CHAPTER 5

BEARINGS WITH AXTAL CURRENT

In chapter three we saw that significant increases in
load capacity of bearings could be effected by the application
of magnetic fields. In this chapter we gtudy the effect of

axial current induced pinch on bearings.

In the first of the following sections we study the
effects of axial current induced pinch on the squeeze film
behaviour between (i) two amnular disks (ii)- two circular
disks, the non-rotating upper disk having a porous facing
and the non-poreus lower digk rotating. Rotating porous
circular disks with no axial current are discussed as a
special case. In the other section we study the axial
pinch effect on the curved squeezse film between two

circular plates..
5.1 ROTATING POROUS ANNULAR AND CIRCULAR DISKS

Elco and Hughes [ 26_] initiated the study of
axial current induced pinch effect on rnon-porous bearings
and many others followed. Gupta and Sinha [ 27 | initiated
such study on porous bearings by considering poerous annular

disks. They showed that the film pressure, the load capacity



$113s
a;nd the time of approach increased due to the pinch. More-
over, an amount of load could be sustained by the bearing
even when there was no flow. Gupta and Patel E28] extended
the analysis [ 27 | by including the effect of velocity
slip at the porous boundary. Later, Hingu [ 29 ] considered
the ei‘:fect of axial current induced pinch on porous

circular disks.

Wu [237] analysed the squeege film
behavi our between rotating porous annular disks. He showed
that the effect of rotation was to reduce pr‘essure, load
capacity and responsge time., The criterig under which the
inertia effects could be neglected were alse given.
Prakash and Vij [ 54 ] extended the analysis of Wa [ 23]
to include the effect of velocity slip at the porous
boundary. They showed that the effect of velocity slip was

to reduce the load capacity and the response time further.

All the sbove gtudies on porous bearings
gave the results in terms of the Fourier-Bessel series.
Patel [[30_] simplified the analysis of axial pinch

effects on non-rotating porous amnular amd circular plates

by using Morgan-Cameron approximation. Ting E24 ] presented



s114s
the analysis for the case of squeegze film behaviour between
porous anmilar disks with the non-porous disk rotating and
the non-rotating porous disgk approaching the first one
normelly. He utilised simplifying assumptions to obtain &he

solutions which are quite easy for computational purposes.

Here we apply the method of Ting E24] to
determine the effects of axial current induced pinch on

rotating porous annular as well as circular disks.

The flow is exisymmetric. The induced
magnetic fields in the axial and raﬁial directions'are
negligible. The radial vélccity components of the fluid
in the film and the porous regions are/so small that
induced axial electric fields cam be neglééted.llt is
assumed that all the inertia terms except the centrifugal

force term can be neglected.

5.1.1 Mathematical formulation’

Bach of the bearing configurations
consists of a non-rotating upper disk which has a porous
facing of thickness H and which moves normally towards the
pargllel lower disk which is non-porous and réﬁates at an

angular veIOCity N (Figs. 12 and 13).



Fig. 12. Rotating Porous

Annular Discs.
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Application of a potential between the
conducting digks produces an axlal curreﬁt density Jy
between them. JY gives rise to an azimuthal magnetic
induction Be.;Interaction of Jy and Be provides a
radial body force proportional to, JyBe which results
in the pinch effect that can increase the load capacity

of the systen,

In the presemnt case the eguations
governing the flows in the two regions take the following
forms s
Film region :

2 2

W 5 au
e - P @R , (1)
0 = —
P N .
0 = -8 4 Qéi ' (3)
1L @ oV
T 3 (zu) +-6§- = 0 (4)

Porous region
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. -k @ |

o= TR (6)
oV

l @ .

o (T V) + =0, : (7)

where u, v and V. s Vy are the radial and axial
components of the fluid velocities in the film and the
porous regions respectively, amd w ig the tangential

component of the fluid velocity in the film region.
Equation (2) can be integrated with the boundary
corditions
W =r.n. wheny =0 and w=0 when y = h
to obtain

w =7 o (1-L), (8)

Integrating equation (3) twice with respect to ¥,

we obtain . )
J pdy= pv + 07+ Gy (9)
where Gl and (}2 are functions Bf r only.

Using the boundary coenditions
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dh Xk

- - k(&
VO-—Oand Vh“d’c"}z(ay_)y:h (10)

in equation (9), we obtain

h
. 1 plin _k, &y
(;2_.0 and Cl"hofp dY"hEit lu(ay)Y=h]° (D

From Maxwell's eguations and the Chm's law, 1t can

be shown that [ 27 ]

1
By = 5 P Iy To (12)

© y

The totsl current I is defined as

T.

