
CHAPTER - VI

B IORTHOGOlMAli POLYNOMIALS

6.1 INTRODUCTION

Besides the classical orthogonal polynomials and 

their various gerierblizatiolis discussed in eairlier chaptersf 

the dlaSs of polynomials (Chapter II5 eqn.2.l(3) )

embraces yet another interesting set of polynomials in its 

fdlds of generality! This set occurs in our .study of 

biorthogonal pair of polynomials associated with Jacobi . 

weight function. As mentioned in Chapter I, the notion of 

biorthogonal pair of polynomials was introduced by 

KonhauserLlJ according to whom two sets of polynomials 

^(x) | RjjjCx) being a polynomial of degree m in the 

polynomial r(x)|,. and j's^x) |Sn(x) being a polynomial 

of degree n in the polynomial s(x)j are said to form a 

biorthogonal pair of ■ polynomials over the interval (a,b) 

with respect to an admissible weight function p(x) and 

basic polynomials r(x) and s(x) if

b
(l) / p(x) Rm(x) S^x) dx

n'

= 0, m,n=0,l,2,..., m ^ n , 

4 0? m = n.

Among those who contributed to the' study of 

biorthogonal polynomials associated with the weight function
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x® e"oc , the names of Konhauser (CQ » GO )» Oarlitz £6 3 

and Sri vast aura ( Ki » 0-21 ) are worth mentioning.

Prabhakar and Kashyap [l j studied the biorthogonal polynomials

suggested by Legendre polynomials and the particular case

(afO)
(x) of Jacobi . polynomials.

In this Chapter we present oiir results related to 

study of the polynomial sets in powers of basic polynomial;:

r(x) s= and s(.x) = (^g®), which we denote byk l-x>

(a,P) (a,p) '
T/n (x;k) and (x;k) respectively,

These polynomials satisfy the biorthogonality condition:

(2) J
n,m

1 1 a
,2 C1^

|3 (a,p)
F.n

(x|k)

= 0 » m ^ n 

£ 0 , m = n,

(a,p)
Xm (x;k)dx

which quality them to be called as the pair of biorthogonal 

polynomials over (-1,1)"with respect to the weight function

(i=S) (i±^) , Re(a), Re({3) > - 1 and the basic

1 k *
polynomials (-^y) and
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This chapter also contains the evaluation of an n^ 

order determinant

Kfi-i
(aj+b)i-l

v/hich we required during the course of our-study.

k

(1)

6.2 THE POLYNOMIALS IN (lj=2£)

In terms of the factorial notation
T-*\

(a)n = a(a+l) ... (a+n-l) = ? a ^ 0

w.

thwe consider the n1^ degree polynomials in k

(a»P)(S) W„ (x;k) n
(l+a)^ n (—n)^ (l+of+(3+n)-^.^

n!
n
S

0=0 31 fl+“>kj (¥5
kj

as members of one set of a biorthogonal pair associated with 

the admissible weight function p(x) = ,

Re(a) > - 1, Re(p) > - 1 on the finite interval k

being a positive integer.

This definition is suggested by that of the classical

Jacobi polynomials
(a,p)

Rji (x)5 to which (2) would reduce



7
. (a,p)

Ws.cn k - 1. Vv,„ (x;k) may also be written in
n

kypengeometric form as

(l+a) p(3) (x;k) = ——£ k+1 k
n

*-n5 ^ (kj l+oc+p+n) j

/l—X\ 
V 2/

k 51+OC)

k

with &(m; X ) as before denoting the set of parametors
£ \+i
m ' m »• • •»

4m - 1
m

In order to prove that the set of polynomials

_(asf3)
'n (x;k) and th

(a,|3)
e -^n (x;k) satisfy the

biorthogonality condition 6.1(2),it is sufficient to show that

(4) /(!0a+1 dyf -
wn

(xjk)dx — 0? i—0j15,.,,n—1, 

^ 0, i = n,

and

(5) r1/l-x\a+'tcl ^1+xxP (a»P)
i ( ST) *n (x;k)dx 0 5 X—0 91. 9«• • 9 Ji—J, 9

^ 0,' i»n.

