
CHAPTER 5

BEARIUGS WITH AXIAL CURRENT

in chapter three we saw that significant increases in 

load capacity of hearings could he effected hy the application 

of magnetic fields. In this chapter we study the effect of 

axial current induced pinch on hearings.

In the first of the following sections we study the 

effects of axial current induced pinch on the squeeze film - 

behaviour between (i) two annular disks (ii) two circular 

disks* the non-rotating upper disk having a porous facing 

and the non-porous lower disk rotating.. Rotating porous 

circular disks with no axial current are discussed as a 

special case. In the other section we study the axial 

pinch effect on the curved squeeze film between two 

circular plates.

5.1 ROTATING POROUS AMULffi AND CIRCULAR BISKS

11 co and Hughes £2 6 J initiated the study of 

axial current induced pinch effect on non-porous hearings 

and many others followed. Gupta and Sinha |_27 "2 initiated 

such study on porous hearings by considering porous annular 

disks. They showed that the film pressure, the load capacity
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and the time of approach increased due to the pinch. More­

over, an amount of load could he sustained by the hearing 

even when there was no flow. Gupta and Patel £281 extended 

the analysis £27 1 hy including the effect of velocity 

slip at the porous boundary, later, Hingu £29]] considered 

the effect of axial current induced pinch on porous 

circular disks.

mi £23]] analysed the squeeze film 

behavl our between rotating porous annular disks. He showed 

that the effect of rotation was to reduce pressure, load 

capacity and response time. Ghe criteria under which the 

inertia effects could he neglected were also given, 

prakash and Yij £541 extended the analysis of «u £23] 

to include the effect of velocity slip at the porous 

boundary. They showed that the effect of velocity slip was 

to reduce the load capacity and the response time further.

HI the above studies on porous bearings 

gave the results in terms of the Pourier-Bessel series*

Patel £30! simplified the analysis of axial pinch
1

effects on non-rotating porous annular and circular plates 

by using Morgan-Gameron approximation. Sing £241 presented
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the analysis for the case of squeeze film behaviour between 

porous annular disks with the non-porous disk rotating and 

the non-rotating porous disk approaching the first one 

normally. He utilised simplifying assumptions to obtain the 

solutions which are quite easy for computational purposes*

Here we apply the method of Sing [_241] to 

determine the effects of axial current induced pinch on 

rotating porous annular .as well as circular disks.

The flow is axisymmetric. The induced 

,magnetic fields in the axial and radial directions axe 

negligible. The radial velocity components of the fluid 

in the film and the porous regions are so small that 

induced axial electric fields can be neglected. It is 

assumed that all the inertia terms except the centrifugal 

force term can be neglected.

5.1.1 Mathematical formulation'

Each of the bearing configurations 

consists of a non-rotating upper disk which has a porous 

facing of'thickness H and ^ich moves normally towards the 

parallel lower disk which is non-porous and rotates at an 

angular velocity -A— (Pigs. 12 and 13).
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Application of a potential between the 

conducting disks produces an axial current density J 

between them. J gives rise to an azimuthal magnetic
iy

induction Bq.; Interaction of Jy and Bq provides a 

radial body force proportional to, JyBQ which results 

in the pinch effect that can increase the load capacity 

of the system.

In the present case the equations 

governing the flows in the two regions take the following 

forms :

Film region :

JyB9 8e
dr + P-
~2 3 w

a2 3 u
9y^"

QyC

0 = 8y
-2 3 v
dy2

(1)

(2)

(3)

1
r

JL
8r

(ru) + = 0 (4)

Porous region :

¥
r

(5)
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7
y

■k SB 
ft dy (6)

(7)

where u, v and ¥r , ¥y are tlie radial and axial

components of the fluid velocities in the film and the 

porous regions respectively, and w is the tangential 

component of the fluid velocity in the film region.

Equation (2) can he integrated with the boundary 

conditions

w = r _n_ when y = 0 and w = 0 when y = h 

to obtain

Integrating equation (3) twice with respect to y, 

we obtain •

w (8)

/ p dy = jxr + C-jy + Cg , (9)

where 0^ and Cg are functions r only

Using the boundary conditions



'0 0 and dh k / SB \dt jx K ay ;y=h

ai7
(10)

in equation (9), we obtain

Cg = 0 and P ~ ^ jjt " jT ( W
prom Maxwell's equations and tlie Ohm's law* 

be shown that LZ7l

Be = 2 Fe Jy r'

The total current I is defined as 

rl
I = / 2ttr Jy dr,

(11)

it can

(12)

where r = 0 in the case of circular disks, 2
so that

. (r| - 4 )

(13)



From equations (12) and (13) we find

*JyBQ = c r, (14)

where

2ic2(r| - r2 f
(15)

From equations (5) - (7), we have

1 J_ r-r -S. , P* r2v _ or 3? (r ar + ° r } + ^ " 0> (16)

using (14).

