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BEARINGS

When two dry metallic surfaces which. are 

parts of a machine move relatively in contact with ehch 

other, friction and wear are caused, while friction 

consumes and wastes energy, wear causes loss of material. 

Urns the life of the machine is considerably reduced. So 

minimize this we insert substances such as viscous fluid, 

liquid metal etc., called lubricants, to keep the moving 

surfaces apart so as to allow them to slide on each other 

with the least effort.

The lubricants are selected according to the 

types of the bearing used. Baulsions of oil and water 

are used as lubricants for cutting tools while water 

itself is used in some marine bearings. Milk and air are 

used as lubricants in the bearings of cream separators and 

in some high speed spindles respectively. In addition to 

their function of reducing friction, the lubricants 

usually perform the additional function of carrying away 

the major portion of the heat generated by friction. Eras,
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the theory of lubrication deals not only with the ways and 

means of minimizing friction and wear hut with the viscous 

dissipation of heat also.

Owing to rapid industrialization there has been 

a spurt in machines and hearings are the most prominent 

constituents of todays' machines. Bearing problems arise

whenever the mechanical engineer has to transmit mechanical
/

power from one point to another, These are similar to those 

faced by the electrical engineer in the transmission of 

electric power. The electrical engineer has to chaose the 

insulators with the same care as the mechanical engineer

chooses the bearings. Cameron |_1 ZI says that the functions

of the insulators and the hearings are similar and the 

outcome of their failure.,, in service is no less serious.

The lubrication of two surfaces moving 

relative to each other depends upon a number of factors 

like load, relative velocity of the surfaces, geometry of 

the surfaces, physical and chemical properties of lubricants 

and the metals out of which the surfaces are made.

The efforts of the lubrication engineers are

all centered around improving upon bearing performance by
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mating use of recent technological advancements. The 

development of powder metallurgy gave rise to considerable 

use of porous bearings. Owing to their low cost, ready 

availability, design simplicity and self-lubricating 

properties* the porous bearings have become increasingly 

popular and practically indispensable for many applications 

in automotive machines, domestic appliances and industry.

i;i Description of porous bearings

. A porous bearing consists of a bearing bush of 

porous sintered metal. Porosity is defined as the ratio 

of pore volume to the total volume of a given sample of 

material and permeability as a measure of the ease with 

which fluids pass through a porous material [Is]. While 

the former is dimensionless, the latter has the dimension 

of the square of length and is independent of density and 

the viscosity of the fluid. Porous bearings were suggested 

in 1920*8, perhaps to improve upon the heat conductivity 

limitations of oil-soaked wooden bearings.

The commonly used porous bearing material (Zs]] 

contains 90 % copper and 10 % tin. After blending 

powdered copper and tin into a mixture, the mixture is
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pressed under high, pressure to half its original volume. 

Then it is sintered into a coherent solid, The bore and 

faces are then sized in a burnishing operation. The 

porosity arises out of the incomplete solidification of 

compressed particles of mixture so that the pores are 

intercommunicating. After their fabrication the pores of 

the porous bearings are filled with lubricant by vacuum 

impregnation. If any lubricant is lost from the film
■t

during operation, it is replaced by the lubricant, stored 

in the pores, which serves as an additional supply and 

which remains effective throughput the bearing life.

1.1.1 Advant age s and di sadvantage s

As the continuity of lubricant supply is 

maintained, porous bearings can run hydrodynamically 

longer without maintenance and are more stable than the 

equivalent conventional bearings. The self-lubricating 

naturee of the porous bearings overcomes the need for 

pipes, pumps, etc. and simplifies the problems of- 

machine design. Moreover, the possibility of soiling 

manufactured articles handled in textile, printing, 

baking and other industries by lubricant drip is
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avoided. She porous bearings can "be easily fitted even in 

positions T/ihich are not readily accessible and. the need for
p *

frequent maintenance is overcome. She friction in porous 

bearings is less than that in the corresponding non-porous 

ones. As a result of mass production, the porous bearings 

are cheaper than the equivalent non-porous ones.

