CHAPTER -~ TT11

INVERSE SERIES RELATION - T
3.1 INTRODUCTION

In this chapter we obtain an inverse serieg
relation of 2.,1(5) analogous to the inversion formula of
the explicit representation of Pn(m,x,y,p,G)
given by Gould ([§7, p.707, Eq. (6.2). Such relations play
an important role in the expansion of arbitrary polynomials
in terms of the polynomials under congideration, For
orthogonal polynomials the orthogonal property provides an
effective tool for obtaining the inversion formulas, but
for non-orthogonal polynomigls no systematic method is
available. In a series of papers Gould (e.g.[8],[9][10])
made use of gome resﬁits from Combinatorial A?alysis to
oﬁtain a number of pairs of inverse series relations,
whereas Al - Salam [1], Dickinson [11 and Rainville [H])
employed some other techniques to obtain such inversion
formulas., In section 3,2 we follow the technique used by
Gould to derive th degired inversion formula and discuss

some of its particular cases in section 3.3.

The inversion formula derived in 3.2 gives rise
to a series transform which we discuss in section 3.4 and
prove therein an interesting theorem on the comvolution

of the said series transform., Our investigations related
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to the proporties of this transform led us to an glternative
proof of the theorem given in 3.2 which forms the subjcect

matter of scetion 3.5.
z.,2 THE INVERSE SERIES RELATION

Tn order to derive thc proposcd inversion formula
we first obscrve that the pair of general inverse series
relation proved by Gould tg] in the form of the thcorem:

@/ /p-nemk
(1) P(n) = Z f(n-mk)

k=0 k

if and only if

m/m ~n+k
(2) f(n) = E (-1)* (p ? > %F(n—mk)

admits of the following mild, but quite useful extension in

the form

Theorem 2 ¢

. m/f x [ D~ Ao+ Ak

(3) F(n) = I ¥y £ (n-mk)
k=0 k ;

/s
if and only if

[/7i) k /p~ An+k >
(4) f(n) = kEO (=y) < . ‘)R*—'}inﬁ:fﬂ F(n-mk),

where p, and A are arbitrary paramcters.
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For positive integral values of A this extension
-is quite trivial, but for arbitrary values of A it is not
S0. However, the proof of (3) and (4) for arbitrary values
of A runs parallcl to that of (1) and (éﬁ wherein use ig
made of the well-known addition formula (cf., c.g., Gould{3])

n a+bk c+bn—b§§ o / atc+bn
(5) k—O c+bn~bﬁ = ( n s

we, therefore, omit the details for reasons of brevity.

On comparing 2.1(5) with (3) we readily get the

inversion formula of 2,1(5) as given below :

(6) - - Enéﬁ](_ R A e N £ (x)
"% 1o y K /; k-nr-c Nnemk

which can also be put in the alternative form

[n/m| k (1~c—nr)k“1(mrk-c-nr) c

n 14
(7)) % =g~ "3 (-y) =3 e (%)

For integral values of » s positive or negative, an appeal

to the formula

(a)y_p (1-amn), = (1) (2),

would transform (7) to the elegant looking form

(e) |n/ﬁ1 k e
(8) & mﬂghnr §c+nr—zgtli fn_mk(x)
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The inversion formula (6) or its equlvalent forms (7)
and (8) can be used to obtain the expansion of an arbitrary

polynomial

(9)  Q.(x) ; -
: = X
SX n:OAn

)
in a series of polynomials f (x). Por example, if we
employ the formula (8),the corresponding expansion formula
is

s [¢]
(10) o (x) = nEO B, £,(x)

where

f:gs--m)/m?f7 (c+nr) (c)
k=0 1"‘ (c)

nr+nrk An+mk k

(11) B a¥ vy o.
Nr+mrk -1 n4mk

n:

3.3 PARTICULAR CASES

By assigning appropriate values to the various
parameters involved in the inversion formula (6) or its
equivalent forms (7) and (8), one can easily obtain the
inversion formulass for the polynomials included in the
definition 2;1(3). In particular, we mention the following

reducible caseg

(i) The partlcular case of (8) correwponding to the

reducibility of f (x) to En(m,x,y,-”a,i) as given in

section 2.1 mey be stated in the form



n (/] K
S LY ek N
(1) ERL Z Lk!(v)niiniv P (X, 57,=Y 1)

which is an alternate form of the inversion formula given
by Gould {9, P.707, Eq. (6.2)] and we prefer this form ag it
lends readily itself to further reduction to the standard
 forms of the inversion formulas for those classical = |

polynomials which are included in P (myx,y,p,1).

