CHAPTER - IV
) INVERSE SERIES RELATION =TT

4,1 INTRODUCT ION

As mentioned in Chapter II, the work of Rainville [H]
on the class of polynomials {?n(x)} defined by the
generating relation 1.2(11) and the related work of
Chandel ([1], [2]) and Jain [1]inspired Rekha Panda {11 to
initiate the study of the class of polynocmials {g;(xsrss?}'
Amongst the results on gg{xgr,a) incorporated in
(Panda [1}, Srivastava R, [1] ) one can find the analogues
of all the results for f,(x) given by Rainville {H]
except the interesting expansion 1,2(14) of ¥ in terms
of f (x) which may be viewed ag the inverse of the
explicit representation of fn(x). Because of the fact
that the special case s = 1 of the pelynomials
gz(x,r,s) is included inlthé polynomials fz(x), the
corresponding expansion of ¥ in terms of gﬁ(x,r,i) is
obtainable from 3.3(2), But the natural problem of
expressing ¥'  in terms of gﬁ(x,r,s) or equivalontly
the problem of finding the inversion formula of the

explicit represcntation (Panda [1], p. 105, Eq.{4))
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does not have its solubtion in the théorem proved in



Chapter III. Qur attempts in this direction lead us to
some interesting results incorporated in the subsequent

sections of this chapter,

4,2 THE INVERSE RELATION

With a view to obtain the desired invergion formula

i

of 4.1(1) we prove here the following Theorems

Theorem 4:
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where p and g are arbitrary pavameters and s  is a
positive integer.
Writing (1) and (2) in the forms
In/s]

F(n) = % F(n,k) f(k), f(n) = S? f{n,k) F(k),
. ; k=0

k=0
it is easy to observe that the Validity of the above theorenm
is estahlished if the following orthogonal relation helds
true,
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In order to prove (3), we cmploy the method which

runs parallel to the method given in the book by Riordan EI]

We first note that the expression for &(n,m) may be
written as
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which we agbbreviate gs

(5)  s(m,m) = I(n,m) + q T(n,m) ,

with
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Now, in view of the relsation

f~n m s n+m-1\
(\ m)'—‘ ("1) L o / 9

and the - Vandermonde's Convolution
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the last expression for I(n,m) cen successively be put as

(7) I(mym) = 3 (-1)
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Likewise, the expression
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(10) J(u,m) = ¥ (-1) )
k=gm K-sm sn~ke-1
can be simplified to give
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hN SNe=Sie1 .

so that

gsn - gsm
(12)  gI(n,m) = (-1) Q
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Bquations (9) and (12), when combincd vith (5), vield
8(n,m) = 0 , for n =fmn
whercas, for n = m, (4) evidently gives

& (1’19 Hl) = 1.
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This completes the proof of the theorem,

An alternative form of (1) and (2) is
Tf

\ . '.}l/é] P+qsk-—sk R
(13) F{n) = % £ (k)
k=0 n-gk
then
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11w K
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This is the result of the substitution
* * sn
P(n) = («1)"F(n) , £ (n) = (-1) £(n)
in (1) and (2).

Yot another variation of (13) and (14) may be obtained
* *
by multiplying F (n) by p+ah-n and f (n) by

p#gsn-sn ;  we thus get s °
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then
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In view of the Theorem 2 which we proved in Chapter III,
it is guite natural to ask if the converse of Theorcm 4 holds,
The answer to this gquestion, though in affirmative, docsn'

scen to be establishgble by the method used in this section,
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Therefore, in the next section, we invoke the alternative
discussed in Chapter III to prove the Theorem 4 in an

extended form together with its converse,
4,3 FBXTENSION OF THEOREM 4

The first theorem that we prove in this section is
in the form:
Theorenm 5:

If (as before) ’
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To prove the above theorem, we note that

oo n P ) n
(4) I Pt = (1-t) T f£(n)z
n=0 Nn=0
where
S
(5) Z = 1

(1ht)(1*Q)S

Therefore,
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5 f(n)z" = (1) T P(n)b
n=0 N=0

n/s -p+i-gn
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=0

(6)

il

which on making use of lLagrange's expansion formula

(Pélya and SzegolGl,p.146, Problem 212) 2.4(8) vields
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Now on equeting the coefficients of z- y We obtain
: NS=pm-qis
ns k
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N

which on meking use of

n n
(10) Z A(x,m) = I A(n-k,n)
k=0 k=0

takes the form,
~pFNS—-qus\

. 18-k
(11)  f£(n) = 3 =2x(1=Qk )’(-1)ns F(k).,

k=0 ~PAHNS-~-qNns ne-k

Further, in view of the relation,
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K —-Q k], o + k\-
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k \ k

nsx / ~ptns-qns'
(-1) can be put as

ng-k

p+ans-k
R+gus-ns
P+ans~k ns-k

and thus (11) yields
p+gns-k

ns
(13) f(n) kzo %:%m( (k)

ns-~k

On the other hand, the comparison of the coefficients

of /S in the equation (8) for n # ms, m=1,2,... gives

x [/ f-p-qn

n
_ =P+ (1~q) (n~-k) ‘
(14) 0 = kEO Aboqn (-1) . F(n-k) ,

which on using (10) and (12) leads us to

(15) z %"%"%%FEEE F(k)=0 ; n £ ms,
k=0 n-k

M=1,2435000,



hence the Theorem 5,

Next, if we let

n ) p+qn-k\\
= kel ¢

16) f(n) = 3z B ) F(x)