Moreover, in a porous journal bearing the effect 
of cavitation is reduced jZ^H toecause it operates at 

lower pressures than the corresponding non-porous one for 

a given speed. She design of externally pressurized porous 

thrust bearings is compact and there is an even distri

bution of pressure at the thrust face compared to the 

conventional ones. Gas porous bearings are excellent for 

feasibility demonstrations. They are advantageously used 

where large bearing gaps are required and less design 

work is possible.

in spite of the above advantages, the porosity 

introduces some disadvantages^ . also. She presence of 

porosity results in a loss of mechanical strength and a 

reduction in film pressure and hence in the load capacity 

in comparison to the identical non-porous bearings. In 

squeeze film bearings the time taken to attain a
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specified film thickness is also reduced. Efforts to over

come some of the above disadvantages have been made by 

the introduction of electromagnetic effects and making 

the bearing bush to have multi-layered non-homogeneous 

porous housing J_5,6].

1.1.2 Applications

The applications of porous bearings are wide 

and varied. The porous bearings are used in many devices 

such as vacuum cleaners, extractor fans, motor car 

starters, hair dryers etc. They are also used in business 

machines, farm and construction equipments, aircraft 

automotive accessories etc. Heller etaal m 

mention the use of hydrostatic gas bearings in miniature 

tu rbomachinerjr.

Sneck £8^] has given various applications 

of gas lubricated porous bearings. Gas bearing is used 

in the tape-support section of a magnetic recording 

device. The moving tape;-, never contacts the bearing, and 

there is no bearing inertia with rapid starting and 

stopping. Gas porous bearings are also used in precision 

machine tools, fixtures, electrostatic printing machines,
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guidance devices for magnetic film and photographic film 

transports, high, temperature environments as in textile 

industry, dirty environments as in production line 

machine tools, and in optical systems where low friction 

and precision positioning are important, These variety 

of applications show how indispensable the porous hearings 

are to the designers.

It is usually assumed that the type of lubri

cation found in porous bearings, lubricated only by the oil 

initially within their structure, is mixed or boundary. 

Though this might be true for low porosity bearings 

supporting high loads and running at low speeds, for 

lightly loaded high porosity bearings running at moderate 

to high speeds fluid film or hydrodynamic conditions are 

achieved. In the sequel we will be mainly concerned with 

fluid film lubrication in which the conditions of operations 

of the bearing are such that the film of lubricant is so 

thick that metal to metal contact between the moving 

surfaces is prevented and the only friction is that which 

occurs in the fluid film.

1.2 M0DI1IED RETNOIDS EQUATIONS K)R POBOITS BE&RIIGS

The porous bearings operate under complex
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conditions. Their analysis shows that the flow of lubricant 
oceurs in the film region, in the porous region and across 
the interface of these regions. So, there is a coupling 
between the flows in the two regions.

In the following sections we present the 
mathematical formulation of the problems and give the 
derivations of modified Reynolds equations for hydro- 
dynamic and hydromagnetie lubrication and hydromagnetic 
lubrication of a porous bearing with anisotropic per
meability and slip Telocity, which serve as the basic 
equations for the analysis of the problems of porous 
metal lubrication.

1.2.1 Reynolds equation for hydrodynamic lubrication '

In deriving this q equation we make the 
following assumptions: ;

1. The lubricant is Newtonian with constant density 
and viscosity and the flow is laminar.

2>V There are no external forces acting on the 
lubricant. 1

3. The lubricant film thickness is very small in
comparison with the dimensions of the bearing, as



a consequence of which curvature of the film may be 

ignored and rotational velocities may be replaced by 

translational velocities.

4. There is no variation of pressure across the film.

Fluid inertia is small compared to viscous forces.

6. Telocity gradients across the flim predominate.

1 •' The porous region is homogeneous and isotropiG.

8. The flow in the porous region is governed by

Darcy's law.

9* Pressures and normal velocity components are 

continue at the interfaces.

10. Bearing is press-fitted in a solid housing.

Let us consider a fluid film of thickness 

h = h(x, z) between two surfaces with porous facings of 

permeability k (Fig. 1) • The upper and lower surfaces 

move with velocities ( Ug, Yg, Wg ) and ( TJ-p Vp ) 

respectively.