Averaging P over the thickness H of the porous 

facing and using

( 8P
ay 'y), h+H = 0,

equation (16) yields

( ^ )K 8y 'y=h h. j_ f m.r ar ' 0r
*

*■ 2 \-I* c r } $ (17)



sl29 i

where

P
- ll-fH
g / P hy.

Using equations (11) and (17) in (9) and then 

differentiating it once with respect to y, we obtain

dv * /u dh M 1 
p ~ P ay + P- “ h dt + h r 8r r

* 2n + c r )

where

P
1
E

h
/ P dy.

Introducing equations (8),' (14) and (18) in (1) , 

we have

(18)

0r v ay

.Bir1- n (r ael 0y\ -i „ „ £%.
+ ¥ 8r Lr ar ^ 0r + c 1 ' -J r (19)

Using equation (4) in (19) and rearranging,' we obtain

9£_
dr

kH 3+ c r + gr [_jr grrii/r£ + c* -i
Lr ar ' 8r t J -*

* 2>
ar

-/* c a u + _5
dy2 ar

(20)



*120 i

Using the dimensionless quantities defined "below

^ ^ |

r = r*3^, y = y*h0 , u = u»U, p = p P0 »

p _ p, Pq , h = h h.Q

and assuming that hQ is very small compared to x±

so that quadratic terms of ~ may "be neglected as
1

in £243 , equation (20) reduces to

. #»SE—
»

ar

* 2 . c r-^’ /u'Ur-j^

Pq^q

9
8 u*

ay
?j2

2 a-p r-T -H- r'

0
(1

j

i')2_
h'

Reverting "back to the dimensional variables, 

it takes the form

■2E-. + c*r
8r.

(21)

Solving equation (21) under the no-slip 

"boundary conditions on "both the surfaces, 

we obtain



u = - g—- ( |§ + c*r) y(h - y)

+ ^L Cci -f. ) - (X - £)4 J. (22)
12 p.

Integrating equation (4) with, respect to y across 
the film, using the condition vq = 0 and then substituting 
(22) in it, we have

:121;

1 ifr , c*r2s r dr ^ dr + c r ; _ 2- 
Pjx.

nji ci
hl

M _
ix r

i a / ap
“ dr K dr

c V) 3 (23)

Assuming that the mean pressure p in the film 
region and the mean pressure P in the porous region are 
equal at any r for small values of H/r^, equation (23) 
may he written as

i a_
r dr Lr dr 1 ^1 + 12 kH

h3
) P*-q

= fP-rt+ 12 h_
3

c*(l + 12
h'

kH
h3 (24)
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5.1.2 Solutions for rotating porous annular disks

9

Solving equation (24-) with, the boundary 
conditions p^) = p(rg) = &ives tlle Pressure 

distribution as

.3 *h p
1 +

(j~*

1 + 12 V'*
c* h3

6 ju h

( ^-1) r2 
rl r2

In ( =- ) 
z2

m ( ^ )r2
]•

33ae load carrying capacity is

IT 3n [
1 + 4 * ,3 e h

1 + 12 y
D

(25)

(26)

and the time taken to reach a film thickness from

h0 to h^ is
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At
°1

/ at 

J0

3n
2

4P r2 D

* e* D’> h2 4 2 ^ u

1+ 40

it /?_oi' rd" D

■tr * 4\ ° r2 D

1L,

/
1

ah
|-S *3ii -f k

git
2-

P- D

4 0 rS D

(Ij^+h-j)2 (k* - k* + 1)

(k*+l)2 (k* - k'h^ + )

23i^-k 

k f3

*

tan" k#

, * _ k f3
(27)
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where r2( 5,
V. o -1)'

h h_
lu0

h
X

1 D A -l
Ua ( ~ )

M.
h3

% (
X0
h

)* , S = JL
20

P s\— r2
"p5

0~"
* 12 Tg juh #

<z j 3c
P0 X 1 +

12 n
/Lnu r^j" D

40 (w-^ c*rg D )

>(28)

1/3

y

By making the current parameter c =0, 

Equations (25) - (27) agree with those obtained hy 

Ting £ 24l.