We first prove the condition (4). Denoting the left 

hand side of (4) by I, w and substituting the represents
i,n ion
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(2) for
_(a,P)
Wn (x;k) in (4)', we obtain,'

I..x,n
(l+a)n
n!

n
2

3=0
(—^) j (l+g+ p+n) ^ 

3 !(l+a)k;j L
/ ,i_xxa+i+ki•^-C 2 )

-1 ^

2 l(g+l) (l-fa:)n n (-n).. (l+a+(3)n+k^ pCa+i+kj+l) 
(l+a+S3)n"~~ 3 ! (1+a )k^ p( a+i+k j+p+2)

2,T(1+a-t-n) T(l+B) J , . . „ N , .n! JX i+a+jB+n) . ^ i? (a+k3+l)^(a+|3+k3+i+2) .
J ~(J

- an^ffn) nr 1*9) l iu,Wi,.p,n! f(l+a+pir^ .^0 3! Ea(a+1-)i(Q:+?+1+2)n_i^.lJ

where
denotes the shift operator 

Ea f(a) = f(a + k),

men i < n, the expression within the last summation 
represents the nTn difference of a polynomial of degree n-1 
in a , hence Ii?n = 0 for i < n. For i = n, i±>n is

obviously non-zero. To determine In?n we observe that the 
expression for 1^^ may be written in the form

JLD.1+a+n) Ffi+G) ?■ (~n),j (q+kj+i)n
n! *p( 1+a+P+n) ^_q JI (a+p+l+kj+n) *
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Now since (a+p+l+kj+n) is a factor of 

(a+kj+l)n -(-1) (i*+l)n J ? the summation involved in n

may he split into two parts, one of which representing the 
th ,.„„inference of a*polynomial - of degree n-1 in a, vanishes 

so ^n,n re(iuces to

g-Kl±atn) Hl+S+nV (-i)*1 “ (-n),j
n! (1+a+p+n; " .j ! (or.+j3+ 1+kg +n J

n£1=1)__Xll+q+n) Pfl+a+n)
^n!pTl+a+p+n}“^

x a+8+n k n 
/ t (l-t ) dt

0

n
s= ILCrll-. TX 1+os+n) f ( 1+G+n)

We thus get

(6) /(¥)“+n
-1

(a5p)
n (x?k)dx

n
= J..( l4-a+n) P( l-f-fe-fn)

kpCl+a+p+n) (£+em±3,)n+i

For k = 1,(6) leads to the known formula (Rainvillepf} 

Eq. (15), p. 261)
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, . /I —x\ /14.-5A P C Of 5 p) 21(7) / (-g~) ( 2^ pn (x)dx = 2(-l) B(l+a+n,l+j3+n),

where for p = 0 it reduces to (Prahhakar and Kashyap [1] 
Bq.(2.14) )

(8)
■1 1 ^y. a+n oc / C“i“) Vn(x;k)dx

212(-l) n!
Kv k /n+l

‘Ihe proof of the other part of the hi orthogonality
condition viz. (5), would require the .determination of the 

(a»p)
polynomials (xjk), which we do in section 6.5 of

this Chapter. We therefore defer its proof till the
(a, p)determination of the polynomials 3^ (x;k).

6.3 UTTERSE SERIES OP 6.2(2) AID THE
(a,p)RECURRENCE RELATIONS FOR Wn (x;k)

Making use of the definition 6.2(2) it is easy 
to see that the polynomials V^ot»P)(x;k) are generated 

by the relation

(1)' I 
n=0

where v

(l+a+p)n (a»P)
W. n(i+"<x"")j^ n (x;k)t = (1-t) -1-a-p

Q
-A

(1-t)k+1

and
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(2) z3
(l+a)]^j j!

A comparison of (l) with the generating relation 2.1(3)
r cfor the general class of polynomials fn(x) 1 j reveals the

fact that by choosing the parameters involved in the definition 
cof fn(x) appropriately, one can obtain the polynomials

W.
(a».p)
n

Kj(x;k) as particular case of fn(x). This fact

together with the known relation 3.2(8) leads us to the 
inverse series of 6.2(2) in the form

(3) kn

— (1+a) j^n! n
£

3=0 n“0 5 ! (l+aTfTl+a+e+3)]m+^
(a,P)
^ (x;k).

lenFor |3 = 0, (3) would give the expansion of

ain terms of the polynomials V^(x;k) studied by Prabhakar 
and Kashyap [l] .

For the derivation of differential and mixed 

recurrence relation, we: put

-c(4) <gE (v,t) = (i-t) Gr
, s "t-tv {

(1-t) j

It is readily seen that $(v,t) satisfies the differential 

equation
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(5) f(l~t+rt)|| - = - ct $ ,

which in -view of (l) yields the following differential 

recurrence relations.