Making the above assumptions of hydrodynamic
/

lubrication, the equations governing the steady flow 

of the lubricant in different regions are
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where q, Y, Y are the velocities and p, Blf Pg 

pressures of the fluid in the film region, and the

the

lower

and the upper porous regions respectively
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Solving equations (1) and (2) for u and w under 

the no-slip boundary conditions

U = XJ2 when y = h, u = when y =

iies when y = w = ¥1 when y =

and substituting in equation (4) we obtain

Sx ( V SB. )
Ox 1 dz ( h" SB. \

0z ;

r [s 1 < vvh)+ & lc w*} + 8(Tn-v ]
Equations (5) - (8) show that P^ and Pg satisfy the 

Eaplaee equation

■\v2 P = 0 (10)

Owing to the continuity of velocities at the interfaces, 

we have

0

and

, SP,Y _ — ( .....1 \
i fx K ay 'y =o

. 9PoY - lL ( —JL V .
2 ju v 8 y 'y = h

(11)

(12)
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Substituting equations (11) - (12) into (9) we obtain the 
modified. Reynolds equation for porous bearings as

0Z ( 3z '

“•/«[ & 1^1 + Vh] + &l <»L + »2>h}

“1 r~ 3Pp 3P1 -t+ 2<T2 -ti)J -12* |_( ( er>y=e J <13>
Corollary 1,(1)

In most applications we consider the upper
surface as non-porous and moving with a uniform velocity U
in the x-direction together with a normal velocity and
that the lower surface is stationary and has a porous facing
of thickness H. So, taking Ug = ¥ , = 0, = Wg = 0,

3PV1 = 0, ^ = P , Yg = ¥k and ( —■ )y=h = 0, equation 

(13) reduces to

( 3a3 M3z )
= 6 + 12k ( dP

ay ) y=o' (14)



where the pressure p in the porous region satisfies 
the Laplace equation

*13:

9 29 P ’ afp
ex2 ay2 (15)

Equation (14) which gives the film pressure is 
a coupled equation consisting of the pressure in the porous 
region. Using the Morgan-Cameron approximation ' 1-1 -n
that, when 1 is .small, the pressure in the porous
region can he replaced hy the average pressure with respect 
to the hearing-wall thickness and which was extensively 
used hy Prakash and Yij and > others:, it is
uncoupled hy substituting '

C S )K ay 'y=0 H ( a2u
as2 (is)

in it. Phus we obtain the modified equation

& |_<hS + £]+ ■h [<**+ 12M) 13
f

Hence the problem of finding the film pressure is

(17)



reduced to the solution of equation (17) with appropriate 
"boundary conditions.

1.2.2 Reynolds equation for hydromagnetic lubrication

(Che problem of using liquid metals as lubricants 
has recently become of interest. She study of the lubrication 
properties of liquid metals shows that liquid metals can 
be advantageously used in preference to ordinary oils in 
space vehicles where extremely high temperatures and 
speed occur, because of their high operating temperatures 
and thermal conductivity. She application of an external 
magnetic field results in electromagnetic pressurization 
in liquid metals owing to their large electrical condu
ctivity. She study of o hydrodynamic lubrication with an 
external magnetic field is called hydromagnetic or 
magnetohydrodynamic (MHD) lubrication.

®he general MHD equations are complicated 
owing to the coupling of Maxwell* s equations with hydro- 
dynamic equations. So, we make the following simplifying 
assumptions s

She Lorentz force Ixl is the only external 
force acting on the lubricant.

:14:

1



2 The induced magnetic fields are negligible in 

comparison to the applied magnetic field.

:15 s

3!. The flow in the porous medium satisfies the 

modified Darcy's law due to fiie £ll3*

Ws consider a lubricant film of thickness 

h = h(x,2, t) within a slider hearing. The slider is non- 

porous and moving with a relative . velocity W in the 

x-direction together with a normal velocity Y^. The lower 

surface has a porous facing of thickness H which is 

hacked by a solid wall. The surfaces ,are supposed to be 

non-conducting while the fluid is considered to be 

conducting electrically. A uniform magnetic field is 

applied in the y-direction as in Fig. 2. The general 

equations governing the flow in the film, region £l2[] are

P (q. V ) 9L = - <71 + ja^ 1 + J x B

Vx B =* ja.Q 3

Vx E = 0

V • B * o 

J = 0

J = cr ( B + | x 5 )

V. i = 0
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Polio-wing the usual assumptions these reduce to

0 (18)SB. £uax + P 0y2 J BnZ 0

_ |E * B- i-* + J S,
02 er X 0 0 (19)

«J = cr ( E + uBn) z v z O'

Jx = < Ex - B0>

(20)

(21)

0U 0V a. M.H + ay 0z o

Prom equations (18), (20) and (19), (21) we have

(22)

du cr
a/ P B, u = ~ ( f| + cr~ Bn ) (23)

z 0

and

m8/ f 0
- ( f2- - cr E Bn ) (24)
ja ' Sz_ _ x 0 ' s '

(Elae velocity Y of the fluid in the isotropic porous 

region satisfies the modified Darcy’s law cun.

