
CHAPTER - IV

INVERSE SERIES RELATION -II 

4.1 INTRODUCTION

As mentioned in Chapter II, the work of Rainville jjf} 
on the class of polynomials Jfn(x)j- defined by the 

generating relation 1.2(11) and the related work of 

Chandel ( £lj , [2J ) and Jain jjy inspired Rekha Panda ['ll to 
initiate the study of the class of polynomials »fg°(x,r,s)| . 

Amongst the results on gn(x,r,s) incorporated in 
(Panda l_lj , Srivastava R. (jLj ) one can find the analogues 

of all the results for fn(x) given by Rainville [h] 

except the interesting expansion 1.2(14) of x11 in terms 

of fn(x) which may be viewed as the inverse of the 

explicit representation of fn(x). Because of the fact

that the special case s = 1 of the polynomials
C/ . ' c gn(x,r,s) is included in the polynomials fn(x), the

corresponding expansion of x11 in terms of g£(x,r,l) is

obtainable from 3.3(2). But the natural problem of

expressing x in terms of gn(x3r,s) or equivalently
the problem of finding the inversion formula of the

explicit representation (Panda [lj, p. 105, Eq.(4))

(1) c , fn/sH g^(x,r,s) = £
k=0

(c+rk)n-ek 
(nlsk) ! V,k ,x J

does not have its solution in the theorem proved in
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Chapter III. Our attempts in this direction leadfus to 

some interesting results incorporated in the subsequent 

sections of this chapter*

4.2 THE INVERSE RELATION

With a view to obtain the desired inversion formula 

of 4.1(1) we prove here the following Theorem;

Theorem 4;

If
, , fn/sT n-sk /P + <3sl1 - sk\
(1) F(n) = n T-l) ■ ( f(k),

k=0 V n - sk /

then
ns , . /P + qsx} - k\

(2) f(n) = 2 Ii±2kri_ / - E(k)
k=0 ‘P+qsn-k V Sn - k

where p and q are arbitrary parameters and s is a 

positive integer.

Writing (1) and (2) in the forms

In/ sj sn
P(n)-= £ E(n,k) f(k), f(n) = 2 f(n,k) P(k),

■ &=0 . k=0

it is easy to observe that the validity of the above theorem

is established if the following orthogonal relation holds 

t rue.

(3) 6(n,m) sn
= 2 

k=§m
f (n,k).F(k,m)

n / m 

n = m
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.In order to prove (3), we employ the method which 

runs parallel to the method given in the book by KiordanflJ.

We first note that the expression for 6(n,m) may be 

written as

sn k-sm / P + dsm - sm \
(4) 6(n,m) = z (-1) (

k=sm \ k-sm

• 4
j / p + qsn - k\ /p + qsn - k - 1

i sn-k
-a

sn-k-l

which we abbreviate as

(5) 6(n,m) — I (n, m) + q e (n, m) , 

with
sn ' k-sm f P+lsm-smN _ / p+qsn-k\ ’

(6) I(n,m) = 2 (-1) ( j
k=sm v k-sm / \ sn-k

sn-sm -j f •&+( sn-sm )q-*j / l\
2 (-1)'

3=0 sn-sm-j A, / , A = p+qsm-sm .

Now, in view of the relation
f-n'X m / n+m~i\
{ = (-D
\ m 1 V m /

and the • Vandermonde's Convolution

n= * n n -U i k=0 n m-k / \k/
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the last expression for l(n,m) can successively be put as
v sn-sm sn-sm /-l~-Mq-l) (sn-sm)\ /A \ 

(?) I(n,m) = E (_i) j I !
\ sn-sm-j ,/ V j J

l (-1) 
3=0

, . , „ sn-sm /(8) I(n,m) = (-1)
/ -l-(q-l)(sn-sm)

sn-sm

(9) I(n,m) = I
/ qsn - qsm>

V sn-sm

Likewises the expression

(10) J(n,m) E (-1)
k=sm k-sm

can be simplified to

(11) J(n,m) = (-i)

give
' qsn - qsm -

sn-sn-1
so that

(12) qJ(n,m) (-1) f qsn - qsm
sn-sm

p+qsn-k-1
sn-k-1

equations (9) and (12), when combined with (5), vield 

6(n,m) = 0 , for n
whereas, for n = m, (4) evidently gives 

6(n,m) = 1.
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This completes the proof of the theorem.

If
(13)

An alternative form of (l) and (2) is

**(n) lh/sj / P+qsk-sk\A ( n-sk )*'<*>

then

(14) f*(n) = sn sn-k 2 (-1) 
k=0

p+qk-k
p+qsn-k

p+qsn-kN

sn-k
**(k> .