(a? P) (a,0)
(6) (xll'^a+P+n) I) Wn (x;k) + k(a+n) D V,rn ^ (x;k) 3

(a,p) (a,(3) _
= k(a+6+n) Jja Wn (x;k) - (a+n) Wn_1 (x;k)_J

'n-1

(7)
(a?P) (a,p)

(x-l)D V?n (x;k) - kn Wn (x;k)

(1+a)
n

'n

n.—1 (l+ct+(3) - r ^ oc 5 p ^
2 '■ |k(a+p+l) (x?k)

J V J

(a»P)

and

(a»P) 3
+ (x-l] (k+l) D (xjk)j

. («sP) (a*P)
(8) (x-1)D Wn (x;k) - kn Wn (x;k)

hfgk.. V C-kJ^kl+a+e+k+lj) ,
(l+a+p)n ^ ------- [7S5"----------------(l+a+P)j *j (x;k).

(a,P)
Direct differentiation of W„ (x;k)

n

and use of the relation
("V )n

() - ---------- -£-------- —
n‘k (-irtl- V-n)t
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k(a+n) (l+ce+{3+n)v *{~l) , k (a+k,|5+l)
■ —rra^sr------------(¥) Vi <**> »

which, could otherwise very well "be obtained from equation 

(6) also, lor k = 1, (9) reduces to the well knwon. relation 

for Jacobi polynomials (EainvilleJTfj, p.263 » Eq, (2) )

Further^ combination of (6) with 6,2(2) leads to

(a»j3)
(11) (x-l) (a+(3+n) D Wn (x;k)

(a, (3) 1 (a+
(10) D Pn (x) = “(l+a+3+n) P^

(cc+1) |3+1)

Multiplying both sides of (11) by

differentiating k times we get

= (rf2) (-D k(a+n) (i+a+p+n)k Wn_±
1 ~ p+k+i) k

(x;k)/2 .
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(13)

From 6.2(2) it can be

n

easily seen that 

(xjk) dx

= lZ^-(-1+a+P+n)3u.l /l^x\a+P+n+k («+k,p)
(l+a+nj- ' ~ \ o ') „

k-1
m

n-l (x;k)

which for p = 0 simplifies to

l-x\a+n « J*, . . . , 'l-xxa+n+k a+k
Vn_i(x;k) ,

(14) / (-jjp) D Vn(x;k)dx = (-k)

and. for k=l , reduces t$

(15) /(l^“+P+n D P^’|3)(x)ax =

-n-l
(x),

,-l r- k
&(x)lAs s(x) _ (~=2) = LrWj , by an application

Of the theorem (Konhauser [l], Th. 2.6), it follows that there

exist pure recurrence relations of the form

/l-xsk <<*.P),
( g .) Wn (x;k) “+1 ^ >.P>

x ,• (x,*k) ,
,-i=n-k n,i i

and

n+k
K 2 ) kfi (x?k) = _ S ^ i xi (x;k) »

(a9§)
i=n-l Xi*a- x

where the coefficients 

and independent of x

bn,i ^ axisi are functions of n 

which can be obtained by substituting
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the representation of the polynomials and equating the
ki

in case of tn . and
k+i

powers of (~p) , i = l+l,n,...

/±^x\that of (“IT/ » i = n,n~l, ... in case of an i ,

6.4 EVALUATION OP THE DETERMINANT

TT+blT3 i-1 ,
(cx (3)Before we determine the polynomials 2^ * (x;k)

we prove here a lemma giving the value of the determinant 

>which we shall require in the study of
(a:ih-1
(a.j+h)

3 i-1
■(a,p)

(x;k),

LEMMA 
If
(1) D.a-

th

i13 ~ 1,2,..,n

stands for the n order determinant whose (i,j) element is

Ta]+hT^

then

(8) Dn
■r* 11— X
l\ (ai-ai) /I 
i>3 0 3=1

n(b)3 / |[i(a3+b)n-l
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Proof

Regarding a- s and b as (n+l) independent 
D

variables, D _ in its expanded form can be put over a

n
commonnon denominator (a_j+b)n_^ which is of degree

0=1
n(n-l) in the (n+l) variables. As each individual term 

of the determinant is of degree zero, the value of Dn
sh'buld also be of degree zero. Therefore the numerator must

f

0
2 . 'be a polynomial of degree n ~n in s and b.