S+ v t + f (25)



the Ohm’s law

J = cr* ( E + ~r YxB)
m

and the continuity equation

V.Y = 0

Equations (25) - (2 6) take the form

Tx - - jr < S + \ B0 > 7

where

k 9P
“ ' 9yy p

\ = < I-"- ®* V j

o = (X + % 4 )1/Z ana 

m
B0 \ f cr/ ji

Equations (28) — (30) combined with (27) yield

, or ^ „ -n v 2 O A 8 / 0P rr- T? -R( — + ^ B0) + C — + “ ( — - cr- E„ BrJL / ^
0x ' 3x z ay,2 3z ' 8z x C

Solving equations (23) - (24) under the no

boundary conditions

ms

(26)

(27)

(28)

(29)

(30)

(31)

)=0 (32)

■slip
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u = 0 at y = 0, u=U at y = 3a 

w = 0 at y = 0, w = 0 at y = h
(33)

we have

b_
u < § + Ez Bo> eosh ^ - 1

sinh- (cosh ^ - 1) —'2

*1J
TJ

sinh fl
. 7 Mhsinh r—\

(34)

and

w = M2 ( 9£v 0Z cr* E Bn) x Cr eosh h»

sinh M -
(cosh ~ nl

h,
- I)'

sinh Mh
far,

m

Equation (22) is integrated across the film thickness 

to yield

_a_
8x

h
/ u dy + V, To + & A ay = o (56)



Owing to tlie continuity of normal velocity component at 

the interface of film and porous matrix we have

v0 - v0y = -f < § = 0 <OT>

Integrating equation (32) with respect to y 

from - H to 0 and using the Morgan-Cameron approximation 

and the condition that ( )y = = 0> we have

( \ — Ji- r _JL ( M. 0— 2 \v 0y 'y=0 " "T L 0x dx * z

0Z
iEL » cr- 
5z \B0 (38)

Substituting equations (34), (35) into (36) and making 

use of (37) - (38), we have

Shis is the modified Reynolds equation for the

(39)
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hydro magnetic lubrication of a porous hearing.

Corollary 1.(2)

By making BQ -* 0, equation (39) reduces to the 

Reynolds equation (17) for hydrodynamic lubrication as in

cion.
1.2.3 Hydromagnetic lubrication equation for an anisotropic 

porous bearing considering slip Telocity

So far we considered the porous region, to hare

isotropic permeability. But some foamy materials and

materials male of soft metals |~13]] are found to haye

anisotropic permeability. We consider the porosities to

be m , m - m and the permeabilities to be k , k , k x7 yT z * x y z
in the directions of the coordinate axes, inother 

assumption under which we derived the equations in the 

previous sections was the no-slip condition. But recent 

experiments £14,15 U demonstrated the existence of slip 

velocities, comparable to the mean velocities in the 

porous region, at the interface of fluid film and the 

porous matrix. We suppose that u^ and wQ are the slip 

velocities in the x and g directions. We assume the 

fluid to be compressible with the density variation across



the film to "be -neglected

Hfe consider a film of conducting fluid of thicjfcness

h =* h(x, 53, t) "between two electrically non-conducting 

surfaces. Ihe upper surface is non-porous and moves with, a 

relative velocity U in the x-direction as in I*ig^ 3. She 

lower surface has a porous matrix with anisotropic perme

ability. A uniform transverse magnetic field BQ is applied. 

