
CHARIER - III

INVERSE SERIES RELATION - I •

3.1 INTRODUCTION

In this chapter we obtain an inverse series 
relation of 2.1(5) analogous to the inversion formula of 
the explicit representation of Pn(m,x,y,p,0) 
given by Gould (£sfj, P^O^s Eq. (6.2ft-. Such relations play 
an important role in the expansion of arbitrary polynomials 
in terms of the polynomials under consideration. Eor 
orthogonal polynomials the orthogonal property provides an 
effective tool for obtaining the inversion formulas, but 
for non-orthogonal polynomials no systematic method is 
available. In a series of papers Gould (e.g. [8] s 01] jioj ) 
made use of some results from Combinatorial Analysis to 
obtain a number of pairs of inverse series relations, 
whereas A1 - Salam [T}, Dickinson [ll and Rainville [HQ 
employed some other techniques to obtain such inversion 
formulas. In section 3.2 we follow the technique used by 
Gould to derive the desired inversion formula and discuss 
some of its particular cases in section 3.3.

The inversion formula derived in 3.2 gives rise 
to a series transform which we discuss in section 3.4 and 
prove therein an interesting theorem on the convolution 
of the said -series transform. Our investigations related
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-bo the properties of this transform led us to an alternative 
proof of the theorem’ given in 3.2 which forms the subject 

matter of section 3.5.

3.2 THE IIW1E.SE SERIES RELATION

In order to derive the proposed inversion formula 

we first observe that the pair of general inverse series 
relation proved by Gould £STj in the form of the theorem:

(1) E(n)
h/ifj /p-n+mk
k=0 V k f(n-mk)

if and only if 

(S)
fn/nEl • v / p-n+k \ B+mk„n .f(n) = £ (-D* ( ) P(n-ok)
k=0 \ k / ^

admits of the following mild, but quite useful extension in 

the form :
Theorem 2 :

[n/m] ]C / p- Xn+ Xmk\
('3) E(n) = £ y / } f(n-mk)

k=0 \ k /
if and only if 

(4)
k /p~ Xn+k^ 

X k
f(n) = ;x(-y) x v

where p, and ^ are arbitrary parameters.
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For positive integral values of A this extension 

is quite trivial, but for arbitrary values of A it is not 

so. However, the proof of (3) and (4) for arbitrary values 
of A runs parallel to that of (l) and (2) wherein use is 

made of the well-known addition formula (of., e.g,, Gould jJ3] )

/a+c+bii\
n )

n / a-+bk\ /c+bn-bk\
(5) S ( > ' \ c

k=0 V Tr / n-k ) c+bn-bk

we, therefore, omit the details for reasons of brevity.

On comparing 2.1(5) with (3) wo readily get the 

inversion formula of 2.1(5) as given below :

1 0V“Li k / -c~*ir+k\
~ E f-vl I \

J
which can also be put in the alternative form

1 fP-Ali, (l-c-nr)^1(mrk-c-nr)

(6) n i &nk-nr-c f c , .
'n k=0 V k i k-nr-c un-ink'■x' *

(7) nx = \ £ (-y)
n k=0 k! . (x) . n-mkv J *

For integral values of r , positive or negative, an appeal 

to the formula

ui
X(a)n_r (1~a“n)r = (~D (a) 

would transform (7) to the elegant looking fo

|n/m] k

rm

(8) nx
(c)

nr
n

c
k!(c)'_.'~rT Xn~mk^x^ *y - - v .ic+nr-mrk) *^ v lr f VI V x.

k=0 •' 'nr-k+i
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The inversion formula (6) or its equivalent forms (7) 
and (8) can "be used to obtain the expansion of an arbitrary - 

polynomial

(9) QS(X) S A_ x11 
n=0

cin a series of polynomials fn(x). For example, if we

employ the formula (8),the corresponding expansion formula 

is

(10) Q (x) s C
2 Bn fn(x^ » 

n=0
where

Qs-n)/mJ (c+nr) (c)
v, 11} B — S \- _ ___

k=° C* C nr+mrk-k+1 ^n+mk
nr+mrk \n-mk k

w

3.3 PARTIGIJLAR GASES

By assigning appropriate values to the various 
parameters involved in the inversion formula (6) or its 

equivalent forms (7) and (8), one can easily obtain the 
inversion formulas for the polynomials included in the
definition 2.1(3). In particular, we mention the following 

reducible 'cases :

(i) The particular case of (8) corresponding to the 
reducibility of f°(x) to Pn(m,x,y,-l) ,1) as given in

section 2.1 may be stated in the form



35

(1) (mx)n
n!

&sm-
k=0 kU™l™+i_k ^n_mkx?y5»T)

which is an alternate form of the inversion formula given 
by Gould |_9, P-707, Eq. (6„<U and we prefer this form as it 
lends readily itself to further reduction to the standard 
forms of the inversion formulas for those classical 

polynomials which are included in En(m,x,y,p,l).