1
I = [ 2grr Jy dr,
To
where r2 = 0 in the case of circular disks,
so that
1
J. = o (13)
2 2
J n (rl - rz )
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From equations (12) and (13) we find -

*
JyB@ = ¢ T, (14)
where
2
eF = fle 1 : (15)
- 2
25 (r?~ - 2 )2

From equations (5) - (7), we have

; 2
1 2 oP * 2 o°r
r or (x ar T C T )+ 5 5 =0, (16)

using (14).
Averaging P over the thickness H of the porous

facing and using

opP

equation (16) yields

*
H D .88 * R
i.- ar (I’ 4+ C r )’ (17)

(£)
oy ‘y=h or
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where

hed
S P ay.
h

)
I
-

Using equations (11) and (17) in (9) and then

differentiating it once with regpect to y, we obtain

*
av * dh kH 1 B or * 2
p-—-:}l-é-i+12 “%E%‘*E‘Eé‘f(r‘ai‘*““)’ (18)
where
h
* 1
P =Hofpdy.

Introducing equations (8), (14) and (18) in (1),

we have

*
g‘% +cir ~rﬂ—03(1~%)?+;15§£(331)

kH 1
+'E‘8E GI‘(I +CI‘)] }1 (19)
Using equation (4) in (19) and rearranging, we obtain

39 kH 8 2
T +°r+'E'arErar(rar"'° ) ]

=R Eu""aéfir or (ru)}:[+/7r_n_(1-h) . (20)
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Uslng the dimensionless quantities defined below
1 | | ¥ * *!
I"—‘I’I’l, yzyhc,u=uU,P =P Pg o
% %1
P=P pyo B=1hihy

and gssuming that ho is very small compared to

1
h
so that quadratic terms of 59- may be neglected as
1 )

in [247] , equation (20) reducesd o

* 2 . 2 2 '
ap*' . c I‘lI" ”lu. Url 0 :u-' N p rl-—r)-- ! (1 _ 1!)2
= 3 .

or' Po pohg oy 2 Po nt

Reverting back to the dimensional variables,

it takes the form

6* * o u 2
9L 4 o'y =p =5 +Prar-(l-L)

(21)
or.

Spdving equétion (21) under the no-slip
boundary conditions on both the surfaces,

we obtain
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a -_-'--2@-}‘;—‘-«(—2% +c'r) y(h - )
3 . -
s B2 poalz[a-Ly-@-D%]. (e
lzlu . .

Integrating equation (4) with respect to y across
the film, uging the condition vV, = 0 and then substituting

{22) in it, we have

*
2
L g - ged
1 ja ¥H 1 d dP
h3 Eh —'—i-r-gf(rdr-i—cr)] (23)

Assuming that the mean pressure p* in the film
region and the mean preésure P* in the porous region are
equal at any r for small values of H/ri, equation (23)

may be written as

] L

%Er%i(l+12§H p*}]

3 n kH
5P.n..+12}1 3 —zc(1+12h ) (24)
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5.1.2 Solutiong for rotating porous annular disks

L2

Solving equation (24) with the boundary
conditions p(rl) = p(I‘z) = 0, gives the pressure

digtribution as

o .
hs % 1+ 4 ;* C* no
2w T O 12 y* 1
i 1+ 12wy 6 i
r
ri _,r2"r§ In ( Eg-) ‘
("“‘l)l_g 5 Ty :]- 1 (25)
T2 "2 1n (=)
T2
The load carrying capacity is
s
1+ 4 = * .3
e _ o [ ot . 2E ] D - (26)
- 2 - * -
i 1+ 12y 6p K

and the time tszken to reach a film thickness from

hO to hl is
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t 4
At:.fldt:..% E o
+ _ % 4 2
0 (w T e rzD) 0
I
. 1 . fl dh
2.
l+%1cﬁ_n_1'21) ]l ES+I§3
w-LEc*rtyp
4 2
4
el
- 7crg )by 1+ 75 ) ]
. W 4—_-CI'2D
-~ 2 "
1 L (k*+hl)2 (k" -k +1)
C TR g ‘ 2
K 3 -
3 & n® (" - K'h o+ hgl )

+ Y5 § tan™t (

- ¥
2h. -k *

1 - -
— )-tanl(gm*k)ﬂ
kY3 k'V3

(27)



where 2 ™
T
1 1 2
4 (_2"' )
- n - by Ty To
h - Jrmm— v hlzw 3 D =——~l_ :
By ) 4 Ty
2 In ( =)
T
2
h z r2
proEl Ly (0y3 5.8 SR
- - ¥ - ’
h5 0 h 20 Pg >(28)
" 12 rgp.ﬁ * 12 V/o 1/3
PO l+Z-6'
3 4

By making the current parameter ¢* = 0,
evquations (25) - (27) agree with those obtained by
ming [ 24_].