(ii) Another special case of (8) worth mentioning
c . ¢
would occur when we usc the relation £, (x,-1,1,1) = gn(x,r,l).

The corresponding inversion formula is

(2) n (¢)y,, B (_1>n¢k (¢ + k)

T V. : (n"k)!(c)nr-n+k+1

C
gk(xs Ty 1).
n k=0

The relation (2) can be further particﬁlarized by
taking r = 2, and replacing x by - 4x, as a result of

which (2) would simplify to

(3) &2 -

(e)g, m k (e + 2x) '
2"y o Y B (O 0y k()

where fn(x) are the polynomisls considered by

Rainville [H, p.137] given in 1,2(11).

The formula (2) 1is believed to be hew while (3) is
the known result 1.2(14) giVen by equation (4) in
(RainvilleHl", p.137), where it has been obtained by using

1
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series manipulations in the generating function for f.(x).

Similarly the expansion formulae 3.2(10) =nd 3.2(11)
can also be particularized for the various polynomial

¢
system included in the definition of (%),
544 CONVOLUTION TRANSFORM

The relation 3,2(3) may be viewed as o series

transform which we denote symbolically in the form

(1) F(a) = spg(n)],
This transform possesses an interesting property which
we state in the form
Theorem 3 :
If
(2)  F(n) = s, [£(a)],
Sq [é(nZ} 9

and if, (F * G) (n) snd (f *» g) (n) stand for the series

(8) - G(n)

i1

convolutions defined by

(4) (F#q) (n)= z F(J) G(n-3) ,
J=0
n

(8) (£%*g) ()= 5 £(j) g(n-3),
J=0

then

(6)  (Fre)w=s_ [(r*g @],

DPag
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that is, the convolution of the series transforms is the

series transform of the convolution,

To prove this theorem, we first observe that

o

() 3 Pt e (1 e ™ 3 @),
n=0 n=0

and'

@) % eyt = (1« MY T gt
N=0 n=0

waere
(9) = = s
T Uy

Now it is easy to sce that

T O(F*e)@t = ¢ e@ts = B(3M9
n=0 n=0 J:O
Ptg @ n I
=(1+ ¥y T oz 3z £(3) egln-j),
n=0 j=0
. Ptd o n
= (1 + yt™) zoz<f*@<m,
Tl

1

co - 1
o P [(exe) 2] 5,

whence it follows that

(Fx6) (n) =58, [(£*g) ()]

Pty -
If the various paramcters involved in the series

trensform 3,4(1) are particularized suitably, so as to yield
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the explicit representation of the generalized Humbert
polynomials P (m,x,y,p,0) introduced by Gould [9], the
relation (6) would simplify to

kel
(10) .20 Pj(msXaY9PyG) Pn_j(m,ny9QsC) = Pn(m9X9YsP + q,C),
J=

whercas the simplified form of (8), in the case of TLaguerre
polynomials, is the well known relation (Rainvilie i,
p.209, Egq. 13))

n o (a) (8) 1+a+8

(11) 3 I (x) Ty ;5 (%) = Ty (2x%).

5=0

3,5 INVERSE TRANSFORM

\

Tn order to obtain the inverse transform of 3.2(3),

we begin with the relztion 3.4(7) namely,

T fn)e” = (14 ytm)"p T P,
=0 n=0
. o An-D
(1) = ¥ P(n)z (1 + yt*) ,

n=0

which in view of the well known Lagrange Expansion
(Pélya and  Szegd iG], p.146, Problem 212) given by 2.4(8)
takes the form
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(2) ¢ f(n) 25 = 3 F(o)

n=0 =0
~
N >\1’1-p+ Ank k
'ka kn~p+mkh(\ (y27)
— n - p
©0 Ln/ nﬂ A n
= % ¥ F(n-mk) 5§§%;£Qgﬂi~ yk Z .
n=0 k=0 ’ - P k /

Thus it follows that,

2N\ .
(3) f(n) =£ﬁémjyk p= A\n+ Amk / A

k=0 D W )F(n"mk)'

The relation (3) may also be stated in the form

n/m] o DQ= Ang Ak /N-p-a
(5 (@ x e = 57y BE=lMg ( ) )

(F * @) (n - nk).

It is also worth mentioning here that if we start with
(3) and do anslogous analysis we shall gef 3.2(3) as the
inverse of (3). Thus the technique of this section provides
us with an alternative proof of the Theorem 2 given in

section 3,2,