If a,- = , obviously vanishes, it, therefore,

Dn
-! “3 ' ' n

follows that the numerator for the value of , must contain
n

a factor of the form J\ (a^ - a.) which is a term of degreei > 3 J
2n - n

Further denoting the successive rows of Dn by

R1? Eg, •■•sRn we observe that

m
A R,

(-1)“ 0>)m(a1)r_1

Y/here
A Rr = Rr+1 - Rr = (E - l)Rr

and since
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m m
A Rr = (E - 1) Rr

= Rm+r ~Q Wl + ••• + ^ Er ’

the operation

rm\
R'm+r

m
Rm+r-l + ••*+ Rr

on the '(m+r)^^1 row of , which is equivalent to adding

to (m+r)^*1 row an appropriate linear combination of upper m 

rows thus leaving the value of the determinant unchanged,
Jj th

changed the (in+r) row into C* Rr .

Performing the operation described above, by taking 

r = 1 and m = n-l,' n-2, 1 successively, the determinant

Dn becomes

(3) Dn = (-1)

n(n-l) 
2 n-l

n.3=1

(b). Ta.+b'/i^
i,j—1,2. ,n.

(3) shows that
n-l

tt
3=1

0>)< is also a factor of the numerator

n7T
n
7T

of D . Since the degree of l\ (a1-ai) 
i> 3 J

/ 0>)i is 
3=1

we can write
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n n-1 n
^ Dn “ cn .0-^ai“aP IL ^,1 ^

i>'.1 " 3 3=1 3 3=1 3

where cn is a constant, To determine the constant cn we 

note that when b = 1, Dn becomes

a2 * * • 3, • + X •“ 1 
J

9 Xj^ — [LjSj*.*}!! 9

which in view of the known result (c.f'.'Davis jit] , lemma 11.3.1)

(5) a. + b .
X J

1,3 = 1,; n

= (a± ~ an) fi (^i - ^) / If (a± + b.) ,

i>3 3 i>3 3 i?j=l 3

has the value

ZL

J'(a 1i>3 /yji^+ i^n~i *
It therefore follows that the constant cn in (4) is 

equal to unity. Hence the lemma.

(3) together -with" (2) leads us to the

COROLLARY;

If

(6) *
D = 
n

1 1 3 j] — 1 y 2 i n ,

then
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*
(7) 3).

n

alikJjL n 
,(-D 2 ft (a.

n

i> j
i aj ) / n (a, + b)

3=1

(a, |3)
6.5 DM'EEMIMATI03J OF' 2^ (x;k)

Let
§. .

1,3

rl/1-X\a+l+k3 P
r axs (&)

■ *P(a+l+kj+l) JXp +l)

T(a+p+i+kj+2)

and consider the polynomials

(ex 9 (3 )
(!) ‘xFn (x;k)

$<o,o) $(0,1) ... <£(0,n-l) 1

$(1,0)

«
$(1,1) ... $(1,n-l)

•
§(n?0) $(n,l) ... -1 n$(n,n-l)(-i=2)

(l) with
^)“+ki xl+X\ ^

^ 2 S

and integrating with respect to x between the limits 

-I to 1, we get
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a+kj (l±£)p ,(a, 
XlT 
xn

(?)
(x; k)dx

#(0,0) #(0,1) ... #(0,n-1) #(0,j)

#(1,0)
•

...
§ (l ,n-1) <#( 1, 3)

•

B
§(n,0) $(n,l) ... ^(n,n-1) #(n,j)

0 for “0 9 1 9 • • • 9 H—l

0 for j = n;

Thus 6.2(5)
r(a»P)

is seen to be satisfied by y (x;k),

(a,0) (ocs {3)
so 'N^n (x;k) is 2^ (x;k) except for a constant

multiplicative factor.

Being, guided by the explicit representation of Jacobi
(a»P),

polynomials to which 2^ (x;k) would correspond, when k=l,

we set

(2) X,
(«sfi)

n (x;k)

f a+1 t(“ITT,
n (a? 13)

n,0 n! n
(x;k)

where A 0 is the* cofactor of the (l,n+l) element of

— _(a,p)
the determinant representation of Yn (x;k).

T,(a,p)
Now if wo expand the determinant for a (xjk)

in terms of the elements of its last column, substitute tho
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(cc, P)
we get (x;k) in the form

(a, B) n r(B) ^ (x;k) = t 0n r (i0r ,
r=0 ’r ^

where

(4) 0 / n'n, r
Dn,r
D _ 5n,0

D.n .r '1:)e^nS co-factor of (r+l,n+l) element of the
vth(n+l) order determinant

(a+l+kj-k)1
Taf p+2+kj-k).

i-1
i»j — IjS,...,n+l,

When p - 0, Dn^r and Dn Q which are given by

(5)

and.