5.1.3 Results and discussion

Prom equations (25) and (2 6), it may be observed 

that the pressure distribution in the film region and 

the load capacity are increased due to the pinch effect
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lay quantities

and

* rH - r + (r* -4)

In ( ~ )

la ( “ ) ] (29)

) % j 
4 L .4

In ( )

2 s2
-j (30)

respectively,

Equation (27) allows that the time of approach in 

this case is equivalent to that in the corresponding 

non-magnetic case carrying the load

*- j c" r£ D. (31)

Quantities (29) - (31) are the same as those obtained 
by Gupta and Sihha c □ - Equation (26) also shows

A

that a load equal to j o I) is supported by the 
bearing even when there is no flow. There is no 
interaction between the fluid inertia and tie axial 
current induced pinch effect.
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5.1.4 Solutions for rotating porous circular disks

Results for the case of circular disks can not 

he obtained from the solutions for annular disks because 

there is a logarithmic singularity at the origin as can be 

seen from equation (25). Hence we try to construct the 

solution of equation (24) separately in the present case.

fake the radius of each of the disks to be
ftr^ and the current parameter to be e-^. Then, by setting 

rg = 0 in equation (15), we obtain

-r2
* P~e ^

C1 ~ 0 2 4 *
2% r-^

Solving equation (24) under the boundary

conditions

ft
P (Zj) = 0 and p*(0) = finite ,

the pressure distribution is

i 3 **L-E_
2 'jur^h

= -3 [
1+4

1 + 12 Y
*

* 1,3
'1

(32)
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fhe load carrying capacity is

h3w

4 t?FTi11

3%2 [
1 + 4 *1

l + 12 y/
*

* -u3 °1 h

6 yu 3a -1
(33)

She time taken to reach a film thickness from h^ to

h^ is given "by

^ t = — 3tc

4/* rl

(w. s. * r4 )ha rx + a
4 °i ri ;no L 40 fw _ % *W A v

4 °lrl ^

3k*2

' * r ^2n *2 , *1 ^1 + *!> (lcl “ kl + V
In

(k^ + l)2(k^2 - k^itL+ h^)

t 1 2h-, - kf 2 - kf . -t

T3 r811 (P*7r_,~ taa (kfTT^i’ (34ik* f3
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where

and

S-, = 20

kn =

P0

12 y

12 r:
G~-> =

(w 1C * 4
4 1 1r?)

i P h

P0 h'

2 4
1+40

1/3

(35)

Special case

In the special case when c^ =0, the 
corresponding results in dimensionless form, for 

rotating porous circular disks are

1 + 4
P =

h5p*' 
jx r^ h

fl
°1

l + 12 y* -*
(i (36)

W = h*
4,*PTlh

2e2
1+4-

i—i + 12 y* -»
W
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and

A i> =
*5*
----- jj.
fX T±

At- 3ft 1
3 ft PjtL

1 + 40 W

3k*2

/-. * r %2 /n *2 . * TV1 (kg+h^) (kg - kg + 1)
In

<*?- A v

1+ f3 | tan"1 ( 2h^ - kg
_7* "k9 f5

-1 2 “ k2) - tan"*i ( -—5—- 5 1 (38)
kp f3 J -1

wliere

kg
12 V'o

l f% J2. 4- 
3 % 11 -f*

1/3
(39)

40 W

5.1.5 Results and discussion

Equations (32) and (33) show that the
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pressure distribution and load capacity are increased due 

to the pinch effect by quantities

•*

(r2 - r2) and & c*rj respectively. 1

The time of approach, in the present case 

is equivalent to the corresponding non-magnetic case 

with the load

C1

The bearing can support a load

even when there is no flow. Moreover, there is no 

interaction between the fluid inertia and the axial 

current induced pinch effect.

Special case

Equations (36) and (37) give the pressure 

distribution and the load capacity for porous circular 

disks, in the non-magnetic case, taking rotating
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fluid inertia into consideration, while equation (38) 

gives the squeeze time in terms of the film thickness. 

These results are shown- graphically in figures 14 to .

17.

fig. 14 shows the dimensionless mean squeeze
r S;1

film pressure distribution as a function of —- and .
1 1

for a fixed r the pressure increases with increase

fig. 15 shows the pressure as a function of 

the permeability parameter y * and the inertia parame-

ster — . for y* < 0.001 the pressure is same for a
°~i S~

given value of -r . Tbr y* > 0.001 it decreases

rapidly, figures 14 and 15 show that increase in 

the fluid inertia paramter increases the fluid pressure.

from fig. 16 the load capacity can be

considerably increased by taking very small values of
^1

y * and sufficiently large values of .