Making the usual assumptions of hydromagnetic lubrication 

as modified by the above assumptions, the equations 

governing the flow of the lubricant in the film region are

(40)

(41)

(48)

where

M » Bq h± t er/' /T (43)
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She -velocity J of the luhrleant in the 

anisotropic porous matrix satisfies the modified Darcy* s 

law generalized as

—*■ 1 V = - —
V ( iHl . T R \ , V "T 1

x ' ax + k '0 j + y ay J ■ *■;,

+ k ( |E - J Bn
z 9z x 0 >*] (44)

and the 0hm* s law

Y Y■J = cr| x + ETr 1 + 1c - ^2. BQ I + ^ BQ k
L x z x

(45)

Oomhining equations (44) and (45)

f % < II + cr \ B0 ) 1 + ky § 7
+ la ( ®

o2 ( 8z
z

“■ \B0 >*] (46)

- Tx 1 +7H+7Zk (47)
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where

Jc
<x + sr

if. \l/2

x, h,
) /c and cz =

(1 + # ^•)1/2 (48)
*1

Owing to the continuity of pressure at the interface of 

film and porous matrix, we have

P (x, y, a) |‘ = P (x, z)
y = 0

(49)

Rewriting equation (46) at y =0 and using (49) we hare

% = - £ [ 7 < S.+ <r \ Bo \ ( ay V=0 *

^p. ( |E _ o- g Bn ) k 1

tt2!/.. 82 X 0 ' J
^ST

YOx 1 + T0y 3 + T©s k

Equation (42) is expressed as

(50)

JL
ax

h _ n( e f u dy ) + r (vh - v0) + ^ ( f S W dy)
0

h 0 0z 
h - p

+ / dy = 0,

0

(51)
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because P is independent of y.

5Ehe y-conrponent of the fluid velocity at y « 0 is

= V,0y
Is-X
J1

apay 0 (52)

She boundary conditions as in KmUtami and Tin ay Kumar

£l3 2 are

u(h) = U 

u(0) = uQ

where

9u
8y }j = 0

â  ( uQ - bei JQx )

x

and

w(h) = 0 

w(0) = wG

where

( ~ ) ' ay J
a z

y=0 ■MB* (w 5C1 T0Z>
Z

(53)

(54)

(55)

(56)

(57)

(58)
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and

a = x K a
VaT ’ 2

(59)

Equations (55) and (58) yield the exact or the approximate 

Telocity slip model according as i = 1 or S, and 6^ 

is the Kroneeker delta.

Solving equations (40) and (41) under the 

"boundary conditions (53) - (54) and (5 6) - (57). 

respectively, we have

cosh H
h.

sinh ^ -r
fnn , ih -.N

sinh
+ (U Uq cosh )

^1

\1
\

..'sinh h.
(60)



and
|26j

w
= w„ cosh + -i?r ( - cr 1 Bp. )

h. p? a* x 0

cosh
sinh

g- - 1 - (cash ^ - 1)

Wq cosh g-
sinh
_____ ^1

Mb.-1 sinh
(61)

Substituting equations (60) and (61) in (55) and (58) 

respectively and using (50) » we have

-1

«o-|?&rl5 + <r*>700th £>] C«-xPi ¥
h^ sinh g-

< g + ^ Ez V< 5 r sei i * °“x *«* S) ] <*>X °X 1

and

(0E.
' fir,

k

w
II-- '3E.1'Z

o M ts- ~ „  M ., Mh *

r- ej <5 + ^ootl1 ^>
(63)
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cr"* = f k m and. er~ = f k m x * x x z " z z

Substituting equations (60) - (63) and (52) into (51) 

we have the required equation as

JL
6x

tanh Mh

56 x'<1 it + 0”

“ ( f| + cr EM*

x

2h-j
*..(-#-)'

hi

z0' 5 + cr* coth ^ 
x *1 T.

6 z

tajl11 IEj “ 2 taah
^"Tfflr" 1 rm' 1 1 ‘“f* 1 1

/ SL- % v in ;

£ ( fa - O- E Bj 
p dz x O'

( ir)

k
^6ei ~i + °~z

oz

J 

tanh 2K^
ih)

Str “ oott Si
.z h_ h.

tanh

(g)

101 |-1 
1 +2h

(64)
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1

(65)

This is "the differential equation for the hydro magnetic 

lubrication of a porous bearing considering anisotropic

by Kulkami and Yinay Kumar Ql3 ]] for the non-magnetic 

case.

1 .3 REVIEW 01* REEAEED WORKS

In spite of the wide use of porous bearings, 

their analysis and design is of recent origin. This is 

because of the complex conditions under which they operate. 

