7

vhere «,8, ¥ oand A are arbitrary complex numbers, q is

a positive integer, and n = Os1l42yuns
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then (é )
S a+(B+1 )y
/ \ ( +8)
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a aq A
=(1+w) @ (x(~w) (1+w) , -w/(1+w))

where, for convenicnce,

s n
(5) cb(u,v) = ZO 8(n,q50,B85 vy Nu)v
i

and

B+1
(6) w = t{(1l+w) , w(0) =0 .

This theorem provides an extension of the theorem \
given earlier by MittalfB} and is also capable of yiclding
a number of several known as well as new gencrating

relations for the various particular cases of the polynomials
(Gsﬁ)
n

(hsx).

Having been inspired by the above theorem, we prove
here the following analoguc of the above mentioned theorem

involving our polynomials fn(x).

Theorem 9:

Corresponding to the power-~serics W (u) given by

(1) 1et
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where cﬂmﬁ" are arbitrary complex numbers, 1 is any

integer, m is a positive integer and n = 0,1,2,..

Then
L] ‘\, C+el n
(9) ni:o T fw (,57,r,m) %
. mo.
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T\ (14yh) (147 %™ )
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q

— my
and, for convenicnce
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® n
(11) P (u,v) = ZOXn (myc 57,0 v,
Tl

In order to prove this theorem, we first obscrve

c c
that £ (x,y,r,m), written bricfly as £,(x), may be

expressed in the form

o [l’l /@ f G T TIR S X - S
(12) fn(x) = kio ( . )y \rn-mk x .
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The inncr series may be transformed by making usc of
Gould's identity [?_5, p.196]
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where w = t(w+l) , as a rosult the right hand member of

(13) becomes
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where from the theorem follows, at once .



- 117 -

When ¢ -> 0 , it is easy to see that ’Xﬂ-& 0 for
¥ f

o= 1,8,... and K, = Y (u), therefore the generating
relation (9)-(11) would reduce to 2.1(3)-2.1(4) when & =0

On the other hand,we observe that

Xl’l -5 (mt)n’\y(u) and @(ugV) -> ) ’

lemes v

when N <> oo . Consequently, the particular case

Y -> @ of (9)-(13) would correspond to 2.3(1)-2.3(2).

Further, if we express the binomial coefficient
occuring in (12) .in the form

/ -Crntrmk " c+rn—rmk+k-1\
= (=1)

(16) \

k k

and follow an analysis similar to Theorem 9 we shall get

another theorem in the form -

Theorem 10:

In terms of power series Y (u) given by (1), let
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3 -
where, gs before, c,\, ¢ are arbitrary complgx numbers,

r is any integer, m is a positive integer and n=0,1,2,...

then
(18) N 3GFam w90

el T+

= (14w) K(xt(1+w) y =W/ (1+w) ),
where
o amel

(19) w = <yt (wsl) , w(0)=0 ,
and
(20)  K(u,v) = % 'Un(m,c,ﬁ‘,r,u)vn

=0

c
and as before f,(x,y,r,m) is given by (7).,
When Vv = c-1l, T = 1/m , the generating relation (18)-(20)
would reduce to 2,4(1)-2.4(3) derived in Chapter II.

8.4 GENERAL RECURRENCE RELAT IONS

In this section we consider the following variant of
the Boas and Buck's generating relation =~ 7.1(3),

7.1(5) - 7.1(7).
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(1) A(E) Y (xH()

il

g n
n=0

o) n -

(2) Y(t) = zo\rnt 5 vV, #£ 0
=
o mn

(3) A(t) = zo a,t a, £ 0
N—=
o ML+ 8

(4) H(t) = £ n.t h #£o0.
n=0 n ? 0

This generating relation, besides providing an
extension of Boas and Buck's generating relation, also
includes the gencrating relation 2.1(1) = 2.1(2) studied
by Pandal1]. In order to verify that (%) , as defined
by (1)-(4), is a polynomial, we, following the work of Boags

and Buck {1}, proceed as below :

Lot o )
{
Pn(X) = L Q(k,II,m,S)X 9
k=0

g0 that

o oo o0 kn

A(t)\}‘(}d{(t)) = X z Q(ksnsmss)xt 9
n=0 k=0

vherein p- differentiations partially with respect to

X yield

aw) 11607~ )

o) o0 {r k\ k_p n
= ¥ b} p!\p) Q(ksnsm9s)x t o,
n=0 k=P
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which on putting =x = 0 simplifies to
P (p) oo n
at) (5] v (0) = E 2t a(pmme)t .
. = N

Now in view of (2), (3) and (4)

— P .
r (p) o0 mn M+ S,
) (s =V pi z n t
A(B){H(E)]  ~¥ (o) b ]’z
— e 5
P - ps| = a mn‘lu> h mn
= ajh, p! V_t o R e
p T1=0 aO “1’1:0 o]
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The right hand member of the above expression may be put
in the form ’
B "\ ps o mn+sp
ah, p! fpt + T D(pyn,m,s)t s
N—= 1
80 that
Qp,n,mys) =0, for n < sp

P
Q(p!sp9m9s> = 8‘0 ho’\'{p

Hence Q(k,n,m,s) = 0 for k > =

S therefore, it follows

* *
that p,(x) is a polynomial of degree < n wherc n

stands for [n/s].