(16) Fm) =z B x| ,
" then we have
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which in view of 2.4(8) can be exprecssed in the form

© _ n o ~ k  p+gk~-k . q
T fn)t = ¥ Pkt x , X =1+ tx
n=0 k=0 :
o0 k Q_-=1 -1
= ¥ PMx)u , u = tx = (x=-1)%X
k=0
Therefore,
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=0 =0
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n=0
o0 — n o0 ¢ p‘;’(in—n ) k
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© . on x (P+a(n-k)-(n-k) _
(17) = Z u 3 (-1) f(n-k),
Nn=0 k=0 k

which on equating the coecfficients of u" leads us to
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'n w7 Pra(n-) - (n-k)
(18)  F(n) = T (-1) & Faotc).
k=0 k

The use of (10) transforms (18) to

n noyx [/ Prak-ks -
(19) P(n) = T (-1) { f(x).
k=0 \ n-k -

Now, if we assume the relations (2) and (3), then

in view of (2)
(20)  T(ns) = f(n) ,
and in view of (3)
(21) E(l’l) = Og fOI’ n 7-[ mSg m o= 19 29 ® s 9

Thus on making use of (21), (19) reduces to

I4 h -
’{Il :‘i " Negk / p+gske-sk
(22) F(n) = éS (-1) ” & \\

T (sk)
n-sk ,/ ’

which in view of (20) gives us

» . sl p+gsk-sk
(23) B(my =24 Ly | > £(x),

k=0 \\ n~sk

We, thus have the following converse of Theorem 5:
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Theorem 6:

If .
. o D+ 51
(24) f(n) = ;n Eig%‘;.% F(x),
k=0 prasll= \ sn-k
and
n /’p+qnqk‘
(25) by Eiﬁ%:§- >ZF(k) =0, n £ msgy, m
k=0 PN nx -
then
In/s) negk [ Prask-sk
(26) F(n) = I (-1) (k).
=0 n-sk
Theorem 5 and Theorem 6 may be combined int
following:

Theorem 73

.
Ay

b/s]  nesk / P+gsk-sk
(27)  B(n) = £ (~1) ) £(x) ,
k=0 \\ neek
if and only if
s _ [ prasn-k .
(28) ’ (n) k=0 p+gsn-ic \ ank (x),
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= F(k) =0, n # ms, mw
(29) p REAR=g. ’ |
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It is also worth mentioning here that if we

the series transform (1) symbolically in the form

192,¢-u

o the

1923o0¢

denote
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(30) F(n) =7y 2],

i
then the following theorem on convolution may be

easily obtained by following the method used in Theorem 3.

Theorem 8 s
If
(31)  F(a) =1, [£@)],

(32)  G(n)

it

Tq Eg(n):l ’

and if, (F * G) (n) and (f * gj (n) stand for the series

convolutions defined as

n
(88)  (F*o)@) = 3 P(3) 6(n-3)
"_]x

n
(3¢) (£ * g)(n) ="20 £(3) g(n-j) ,
J=

then
5 (F*G)n) =T | (f* g)(n) |
(35) Ym) =1 (E X em) ],
that is, the convolution of the T~ series transforms of two

functions f and g is the T~ series transform of the

convolution of f and g.

. C
4.4 EXPANSION OF 2 IN TERMS OF g, (%,1y8)

The explicit representation 4.1(1) can be written

in the form
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which on being compared with 4,3(1), with D
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;
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—(r—s)/s, readily yields the expansion (or” thm xmverqlgn
formule of 4,1(1) ) formula

G ee
G Teg Ik
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n 1 c+rk/s .

The inversion formula (2) may also be expressed in
the following alternative forms:

(3) <

il
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(Sn"k)!(c)(rns)n+ki? gk(x,r,s).

sn (-1)
(4) =" = -»\—1;7- I
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In view of 4.3 (3), we also have

: n (~1)n"k (e+rk/s)(c)
- (5) T

m/s ,Sro oy L
ko (B=k)! (c) - glxr,e) =0,
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forn # ms, m = 1,2,3,..,

When g =

(4) evidently reduces to 3.3(2)
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() o ~Pm 3 ()
\F‘n k=0 (n“‘k) i

(c+xk) ¢
g (x, 7 1)
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which can be further particularized by taking r = 2 and

replacing x by -4x ; (6) would thus simplify to 1.2(14)
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