5.1.3 Results acd digcussion

From eguations (25) and (26), it may be observed
that the pressure distribution in the film region and

the load capacity are increased due to the pinch effect
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by quantities

e 2 % e ié )
5 [rz—r + (r] -15) m] (29)
o
and
2 .2 :
%ﬂ'[rﬁ'"rg'(rluii) .} (20)
"y
regpectively.

Bquatien (27) shows that the time of approach in
this case is equivalent %o that in the corresponding
non-magnetic case carrying the load

- * _4

: ‘W—%c Ty D. (31)
Quantities (29) - (31) are the same as those obltained
by Guptae end Sinha [[27]. Equation (26) also shows
that a load equal to %— c* rg D 1is supported by the
bearing even when there is no flow. There is no

interaction between +the fluid inertia and fhe axial

current induced pinch effect.
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5.1.4 Solutiong for rotating porous circular disks

Results for the case of circular disks can not
be obtained from the seolutions for annular disks becauge
there is a leogarithmic singularity at the origin as can be
seen from equation (25). Hence we try to congtruct the

solution of equation (24) separately in the present case.

Take the radius of each of the disks to be
r and the current parameter to be Ci‘ Then, by setting

Ty = 0 in equation (15), we obtain

2
& PRel
1 211;21':?:

Solving equation (24) under the boundary

conditions

p* (z;) =0 and p*(0) = finite,

the pressure distribution is

S

*
3 % 144 = oy b’ 2
I_l.g_:z_g[ 0_1*.. _](1-32—). (32)
}urlh 1+ 12V 6}1h rq
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The load carrying cazpacity is

noy B L 4"1 C:T n®
4. B 1+122p% 6pb 4 (55)
’ + 12 u
prl h /

The time taken to reach a film thickness from hO to

hl is given Dby

4
M T
At = - %% - T -
4 3 .
(w-%c r¥in {:1+——-— ]
I % f1/% 40 W - %_cirf )

® *2 3

’ * - 2, %2 *
1 [lln (g + 1)) "0 "= &y + 1)
5
Bky

* S %0 ¥ D
(kl + 1) (kl - klh1+ hl?

k
1 1 =1 1 .
—_— ) . tan ( — , (34)



where N
P2 " 12 r° pn
S B 1 - 1
- , =
1 20 1 h3
Pg Pg
and =
12 W 1/3
) .
Ky = ‘1 - .
1 + 3 il
O *
40 (w - %—; cq ri)

Special case

In the gpecial case when c; = 0, the
corresponding results in dimensiounless form, for

rotating porous circular disks are
S

l+40—3"
_ nou*: 1 r2
P =- P =3 (1-=5)
rr’ h * : S
F 1+ 1loy 1
S
1
1+ 4=
= __ k% zén_.[__..__i._]
prii 2 Lyt

:128:

(35)

(36)

(37)
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and
2
W
0 37 1
AT = -7 At = o
Py 2 s w Pt r}
1+ yYs) T
* o 2 *2 *
1 [: 1 (k +hl) (k2 - k2 + 1)
) *2 2 * 2 %2 * - -f
By (1 + 1)% (kpo- Ky Bys By)

k, V3 > V3
where
1/3
% 12 y/O
ko = - 2 4 (39)
: 5 T pLory A
1 4+ & —
40 W

5.1.5 Results and discugsion

Bquations (32) and (33) show that the



' 2130

pressure distribution and load capacity are increased due

to the pinch effect by quantities

(rf - ) and % c;rl respectively. '

The time of approach in the present case
is equivalent to the corresponding non-magnetic case

with the load

k¥ L4
W ) cl ri .

The bearing can support a load

=

—\C I‘

* 4
4 1

even when there is no flow. Moreover, there is no
interaction between the fluid inertia and the axial

current induced pinch effect.

Special case

BEquations (36) and (37) give the pressure
distribution end the load capacity for porous circular

disks, in the non-magnetic cage, taking rotating
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fluid inertia into consideration, while equatioh (38)
gives the squeeze time in terms of thé film thickness.
These results are shown graphically in Figures 14 1o .
17.

Fig. 14 shows the dimensionless 'mean squeegze

S
film pressure distribution as a function of I ana s .
1 1

For a fixed r +the pressure increases with increage
S >~ - N
in E% .
1
Fig. 15 shows the pressure as a function of

the permesbility paremeter Y = and the inertia parame-
S AN

ter 5% . For yf‘5_0.001 the presgure is same for a
1 ,
S
given value of g% . For yv* > 0.001 it decreases
1.

rapidly. Figures 14 eand 15 show that dincrease in

the fluid inertia paramter increases the fluld pressure.