It was only in 1957, the problem of their analysis was done 

by Morgan and Cameron 9 3 who formulated the Reynolds 

equation for porous bearings considering the flow of the 

lubricant in the porous medium. This modified Reynolds 

equation was solved for the case of a narrow porous

permeability and slip velocity.

By making BQ -* 0; it agrees with that obtained
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journal bearing on the assumption that a parabolic pressure 

distribution existed in the porous matrix in the axial 

direction. Rouleau |~16 J gave an exact solution of the 

above problem dropping the above assumption. Later, many 

investigators tried to bridge the gap between theoretical 

and experimental results of the performance of porous 

bearings by introducing many assumptions and simplifications.

We present below a brief review of related 

topics discussed in this thesis.

Squeeze films between parallel surfaces

A squeeze film is a very thin fluid layer 

between two surfaces which are parts of a machine, having 

normal relative motion and thus approaching each other.

The relative normal motion of the surfaces causes the fluid 

to flow towards less constrained boundaries, resulting in 

the development of high pressures which in turn support 

the load and hence keep off the approaching surfaces from 

potential contact. This classical theory of squeeze film 

between non-porous surfaces has been known for some time. 

However, when one of the approaching surfaces is porous, 

only a part of the fluid is squeezed out and the rest 

flows out through the porous medium. This results in the
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decrease of the load capacity as well as the time taken to 
attain a specified film thickness.

Wu 17 H analysed the squeeze film behaviour 
between two annular disks when one of them had a porous 

facing. He solved the problem analytically and presented 

the results for pressure distribution, load capacity and 

film thickness as functions of time in the form of infinite 

series involving Bessel*s functions. He found that both 
the permeability parameter and the film thickness deter

mined the extent of porous effects which increased in 

significance when the film thickness decreased. When the 

permeability parameter increased, the time required for 

the film thickness to reach any prescribed value decreased.

Ha Z±8l considered the squeeze film between 
two parallel rectangular plates with the upper one having 
a porous facing and approaching the lower one with uniform 

velocity. He solved the modified Reynolds equation and 

obtained the pressure distribution, load capacity and film 
thickness as functions of time in the form of infinite 
series involving trigonometric functions. He showed that 

the pressure and response time dropped off rapidly when
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%/E and % increased respectively. Moreover, for 

the same area, the square had the largest load capacity and, 

for the same permeability, the increase of porous facing 

thickness reduced the load capacity.

Prakash and yij 10 33 simplified the analysis 

of m 07 U by incorporating the Morgan-Gamenon appro
ximation. They showed that the results obtained by them 

were very close to those of Wu £l7 U for small porous 

facing thicknesses. They obtained the pressure distribution, 

load capacity and response time for configurations 

consisting of circular, annular, elliptic, rectangular 

and conical plates. If the area of the . plate was kept 

fixed, the circular plate had the highest load capacity 

and the time taken in reducing a prescribed film thickness 

was greater for a circular plate than for other geometries.

It was customary to assume the no-slip velocity 

conditions at the interface of fluid and the porous region. 

But experiments Q14,15 demonstrated the existence of

slip velocities at the interface of fluid film and the 

porous matrix. Sparrow et al {T.i9 ]] extended the analysis 

£17 3 using slip velocity assumption. Results for the load
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capacity and response time were presented. The results 

indicated that slip velocity further reduced the load 

capacity and the response time of the porous squeeze film.

Hu £20 3 and Prakash and 7ij ££1^ extended 

' their earlier analyses £18,10 J to include the effect of 
velocity slip at the porous boundary. They showed that the 

existence of slip velocity would further reduce the load 

capacity and the response time, thus supporting the 

conclusions 03.

The squeeze film behaviours between two 

circular disks, when one disk had a porous facing and 

approached the other with uniform-velocity, was studied by 

lurti )~22 □ #10 obtained expressions for pressure

distribution, load capacity and time of approach in terms 

of Pourier-Bessel series, in addition to the reduction in 

load-capacity and response time he found that the entire 

fluid could be squeezed out in a finite time resulting in 

actual contact of the disks.

!U £23 3 analysed the squeeze film bet we en 

two rotating annular disks, when one had a porous facing. 