(ii) Another special case of (8) worth mentioning 
would occur when we use the relation f°(x,-l,r,l) = g°(x,r,l) 

The corresponding inversion formula is

(2) n (c)
X nrV.n

n
2

k=0
(-1)n-k . -(c + rk)

(n-k)!(c)nr-n+k+1
Q§k^Xj > b) •

The relation (2) can be further particularized by 
taking r = 2, and replacing x by - 4x, as a result of 
which (2) would simplify to

(3) x11 (°^2n n k2 (“D
k=0

(c + 2k)
(n-k)!(c)n+k+l

fk(x) 9

^n^x) are bhe polynomials considered by 
Rainville |H, p.l37j[ given in 1.2(11).

The formula (2) is believed to be new while (3) is 
the known result 1.2(14) given by equation (4) in 
(Rainvillep',137), where it has been obtained by using
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series manipulations in the generating function for f (x).

Similarly the expansion formulae 3.2(10) and 3.2(ll) 

can also be particularized for the various polynomial
Q

system included in the definition of f (x).

3«4 0ONVOLTJTIOI TRANSFORM

The relation 3,2(3) may be viewed as a series 

transform which we denote symbolically in the form

(1) F(n) = S {f(n)7.

This transform possesses an interesting property which 

we state in the form :

Theorem 5~ :

If

(2) F(n) = Sp [f(n)J ,

(3) - G(n) = Sq [g(n5] ,

and if, (F * G) (n) and (f * g)’(n) stand for the series 

convolixtions defined .by

, v n(4) (F * G) (n) = 2 F(j) G(n-j) ,
3=0

(5) (f * g) (n) = 2 f(j) g(n-j),
3=0

then

(6) (P * G) (u) = |Jf , g) (n)l ,
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that is, the convolution of the series transforms is the 

series transform of the convolution.

To prove this theorem, we first observe that

20 "n rn P 00 n(7) 2 P(n)tn = (1 + ytm) 2 f(n)sn ,
n=0 n=0

and

(8) £ S(n)tn = (1 + ytV ? g(n)zn ,
n=0 n=0

where

(9)
(1 + ytV

low it is easy to see that

OO OO y% OO 4

2 (IF * G-) (n)t = 2 G(n)t 2 F(3)t3 ,
n=0 n=0 j=0

= (1 + ytm)

= (1 + ytm)

n=0 P+q

P+q 00 n 11
- E z £

n=0 C
_l

.

11 0

p+q CO

n ,
2

n=0
z (f

Rf * g) (n)J •

whence it follows that

(F * 6) (n) = Sp+q [if * g) (n)j .

If the various parameters involved in the series 

transform 3.4(1) are particularized suitably, so as to yield
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the explicit representation of the generalized Humbert 
polynomials P (m,x,y,p,0) introduced by Gould [_9j? the 

relation (6) would simplify to

&(10) 2 P.(m,x,y,p,C) P .(m,x,y,q,C) = P(msx,y,p + q,C),
3=0 3 n~3

whereas the simplified form of (6), in the case of Laguerre 
polynomials, is the well known relation (Rainville |_H_[ 9 

p.209, Eq. 13})
n (a) (6) l+a+(3

(11) 2 1, (x) L , (x) = 1^ (2x).3=0 3 n"3

3,5 INVERSE TRANSFORM

In order to obtain the inverse transform of 3,2(3), 

we begin with the relation 3.4(7) namely,

^ ri -ni CO n
2 f(n)z = (1 + yt ) X F(n)t ,

’n=0 n=0
>n-p

°° n m(1) = 2 F(n)z (1 + yt ) ,
n=0

which in view of the well known Lagrange Expansion
(Polya and _ Szego [Gj, p.146, Problem 212) given by 2.4(8)

takes the form
I
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(2) £ f(n) zn = £ P(n)zn

n=0 n=0

oo
. 2
k=0

An-p / 
An-p+mkA \

f An-p+ A mk\
)(yzm) k

k

% Ln/nO An-Amk-p l ^ k n
t £ P(n-mk) ~-r'“£“Ly z . n=0 k=0 An _ p i k j

Thus it follows that,
, \(3) f(n) =^sm^y^ ^ P(n-mk).

k=o P "An V k /

The relation (3) may also be stated in the form
~An+ Amk / Af1-?”! ^

\ k

fn/m] >
(4) (f * g)(n) = £ y .P±.g^„:.„±

k=0 p+<1 ~hn

(P * G) (n - ink).

It is also worth mentioning here that if we start with 
(3) and do analogous analysis we shall get 3.2(3) as the 

inverse of (3). Thus the technique of this section provides 

us with an alternative proof of the Theorem 2 given in 

section 3.2.