From Fig. 16 the load capacity can be
considerably increased by taking very small values of
yv*' and sufficiently large values of 5% .
: 1
The time of approach can be increased by

decreasing the velocity of rotatien of the lower disk
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is seen from Fig. 7.

Thus the fluld inertia considerably affects
the squeeze film behaviour of porous rotating circular

disks.
5.2 SQUEEZE FILM BETWERY CURVED CIRCULAR PLATES

Hays [ 55_] amalysed the behaviour of curved
squeege film between non-porous plates, one of which
was curved gnd the other flat. The film sghape was taken
to be of sine form for both convex and concave pads and
the minimum film thickness was maintained as constant.
Recently, Marti [ 43_] introduced a new exponential
function to describe the film trappel between a curved
plate approaching a flat plate by maintaining the central
film thickness as congtant. He observed that the dimen-
sionless load capacity decreased with increasing curvasure
parameter B. in the case of couvex pads whereas the
effect was opposite in the case of concave plates, and,
in fact, it sharply rose after a particular J in the
case of concave pads.

In this section, we study the axial current

induced pinch effect on the configuration propesed bY
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mrti [ 43].

5.2 .1 Mathematical formmlation

The configuration congists of two plates, each

1
is fixed and flat. The film thickness, as in 2.,3.1, is

of radius .. The upper plate is curved. The lower plate

taken as
n o= oy e PF (40)

where. ay is the central film thickness and g is the

curvature of the upper plate.

The upper plate moves normal te itself
approaching the lower plate with uniform velocity &O.
An axial current Iy is applied across the plates which
are agsumed to be ideal conductors (Fig. 18). This axial

current gives rise to am agzimuthal magnetic induction Bye

With the usual assumptions, the governing

equations are

1, d
= = 3% + J,Bg ) (41)

5%13v
o -
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L8 oy
T or (zu) + oy 0 (42)

From Maxwellt!s equations and the Ohm's law,

it cean be shown that [[27 ]

1
BG = 5 Pe Jyr’ (43)
and
5, o= | (44
'mrl

where T is the ftotal current.

From equations (43) and (44), we obtain

where 9
I

S e (46
21 I'l

Substituting equation (45) into equation (41), we have

— p~ed

1 a *
» ) i; ( &% + Cq T). (47
N
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Solving equation (47) for u with the boundary conditions

u = 0 whenh y =20, h,
we hagve
1 d * ;
u o= 2—-,3 ( E§ + ©q T) y(y-h). (48)

Equation (42) may be written in the form

h o 5 .
Of T 37 (ru) dy + v, = O, (49)

since the lower plate is fixed .

Since
vy = g o (50)
equation (49) takes the form
fh L2 (ruyay+ 84y =0 (51)
r gr 0

0

Substituting (48) into eguation (51), we have

H-

a a * 2 3 .
a-f—-[:(ra%-;-clr)hjzlzpae ‘ (52)
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5.2.2 solutions
Solving equation (52) under the boundary
conditions -
%% = 0 when r=0and p=0 vhen r = rl,(53)

the presgure distribution is given by

2 2
ol 3 el g S
— 5 I e -——-—-—-2--—’-— (I'l - I') i . (54)
pr1 % 2 pr1 % gt
The load capacity is given by
-2
38T
3 * 3 1 2
%o w o _ ¢y g - e (1-3pry y-1 (55)
< 4 8 u « 2 4
2w p ldg| x P % 68"z

The time for a reduction in film

thickness from %57 to 250 is
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21‘;}1 1 )
At = P [%(T-"zl*)]
(w-Tec ) %oz %01
2
o 3BT
1-(1—3gri)eﬁl
® _ . (56)

6;32

5.2.% Results and discusgion

When c;’i = 0, equationsg (54) - (56) agree

with the hydrodynamic case of Murti [[43].

Muations (54) and (55) show that the
pressure and the load capacity  are substantially

increased due to the pinch effect by the quantities

*

c f

1 ,.2 2 n ¥ _4 .
5 (rl - r’) and 4 ° 1 respectively.

Equation (56) shows that the time of
approach is increased by the pinch effect and that
it is equivalent to the corresponding non-magaetic

*
case with an eguivalent load W - % ¢y ri . From
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equation (55), when there is no flow, a load egual to

T 5 4

7 % T is sustained by the bearing. Increases in pressure,

load capacity and time of approach agre the same as those
of exact analysis of Himgu [ 29_] and of the approximate
analysis of Patel [ 30_| on the porous squeeze film
between parallel flat plates. As they are independent of
B, these incregses do not depend on the concavity or the

convexity of the pad.
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