11 Xfy+1x n+rk (‘f'X (-1) 1
a+i+kj-k i—1j 2 j•«,jU+l5i^r+1 

3“1$2 j»#»^n

(6) Dn,o = *n<&)al-l)n 1
a+i+l+kj-k ?i? O' 1^2j .«. ,n

can be evaluated with the help of the result 6.4(5). We 
shall thus get

(a»0)(?) ^..^ ^ C^)n
3=o
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(X. which corresponds to the polynomials Un(x;k) studied hy 
Prabhakar and Kashyap £hj.

Por non-zero values of (3 and k > 1, a closed form 
expression for Dn^r , r ^ 0,n , does not seem to he

obtainable. However Dn^n and can bo evaluated with

the help of the determinant given in the previous section. 

Omitting the details, which are quite straight forward, we 
give below the values of D and D £ .

D..n,n
(a+l+jk-k).^

(a+p+2+jk-k)\ ’ ■“■*3 = 1,2,...,n

nCn-l'i
2 n-1 n= k ,j[ (P+l)j (j)J / (a+P+2+jk-k)^

3 1 3=1
and

D.n,0 (-1)n (a+l+kj-k).
T a+ p+2 +k j -It)'. i? 3 — 1,2, ... ,n

n(n-l)

(“F1),! (-D kS JT (P+1) 3 ( 3)! (Fffin3-1 3=1

n-l

so that the leading coefficient ,(a,p)^n,n ^n (x;k) becomes

(a) n,n
^+n+1^
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After having determined C we can now evaluate
XX j'll

the integral

n,n J± K 2 y \ 2 s h ( a.
n (x;k) 2^ (x;k)dx.

(a,p)
Substituting right hand side of (3) for (x;k)

and making use of 6.2(4) and 6.2(6) we get

1 l~x\a+n xi4.xx^ ... (a»P)Jn,n _ Gn,n ( 2^ w;
n (x;k)dx

n
( ^4-H4-lAn! v k ^n

-(-iJ11 rCl^+n) Jpl+^+n)
kP(l+a+p+n) (^toi) ~

so that

t9) an.h
2 1. (1+ps+n) j (1+p+n)
n.! P(l+a+p+n) (a+p+n+l+kn)

Next, we evaluate the integral
f1(l=£\a+kn/'l±2C\^ Tr'lA

_pv 2 ) (rrv *n (x;k)dx ,

for which both members of 6.3(3) are first multiplied by 
r'l-xxa kL+xx ^ (a»$)
\2 ') \~2~) \ (x;k) and then integrated with respect

to x over the interval . Thereafter an application of
6.1(2) and (9) gives us
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n2(-l) n! p(l+j3+n) p(l+a+kn) 
n! p(2+a+p+Sln)

It- is worth mentioning here that the problem of 
constructing a pair of biorthogonal polynomials suggested, 
by Jacobi polynomials has also been investigated by ■ 
Madhekar and, Thakareflj , but our approach of introducing

the polynomials Wn (x;k) and (x;k) is

entirely different from that of Madhekar gnd'Thakare. It is 
also worthy of note that Madhekar and Thakare's analogue of
(a»P),
Wk) whic11 tlley denote by K^ccPjk,*) is also 

representable in the alternative form '

(a-tf) (a,P)

(11) = 1_
n!

r

• Z (-1) 
s=0
r r C n-s

r-s ) s

where

and
Af(a) = f(a+l) - f(a).
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1 rWhen p = 0, the coefficient of in (H) can ke

successively simplified as "below ;

awhich makes Kn(a,0,k,x) a constant multiple of Un(x;k)

(Prabhakar and Kashyep[l] ); hut Madhekar and Thakare fail 

to take note of the above fact which leads them to make the 

erroneous remark regarding the polynomials studied by 

Prabhakar and Kashyap.

We conclude this Chapter with the remark that as basic
polynomials may be chosen differently, it is possible to have
more than one biorthogonal pair associated with a given weight
function, for example, in the case of Jacobi weight function,
basic polynomials could also be chosen as

]£r(x) = s(x) = (yiP.) ^or w&icil similar analysis can

be carried out