The inertia due to centrifugal force on the fluid was
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taken into account. The pressure distribution and load

capacity were presented in series form while the time-height
ir

relation was in integral form. Bae effect of rojation was 

to reduce pressure, load capacity and response time. She 

criteria under which the inertia effects could he neglected 

were also given, ling £243 presented an analogue method 

and simplified the analysis £23 3 by taking only one disk 

rotating. His results favourably compared with those of 

Wu £233. In addition to obtaining expressions for 

pressure distribution, load capacity and response time, 

he obtained a relationship between squeeze time and film 

thickness for a given load. Ihe squeeze time reduction due 

to the inertia effect would become small if the porous 

facing had high permeability and thickness.

Cowling £25 3 showed that the pressure 

gradients increased considerably when an electrically 

conducting fluid flowed under the influence of electro- < 

magnetic fields . ELco and Hughes*' £263 initiated the 

study of an axial current induced pinch effect on the load 

capacity of solid bearings with conducting lubricants.

Gupta ant Sinha £27 3 considered such effects on two 

parallel annular disks when the upper one which had a
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porous facing approached the stationary lower disk with a

uniform normal velocity, Btpressions were obtained for 

pressure distribution, load capacity and film thickness 

as functions of time in the form of Bessel's functions. It 

was shown that all the above quantities increased due to 

the pinch effect, ©wing to the pinch effect the bearing 

could sustain an amount of load 5 even when there, was no 

flow. Gupta and Patel £28~| extended the analysis £27 H 

hy including the velocity slip at the interface of the 

film and the porous region.

Hingu £29]] considered the effect of axial 

current induced pinch on the squeeze film behaviour 

between two circular disks when the upper'disk had a porous 

facing and moved normal to itself to approach the lower 

disk. Expressions for pressure distribution, load capacity 

and film thickness were obtained in the form of infinite 

series involving Bessel's functions. He showed that the 

film pressure, the load capacity and the time of "approach 

increased due to the pinch. Moreover, an amount of load 

could be sustained by the bearing even when there was no 

flow. Patel £ 30 3 considerably simplified the analyses
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£27,29]] by incorporating the Morgan-Cameron approximation 

and showed that his results were very close to those 

obtained earlier.

likewise the application of magnetic fields 

on the squeeze film bearings was found to be considerably 

advantageous. 1 number of theoretical and experimental 

studies []3lr- 33U were made of squeeze films between 
impermeable surfaces. However, Sinha and Gupta |_5 j 

initiated the study of the squeeze film behaviour between 

porous surfaces. Ehey t made a theoretical study of the 

squeeze film behaviour between two parallel rectangular 

plates, the .upper one having a porous facing and 

approaching normally the lower one, in the presence of 

a uniformly applied transverse magnetic field. Results 

were presented for pressure distribution, load capacity 

and film thickness as functions of time in the form of 

infinite series. It was shown that hydromagnetic.effects 

could he used to increase the bearing characteristics 

considerably without altering the size of the bearing.

Sinha and Gupta £34]] obtained similar results for 

hydromagnetic squeeze film between porous annular disks.
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Patel |_ 35 U extended the analysis {_ 34 U fry
t ,

including the slip -velocity at the porous boundary.
j

Chandrasekhara []36]J analysed the squeeze film between 

two infinite parallel strips, when one had a porous facing, 

in the presence of a transverse magnetic field and the slip 

velocity at the porous boundary. It was shown that increases 

in the load capacity and response time could be attained 

by the application of the magnetic field. Biese increases 

were marked for small values of the permeability and 

large values of the Hartmann number.
I

: Other geometries
i
j Prakash and Yij £ 37 3 considered an infinite

slider bearing when the slider moved tangentially with a 

uniform velocity and when the stator had a porous facing. 

Using the Morgan-0 am er on approximation they uncoupled the
i
j

equation for film pressure. Then they obtained expressions 

for; pressure, load capacity, friction, coefficient of 

frijction and centre of pressure in closed form. She effect 

of porosity was to decrease the load capacity and

friction, but to increase the coefficient of friction.
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Kuliami and Yinay Kumar £ 13 2 obtained a 
lubrication equation for a general bearing with one 

surface moving with a relative velocity and the other 

having a porous matrix with anisotropic permeability, 

fhey took into account the slip velocity at the porous 

boundary.