Ihis is the result of the substitution
P*(n) = (-D^fn) , f*(n) = (-!)“(„)

in (1) and (2).

Yet another variation of (13) and (14) may be obtained 
by multiplying F*(n) by p+qh-n and f*(n) by 

p+qsn-sn ; , we thus get ; ' .

If

(15) P*(n) = rn/e, .~ Z~ *
k=0

/p+qsk~skN

n~sk + q
then

* sn(■16) f (n) = k|Q (-i)
sn-k / P + qsn — lc^f\

p + qsk - sk) 

n-sk-1

lh

f*OOi
h

sn-k
P*(k).

In view of the Theorem 2 v/hieh we proved in Chapter III, 
it is quite natural to ask if the converse of Theorem 4 holds. * 
The answer to this question, though in affirmative, doesn’t 
seen to be establisfcaTile by the method used in this section.
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Therefore, in the next section, wo invoke the alternative 

discussed in Chapter III to jirove the Theorem 4 in an 

extended form together with its converse*

4.3 EXTENSION Of THEOKEM 4

The first theorem that we prove in this section is

in the form;

Theorem 5;

If (as before)
fn/si n-sk / P+qsk-sk\

(1) P(n) = E (-1) ( ) f(k),
k=0 n-sk

then

sn(2) f(n) = 2 ... ------ ,.
k=0 p+qsn-k

/p+q.sn-k\
POO,

\ sn-k /

and

(3) E Eiafc* 
k=o mJi-k-

f p+qn~ks
P(k) = 0, n ^ ms, m=l,2s..

n-

To prove the above theorem, wo note that

n p OO y,

(4) 2 P(n)t = (1-t) 2 f(n)z
n=0 n=0

where 

(5) z t*
(1-t)r~)s

Therefore,
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00 rt —T) oo -n2 f{n)z11 = (1-t) * Z P(n)t 
n=0 n=0

(6) 00 n/g -p+l-qn
2 P(n)z (1-t) 

n=0

which, on making use of Lagrange’s expansion formula 
(Polya and SzegoCGL) ,p,146, Problem 212) 2.4(8) yields

00 -n 00 n-/ s(7) Z f(n)z = z F(n)z ^ 
n=0 n=0

-p+(l-q)(n+kA
r. -t>+( l~a m / \, ,k k/s•kf0 -i;ri:g)(n+k) ( K-d z

k

(8) ^ ( ^V/s nn-k)
n=0 k=0 n-p~qn ^ lc
00 n Z

Now on equating the coefficients of z , we obtain

^ p+(l~q)(ns-k) • -ki(9) f(n) = Z
k=0 ns-p-qns •(-1)

n5
ns-p-qns' 

k
F(ns-k)

which on making use of
n(10) £ A(k,n)

k=0
n

takes the form,

(11) f(n) ns

2 A (n~k, n) 
k=0

-p+(l~l)k'
k=0 -P+ns-qns

' -p+ns-qns\

ns-k
ns-k.(-1) P(k).

further, in view of the relation,
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(12) (-1)
k / ”a \ f “+lEwl\
\ k / \ k ./

cc + k

(-1)‘ns
-k /“P+ns-gnsN

p+qns-nsp+qns-k

ns-k

p+qns-k

ns-k
and thus (ll) yields

(13) f (n) = 2 g+qk-k
k„Q p+qns-k

a
a±k \ ]c i>

can he put as

p+qns-k'

ns-k
k(k),

On the other hand, the comparison of the coefficients

gives
of z /s in the equation (8) for n ^ ms, m=l,2,.tt

n . . . v / n-p-qnN(14) 0=2 --JL + Jl-q) (n-k) , / ■
n-p-qn .u x kk=0 F(n-k)

which on using (10) and (12) leads us t<

n(15) 2 P + qk ~kk^0 ~qnT-1
p + qn - kN 

n-k
F(k)-0 ; n ^ ms,

m=l , 2 y 3 j * » ,,
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hence the Theorem 5,