The time of approach can be increased by 

decreasing the velocity of rotation of the lower disk
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is seen from Pig. 17.

Thus the fluid inertia considerably affects 

the squeeze film behaviour of porous rotating circular 

disks.

5.2 SQUEEZE FILM BETWEM CURVE) CIRCURJIR PLATES

Hays j^5-523 analysed the behaviour of curved 

squeeze film between non-porous plates, one of which 

was curved and the other flat. The film shape was taken 

to be of sine form for both convex and concave pads and 

the minimum film thickness was maintained as constant. 

Recently, Murti £43^] introduced anew exponential 

function to describe the film trapped between a curved 

plate approaching a flat plate by maintaining the central 

film thickness as constant. He observed that the dimen­

sionless load capacity decreased with increasing curvature 

parameter' p, in the case of convex pads whereas the 

effect' was opposite in the case of concave plates, and, 

in fact, it sharply rose after a particular p in the 

case of concave pads.

In this section, we study the axial current 

induced pinch effect on the configuration proposed by



Marti [I 43 3 .

5.2.1 Mathematical formulation

The configuration consists of two plates, each
t

of radius r^. The upper plate is curved. The lower plate 

is fixed and flat. She film thickness, as in 2.3.1, is 

taken as

h = cc0 e“Pr , (40)

where. aQ is the central film thickness and p is the 

curvature of the upper plate.

The upper plate moves normal to itself 

approaching the lower plate with uniform velocity aQ.

An axial current J is applied across the plates which
tJ

are assumed to he ideal conductors (Fig. 18). This axial 

current gives rise to an azimuthal magnetic induction Bq.

With the usual assumptions, the governing 

equations are





1 9 f \ Qv 
r 0r + ay 0 (42)
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Prom Maxwell's equations and the Ohm's law, 

it can he shown that £27 ]]

Br 1 Fe Jy r’

and

% r.

(43)

(44)

where I is the total current.

Prom equations (43) and (44), we obtain

where

JyBe

'1

*
c»L 3? f

— fcA>e 1
o 2 42tg 3?-^

(45)

(46)

Substituting equation (45) into equation (41), we have

5 u 
ay:

1 t d£ * T\ 2~ jl ( dr + cl r)- (47)
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Solving equation (4-7) for u with- the boundary 

u = 0 when y = 0, h,
i

we have

u = 2-7 <if + °i •
Equation (42) may he written in the form

/ ? & <ru) 4y+ Th = °*

since the lower plate is fixed .

Since

vh = a0 *

equation (49) takes the form

q/ | £ (ru) ay + i0 =0

Substituting (48) into equation (51) > we have

= 12 p. (Xq1 d.
r dr

(r g + °* rS) h"

conditions

(48)

(49)

(50)

(51)

(52)
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5.2.2 Solutions

Solving equation (52) under the "boundary

conditions

||r = 0 when r = 0 and p => 0 when r = r^,(53)

the pressure distribution is given "by

*0? 

Pi «o

* 3C1 ttQ
o 2 »2 Fl “0

<r!5 r2)
J3pr"_ e3^r1

(54)

The load capacity is given "by

* 3C1 a0

2% jx | cxq ] r^ 8 ju aQ

oe ^(l-spr^ )- 1

6^T1
(55)

The time for a reduction in film

thickness from aQ1 to aQg is



si 37

2% u
At = --------- -—-------- i. ( _i~ _  ■?• . )2 ' 2 2 }

a02 tt01 '

1 - (1 - 3pr2 )
3pr2

e

6p2
(56)

5.2.3 Results and discussion

When c* = 0, equations (54) - (56) agree 

with the hydrodynamic case of Murti jl43”j.

Equations (54) and (55) show that the 

pressure and the load capacity are substantially 

increased due to the pinch effect "by the quantities 

#
■A (r| - r2) and ^ c* r^ respectively.

Equation (5 6) shows that the time of

approach is increased by the pinch effect and that

it is equivalent to the corresponding non-magnetic
it * 4case with an equivalent load W - 4 °i rl ’ Erom
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equation (55) , when there is no flow, a load equal to

— r^ is sustained by the hearing. Increases in pressure,

load capacity add time of approach are the same as those 

of exact analysis of Hingu £29 33 and of the approximate 

analysis of Patel jZ 30 on the porous squeeze film 

between parallel flat plates. As they are independent of 

j3, these increases do not depend on the concavity or the 

convexity of the pad.
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