Moreover, we also have

o, n,m,s) = v o h # 0 if and only if N » £ 0 .

The above discussion may be summed up into the following
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Theorem 11:
If p,(x) is defincd by (1)-(4) then p,(x) is a
polynomial in x of decgrce preciscly n if and only if
VA0
We now derive certain recurrence relations for pn(x),
for which we notc that the cquations (1)-(4), when subjocted
to usual analysis for deriving recurrence relations, yield

the equation

t H
W' (3)  oF oF NG
(5) Tty ox ~ ¢ 3 < -F Sy o

where F  stands for the left hand mumber of (1),

Now in view of the neture of the functions A(t) and
H(t), it is casy to verify that there exist seqgucnces of

numbers ap end By such that

(6) + A'(t) B Cg tm.]’l'F'm ,
NG I n
n=0
]
H ('t) oo mn-m
H(T) o P

Substitution of (8) and (7) in (5) followed by a slight

simplification lcads us to
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ks ! : 1. w /M t (%) T
.3 -8 x) -np {x)rt + % T x %)t
o [h/m] ’) n+m
= - & L Gy P ()t R

wherein a shift of index gives us

m-1 s n o . n
b3 {? x ppy(x)-n pn(xé}t + T {s x p,(x). - n pn(xj}t
1n=0 =M
@ n/ul -1 1
T nEm kfo * P Py (%)%
@ [n/ml -1 ! () n
- X o, P _ x)t
T k=0 k *nenk-n
from which the recurrence rolation
, fin /1711
(8) s x py(x)-n Py (%) = - kEO % Py e (%)
f/ml -1 t
- X kZO Bk pn-mk—m(x) ; L2 W

follows at once.,
If we express equation (5) in the fowm

7' (%)
H{t)

=

t
xt A)E ) E - Cva'wy

9

end make use of the fact thet there would oxist a seguence

of numbers 6k such that
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[] oo mk+m
H (t)
H(E) = % 5+ E Sy K ’

‘ k=0

t A(%)
then we shell get the recurrcence relation

(9) aOSS x pé(x) -n pntx%

L
b/m-1 [n/mi -1 ,\
o kzo Xpn~mk»m(x>5k * kzo ak+1(n”2mk"2mjpn~mk;m(x)’

nymn.

Yet another recurrence relation would follow if wo

start with the following alternative form of (5).

t

' |
xt H (%) %g - H(t)t %% = -t H(t) & t)

F,

and  use the representation

! o 04T+ 5
+ H(t) AA E) - xoﬁ“nﬁ .
Tl

The resulting recurrence relation will be

(10) ho{s x pg(X) - n pn(Xi}

n/ml-1 :
T kEO X Promiem(¥) By g (mk 4w+ 8)
{h/ IE} "‘1 o
(/1] X | ‘
+ kzo ifnpmk-m)hk+l - Sy Ppomem(®)> n2m .

(11) s x py(x) = n py(x), n=0, 1,.c.,m - 1.
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If we choose

A(h) = (g™,
and
tS
H(t) = 3
) (1eyt™F

then it can be easily verified that the sequences

A 9 By s Oy and’ o Xk occuﬂing above are given by

AN
4 K+l
Qg = em(~y) ’
k+l
By = rn(-y) "
(et1)y Tkel 1
, ctkt+l g
5y = =57 (=¥) s !...k‘*‘l“ + (55 -1>‘J_,
M zHl)y e+l 2
g k' = O:a,“‘- k!{ ("'Y> .

Consequently the corresponding particular cascs of (8),

(9) and (10) may be stated in the form

f e - C
(12) s x DX 1fn(X9Y9rsm95)} - I fn(x,y,r,m,s)

, n/mj-1 ¥ :
=cnmy I - (-y) £, . (xy,rms)

vt

n/ml -1 L 1
+ mxy . z (-3 DX‘an._mk_m(X,y,I‘,Bl,S’)J{ y n..?. oo,

A
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r.C , e o
(12) s x D, ifﬁ(x,y,r,m,sﬁ'~ n fn(x,y,r,m,s)

fn/mj -1, +1 +1
- _‘IL/}:‘J < (0 ) -y ‘Q_‘m o 1>
k=0 k! k+1 S
c I/ -1 (c)k 1 k+1
X{ . m(x,yyr,m,s)} s T (-9

c
(n-2mke2m) £ . (x,y,7,m,8)

c C
(14) s xD_ {fn(x,ysr,mss)} - n f (x,y,r,ms)

ln/m] -1 (r) 41
= - kEo X(mk+m+8)m’lf§% (-y) D {fn nk(gg;y,r, 25 )

1 ¢
Eff (n—mk-m)—cm}-fn_mkwm(x,y,r;m,s),

n/m} -1 (:c+1)k k+1
+ X -¥ {

20 i
4
where f (x,y,r,m,8) stands for the polynomial

generatad by

(1+yt™ ) 2 1+yt ):} Z f (x,y,r,m s)t .

The recurrence relations (12) - (14) can be further
particularized to the corresponding results given in

Chapter II, when 8=1, and to the recurrence relations for

e
8,(x,7,58) derived by Panda (1] .