Next, if we let

n , f P+qn-kN (16) f(n) = E ) p(k)
k=0 n-lc l

then we have

oo n oo k /E ¥(n)t = E p(k)t x Ei#=£--- 'n=0 k=0 n=0 P+qk-k+qn

/P+(q-1)k+qn^
n

n /

which in view of 2.4(8) can he expressed in the form

00 —, n « k p+qk-k qE f(n)t = E F(k)t x , x =’ 1 + tx
n=0 k=0

~ oo V n~l w.1= xP E F(k)u , u = tx = (x-l)3C 
k=0

Therefore,
oo n _-n oo j-iE F(n)u = x 1 E f(n)t 

n=0 n=0

“ __ n p+qn-n = E f(n)u (1-u) 
n=0

«» „ n oo / p+qn-n \t f(n)u l [
n=o k=0 \ k

(-u)
k

. . 00 n n k(17) = E u S (-1)
n=0 k=0

/p-fq(n-k)-(n~k)'N

k
f (n-k).

which on equating the coefficients of u^ leads us t(



n
(18) k(n) = E (-1) 

k=0
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V /p+g(n-k)~(n-k)'

( >
f (n-k).

The use of (10) transforms (18) to

f(k).
/ p+qk-kn n-k /(19) F(n) = E (-1) j

k=0 \ n-k

Now, if we assume the relations (2) and (3), then 

in view of (2)

(20) f(ns) = f(n) , 

and in view of (3)

(21) f(n) = 0, for n ^ ms, m = 1, 2
? ^5 • * *

Thus on making use of (2l), (19) reduces to

Lip./s') 1 n-sk / P+<lsk-sk\
(22) P(n) = e" (-1) f(sk) ,

which in view of (20) gives us

[n/sj n-sk ( P+lsk-sk'
(23) J?(n) = E (-1) J fdsr),

k=0 \ n-sk

We, thus have the following converse of Theorem 5:
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Theorem 6:
If

(24) f(n)
sn

= 2

k=0 p+q sn-k

and

(25)
n
l

k=0
n+dk-k
p+qn-k

! P+qn-

s\ n-k

then

(26) F(n) ii

1! °

n-sk
(-1)

p+qsn~k PCk),

P(k) =0, n ^ ms, m = 1,2,

p+qsk-sk\
jf(k). 

n-sk J
Theorem 5 and Theorem 6 may he combined into the 

following:

Theorem 7:
fe/n n-sk /P+<l<*-sk\

(27) P(n) = E (-1) [ ) f(k) ,
k=0

if and only if

V n-sk

sn v . /P^sn-k
(28) f(n) = Z £±S|=V l - I I'(k)

k-0 P+,lsn-ic V sn-k

and

n
(29)

p+qn-k

V n~k
F(k) =0, n ^ ms, m = 1,2,..

It Is also worth mentioning here that if we denote 

the series transform (l) symbolically in the form
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(30) F(n) = Tp' [f(n) j ,

i

then the following theorem on convolution may he 
easily obtained by following the method used in Theorem 3.

Theorem 6 :

If
(31) F(n) = Tp [f(n)~| ,

(32) S(n) = Tq [,g(n)l ,

and if, (F * G) (n) and (f * g) (n) stand for the series

convolutions defined as

(33) (F * G)(n) « 2 F(j) G(n-j) ,
3=0

(34) (f * g)(n) = . 2 f(j) g(n-j) ,
3=0

then

(35) (F * G)(n) = lw[(£ * g)(nO

that iss the convolution of the T- series transforms of two

functions f and g is the T- series transform of the

convolution of f and g.

4.4 EXPANSION OF x*1' IN TEEMS OF g^(x,r,s)

The explicit representation 4.1(1) can be written 
in the form



which on being compared with 4.3(1), with p c/
"* ■' - * ~ * ^q = -(r-s)/s, readily yields the expansion (or"t |ieIfniy erproti

formula of 4.1(1) ) formula

(2) xn . -I- c+rk/s
' \ ic=o Tc+(r~s)n+k)

-c-(r~s )n~lc

sn-k
gk(x,r,s).

The inversion formula (2) may also be expressed in 

the following alternative forms:

(3) xn
\

sn

n k=0
(~c-rk/s)

sn-k-l gv(x,r,s)

(4) xn
sn-k

i sn (-I) (c+rk/s)(c)
— 2
n k=0

_ ' / / \ / f ^
(®:3rJTrST(Tl)nrt+r" SkU,r,S)-

In view of 4.3 (3), we also have 
( i ^n—k

(5) 2
(-Q - (cWs)(o)m/fl 0

gl£(>:,r,s)k=0 (SlkTTTcl'

for n / ms, m = 1,2,3,..

i?f)n+k+l
=. 0 ,

then s = 1, (4) evidently reduces to 3.3(2)

(cX
(6) n

x
n-k

"rn £ (-1) (c+rk)n
V» too

which can be further particularized by taking r = 2 and 

replacing x by —4x j (6) would thus simplify to 1.2(14),


